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I. Introduction. If G is a group, its group algebra LY(G) consists
of all complex functions f on G for which the norm

) II7] =,§ | 1) |

is finite; addition is pointwise, and multiplication is defined by con-
volution:

(2) (f* 9)(x) = 2 f(y)g(y ).

veEQR

Any f&€LY(G) for which

will be called an idempotent on G.

The support of a complex function f on G is the set of all xEG at
which f(x) 0. The support group of f is the smallest subgroup of G
which contains the support of f.

By methods involving Fourier transforms and the Pontryagin dual-
ity theory, the idempotents on abelian groups are completely known
[2, p. 199]. (For nondiscrete locally compact abelian groups, the
classification of the idempotent measures was completed by P. ]J.
Cohen [1].) Let us draw attention to the following facts, of which
(A) and (D) are probably the most striking:

(A) If f is an idempotent on an abelian group G, then the support
group of f is finite.

(B) Idempotents on abelian groups are self-adjoint (i.e., f(x~?) is
the complex conjugate of f(x)).

(C) On a finite abelian group there are only finitely many idem-
potents (namely 2» if the group has # elements). On a countable
abelian group there are at most countably many idempotents.

(D) If fi 1s an idempotent on an abelian group and if ” f” >1, then
lIfll=3+/5 [3, p. 72]. (Note that there are no idempotents f with
[I7]] <1, except f=0.)

It is the purpose of the present note to show that each of the above state-
ments becomes false if the word “abelian” is omitted.
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II. Consider a set E which contains the integers and the three sym-
bols «, 8, v, let

a = (afy),

4) b=0BY(---—=2-1012...)

be permutations of E, and let G be the group generated by @ and b.
The relations

(5) a® =1, b%—1lg = g2p%-!
hold for all integers %, and G consists of the distinct elements
(6) ot (n=0,1,2k=0, +1, +2,+ - ).
Setting w=exp { 2mwi/3 } , define
) Fo(anbh) = {%wn if k=0,
0 ifk #0,
and
(8) fi@) = fo@b™)  (*EG;j=0, £1, £2,-..).
I claim that
%) Soxfi=f; and femaxf;=0

for all integers j and m. Indeed,

(foxf)(a"b?) = 27 fo(a)f(a"d?)

=0

1 2
= — 2 "o = fi(a"b?),
9 .o
whereas (5) shows that

(fome1 % f) (@0m=140) = 37 fom_1(a~b2m=1)f;(a~"b7)

r=0

1 2
-~ D=0

ra=0

If now ¢n are complex numbers such that .2, |cm| <, and if

(10) =g+ X oafens

then
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(11) I = 1+_°'§ | en] < 0,

and the equations (9) show that f % f=f.

Taking infinitely many ¢,0, we thus obtain idempotents on G
with infinite support (and, a fortiori, with infinite support group).
The example f=fo+4f1 shows that there exist idempotents on G with
finite support but infinite support group. Equation (11) shows that
every number =1 is the norm of some idempotent on G. Unless all ¢, are
0, the idempotents (10) are not self-adjoint.

III. T have not succeeded in proving the existence of self-adjoint
idempotents with infinite support, but it is easy to give examples in
which the support group is infinite.

Put

a = (afv)(12)(34)(56) - - -,
b = (aBy)(23)(45)(67) -.- - .

Then ab has infinite order, so that the group G generated by @ and b
is infinite. The relations a?=52, a®=5b%=1 hold. Define gi(a”) =%,
21=0 elsewhere; go(b") =3 exp {#nmi/3}, g2=0 elsewhere. Then

(12)

(13)  gi*g1=g1,  g2*¥g =gy  L1*g =L =0,
Hence g=g1+g. is an idempotent on G whose support S is finite.

Since ¢ &S and b& S, G is the support group of g; and since g; and
g2 are self-adjoint, so is g.

IV. Even on a finite group there can be uncountably many idem-
potents, both self-adjoint and non-self-adjoint. To see this, let G be
the noncyclic group of order 6, with generators ¢ and b. The relations
a®=>b%=1, ba=a? hold. If p, q, r are complex numbers, subject to

1
(1) Ptpgte= -

and if
f(1)=%7 f(a)='_%+“" f(az)=_%'—zr7
f®) =p+ygq f(ad) = —p, f(a%) = — g,

explicit computation shows that f * f=f. If r isreal and 122 <1, then
p and ¢ can be taken real in (14), and the resulting idempotents f are
self-adjoint. If 7 is not real, f is not self-adjoint.

(15)

V. We conclude with a positive result:
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THEOREM. If f is an idempotent on G and if ||f|| =1, then the support
of f is a finite subgroup H of G, and

(16) fay) = | H|[@fG) (x5 € B).

Here |H| denotes the number of elements of H. We sketch the
proof. Let S be the support of f, let m=max | f(x)| (xE€G), and let
H be the set of all x&G at which |f(x)| =m. Clearly H is finite. For
xEH, we have
17)

= m.

2 f@) ()

Since ||f]| =1, (17) is only possible if y"'xEH for every y&JS, i.e., if
S-1HCH. Since HCS, it follows that H is a group, and then that
S=H. Also, |f(x)| =|H|~* on H. The equation f(x) = D f(y)f(y~x)
then forces the arguments of f(y)f(y~1x) to be equal to the argument
of f(x), for all x, y& H, and this gives (16).

Since non-negative idempotents have norm 1 or 0, the above theo-
rem characterizes them as well.

Finally, observe that (16) implies that f(xy) =f(yx) for all x, yEG.
In other words, all idempotents of norm 1 lie in the center of the group
algebra. 1t would be interesting to know whether statement (A) of
the Introduction is true for all central idempotents.
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