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I t is assumed tha t all spaces with which we are concerned are 
separable metric. Let (G, X) be a transformation group with G = I, R 
where I is the additive group of integers and R the reals. (I, X) is 
called a discrete flow and (R, X) a continuous flow. The orbit 0X of a 
point xÇ:X under a flow (G, -X") is the set of all gx for gGG. A flow 
(G, F) is imbedded in a flow (G, F') if YQY' and (G, Y) is (G, F') 
cut down to F. We say that (G, X) is raised to (G, F) provided there 
is a mapping <j> of F onto X such that for each y G F and gGG, 
<i>g(y) = g<t>(y). In this paper we establish that any discrete flow can 
be raised to a discrete flow on a zero-dimensional space and any con­
tinuous flow to a continuous flow on a 1-dimensional space. We shall 
note that these newly produced flows can be considered as imbedded 
in a discrete flow on the disc on the one hand and in a continuous flow 
on the solid torus in Euclidean 3-space on the other. Thus all con­
tinuous flows on compact metric spaces can be produced from con­
tinuous flows on the solid torus. We include some remarks about 
minimal flows in §3. 

1. Discrete flows. Any homeomorphism g of X onto X generates 
a discrete flow on X and in turn any discrete flow is generated by the 
unit of the group G. Let gx denote the unit of the group or the gener­
ating homeomorphism. 

We wish to establish 
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THEOREM IA. Any discrete flow can be raised to a discrete flow on a 
zero-ditnensional space.2 

Before proceeding to the proof of Theorem IA we introduce some 
notation and conventions. The idea of the proof is rather simple but 
the notation is somewhat messy. 

Let H— {hj}fco denote the set of closures of the elements of a 
countable basis of X. (For notational consistency we suppose X is 
not a finite set. The theorem is obvious for X finite anyway.) 

Let N be a countably infinite collection of monotonie double-
ended sequences {ni(j)} |»-|<oo» 0 ^ j < <*>, of integers such that every 
integer is a term of some sequence of N and for ji?*J2 or i\^i%y 

fl»i0"i) ^^2(72)- H and N are in 1-1 correspondence given byj. 
We define the iV-shift of the set of all integers as that transforma­

tion which corresponds each integer to its successor in the particular 
element of N of which it is a term. Under the iV-shift each integer 
has a unique successor and a unique predecessor. 

T H E HOMEOMORPHISM a OF THE CANTOR-SET. We let the Cantor-
Set, C, be represented by the set of all double-ended sequences of 
zeros and ones with a specified binary (starting) point. To realize C 
from the set of all ordinary sequences of zeros and ones, we need 
merely reinterpret the set of even numbers as the set of positive 
integers and the set of odd numbers as the set of negative integers. 

We denote a point of C by p= {pi} (i< 00, i > — 00) where for 
each i, £; = 0, 1 and po (or the subscript 0) determines the binary 
point. 

The homeomorphism cr of C onto itself is that induced by the N-
shift on the set of subscripts of the {pi} representation of the points 
of C; in other words, <r({ ƒ>*}) = {pi'} where, for each i, the integer i' 
is the successor of i and pi> = 0 iff pi — 0. If N had only one element, 
a would be the ordinary shift homeomorphism of C onto itself. 

I t is clear that a is continuous and 1-1 onto. 
PROOF OF THEOREM IA. We shall exhibit a zero-dimensional space 

F, a homeomorphism gv of Y onto itself and a mapping <£ of Y onto 
X such t h a t <j>gy = gx<l>. 

The space Y is to be a subset of X X C. 
Let 3> denote the projection of XXC onto X. 
Let g be the homeomorphism of X X C onto itself which is defined 

by 
g[(*>P)] = («(*),*(#))• 

Since both g and a are homeomorphisms, so is g. 

2 It has been pointed out to me by de Groot that Theorems IA and IIA can also 
be proved rather easily for completely regular spaces by use of his theorem on linear­
ization of homeomorphisms and mappings. 
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Let Y be the set of all points (x, {pi}) of XXC except for those for 
which either 

(a) for some i and some j , x^gl(hj) and pni(J) = 1, or 
(b) for some i and some j , x(£Cl(X\gi(hj)) and pniij)*3®* 
The desired homeomorphism gy of Y onto F is simply g\ F. The 

mapping $ is <E>| F. 
In the following remarks we show that F, gVi and 0 are as needed 

for the theorem. 
(1) $(Y)=X so that <t> is onto. For any x(EX and any index ft, 

the criteria (a) and (b) guarantee that at most one of the two possible 
values of pk is excluded. 

(2) <f> is continuous for $ is continuous. 
(3) F is closed. By indexing by the sum of | i\ and j , Y can be ob­

served to be the intersection of a monotonie decreasing sequence of 
closed sets. 

(4) The homeomorphism g carries F onto itself or, equivalently, 
gy is a homeomorphism of F onto F. 

I t suffices to observe that for any (x, {pi)), and (g(x), cr({pi})) 
either both are in F or neither is. 

If (xy {pi}) fails to be in F because of condition (a) then, for some 
i and some j , both 

oo € g'(*y) and pni(j) = 1. 

But then applying g to (x, {pi}) we get g(x) C«fe*(*y)) = gi+KK) and 
£nt+1(j) = l which means that (g(x), <r({pi})) is not in F. 

Similar considerations suffice both for condition (b) and for the 
other order of implication. Thus gy is a homeomorphism of F onto F. 

(5) <t>gv = gx<t> since &g = gx$ by definition of $ and g on XXC. 
(6) F is zero-dimensional. 
We consider the Cantor-Set as a vertical middle-third set. Then 

XXC (and hence F) is cut up into arbitrarily thin horizontal slices 
open and closed in X X C . I t suffices to observe that for any (x, {pi}) 
in F we can locate it in such a thin horizontal slice containing no 
point of F far away from it. But we shall see that the criterion (a) for 
a point not being in F implies that there is such a slice. If hj contains 
x in its interior, if hj is small in X, and if (x} {pi})€z F, then p0(j) 5*0 
by condition (b) and thus po(j) must be 1. But for any x'&hj, every 
point of the form (#', {pi}) with p0(j) = 1 is not in F by condition (a). 
This implies that a sufficiently thin slice containing (x, {£*•}), (de­
fined by specifying finitely many of the pi including po(J) = 1) con­
tains no point far from (x, {^i}). 

Thus Theorem IA is proved. 

THEOREM IB. Any discrete flow on a compact metric space can he 
raised to a discrete flow on a Cantor-Set. 
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PROOF. The proof of Theorem IA with the observation (3) that the 
set F of the proof is closed asserts that the flow can be raised to a com­
pact zero-dimensional space F ' . Let Y' X C be the desired Cantor-Set 
where <l> is the projection from Y'XC to F ' to X and the homeomor-
phism on Y'XC is the coordinate homeomorphism using the identity 
on C. 

THEOREM IC. Any discrete flow on a compactum can be raised to a 
discrete flow imbedded in a flow, on a 2-dimensional disc, which is the 
identity on the boundary of the disc. 

PROOF. This theorem follows immediately from Theorem IB and 
the known fact (see [5] for example) that for C the Cantor-Set and 
D the disc with CQlnt D, any homeomorphism of C onto itself can 
be extended to a homeomorphism of D onto itself holding the bound­
ary pointwise fixed. 

In [5] the condition on the boundary is not explicitly given but is 
inherent in the procedure. 

By a mapping is meant a continuous transformation. 

THEOREM 11 A. Letfx be a mapping of X onto itself. Then there exist 
a zero-dimensional space F, a mapping fy of Y onto Y and a mapping 
<t> of Y onto X such that <j>fy —fx<t>. 

PROOF. The proof of this theorem follows the proof of Theorem IA 
except that fx and ƒ„ are mappings and not homeomorphisms. The 
images of elements of H under fl for i<0 are counter-images and can 
be used. 

THEOREM I IB. Under the conditions of Theorem IIA, if X is com­
pact, then Y can be taken to be the Cantor-Set. 

2. Continuous flows. We assume (G, X) a continuous flow on X. 
For any gGG, we denote by 1(g) the additive group of iterates of g. 
Thus (1(g), X) is the discrete flow generated by g. 

Let ix be the imbedding of (/(g), X) in (G, X) , induced by the 
identity injection of /(g) in G. 

Let C(X) = I X [0, 1] be called the cylinder over X. Let TC(X, g) 
denote the twisted cylinder over X with respect to g, i.e., the image of 
C(X) under a map 0 which is 1-1 except on (JTXO)U(XXl) where it 
is 2-1 identifying (x, 0) with (g-l(x), 1) for all x£:X. 

We call 6(XX0) the base of the twisted cylinder. Let R(g) denote 
the additive group of reals with g as the unit. Then there exists a 
canonical continuous flow on TC(X, g) denoted by (R(g), TC(X, g)) 
and parametrized by [0, l ] on C(X).Z 

8 This method of constructing a continuous flow from a discrete flow is described 
in [2]. 
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With the base of TC(Xt g) identified as X, we may consider 
(i?(g), TC(X, g)) as a natural extension of (1(g), X) or conversely 
(1(g)y X) as naturally imbedded in (R(g), TC(X, g)). The orbit which 
contains a point 0(#, 0) of the base of the twisted cylinder is the image 
under 0 of the union of the vertical intervals in C(x) over the orbit 
of (xy 0) under 1(g) acting on (XXO). 

If <f> is the mapping (of the proof of Theorem IA) of F onto X and 
iy and ix are the natural imbeddings of (I(g)} Y) and (1(g) y X) in 
(R(g)y TC(Yy g)) and (R(g), TC(X, g)) respectively, then iVf ix, and 
4> induce a mapping $ ' of (TC(Yy g)) onto TC(Xt g) such that for 
any g(ER(g)y |</>'= <£'£. Let rj be the mapping of TC(X, g) onto X 
satisfying the relationship rjix — n and such that the composition of 0 ' 
followed by rj is a mapping of TC( F, g) onto X which commutes with 
every g in R(g). But F is zero-dimensional in Theorem IA and thus 
TC(Yy g) is one-dimensional (for locally it is the product of F by 
[O, l ] ) . If the original space X is compact then all the derived spaces 
of this development also are compact. Thus we have established the 
theorems : 

THEOREM IIIA. Any continuous flow can be raised to a continuous 
flow on a 1-dimensional space. 

THEOREM I I IB . Any continuous flow on a compactum can be raised 
to a continuous flow on a 1-dimensional compactum. 

Finally we note that if we use the twisted cylinder over the discrete 
flow on the disc of Theorem IC, the twisted cylinder itself is the 
solid torus—for our flow was the identity on the boundary of the 
disc. Thus the argument of this section establishes 

THEOREM I I IC. Any continuous flow on a compactum can be raised 
to a continuous flow imbedded in a flow on a solid torus. 

3. Minimality. A flow (G, X) (discrete or continuous) is called 
minimal if the closure of each orbit is X. £-adic flows on the Cantor-
Set and irrational rotations on tori (discrete or continuous) are exam­
ples of minimal flows. 

REMARK. Since the image of a dense set under an onto map is dense, 
it is immediate that if (G, F) and (G, X) are flows, <f> maps F onto 
X, <j> commutes with each element of Gf and (G, F) is minimal, then 
(G, X) is minimal. 

THEOREM IV. If X is compact and (G, X) is minimal, then it can be 
prescribed in Theorems IB and I I IB that (G, F) is minimal. 

PROOF. Given any flow on a compact space, F, there exists a com­
pact subspace F ' on which the flow, cut down to F ' , is minimal, see 
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[2] or [4] for example. But if the image of Y' under the projection 
is a proper subset X' of X, then for any x'ÇzX', d(x') is not dense in 
X, contradicting our hypothesis. Thus (G, X) is raised to (G, F') . 
If X were finite, then Y' of our construction might be finite but we 
may raise (G, X) to a minimal £-adic flow on C in such case anyway. 

THEOREM V. Any continuous minimal flow on a compactum can be 
raised to a flow on an indecomposable continuum every composant of 
which is a continuous 1-1 image of the line. 

PROOF. I t is known (and follows from a Baire category type argu­
ment) that if (G, X) is the continuous minimal flow of the hypothesis, 
then for some g £ G , the induced (/(g), X) is also a minimal flow. But 
from Theorem IV, (1(g), X) can be raised to a minimal discrete flow 
on a Cantor-Set. Now employing the proof of Theorem I I IB we 
note tha t the twisted cylinder of §2 is just such an indecomposable 
continuum. 
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