RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

CONVOLUTION OF SEQUENCES¹

BY GEORGE BRAUER

Communicated by Edwin Hewitt, October 29, 1962

A summability method is a linear functional on a space of sequences S. The method ϕ is said to be regular if, for each convergent sequence $s = \{s_n\}$ we have $\phi(s) = \lim_{n \to \infty} s_n$. In this paper we define various types of convolution (multiplication) of sequences; we use the symbol * to denote convolution. Our convolution is always distributive, but not necessarily associative or commutative. We consider the regular methods ϕ such that $\phi(s*t) = \phi(s)\phi(t)$ for all sequences s and t in the domain of ϕ , $S(\phi)$, that is, the regular homomorphisms from $S(\phi)$ to the real numbers. We write $\hat{S}(\phi) = \phi(s)$ for each sequence s in $S(\phi)$ and we impose the weak topology on the set of homomorphic methods. In case the multiplication is commutative and associative and we were dealing with complex sequences, then $S(\phi)$ would be a complex Banach algebra, $\hat{s}(\phi)$ would be the Fourier transform of the sequence s, and the weak topology on the set of homomorphic methods would yield the maximal ideal space of $S(\phi)$. Although we shall deal with real sequences, we shall use a certain amount of Gel'fand theory.

The types of convolution to be considered are:

- (a) Pointwise multiplication—if s and t are two bounded sequences then $s * t = \{s_n t_n\}$.
 - (b) Cauchy multiplication—if s and t are two sequences such that

$$S(z) = \sum_{n=0}^{\infty} a_n z^n$$
, $T(z) = \sum_{n=0}^{\infty} b_n z^n$, $(a_n = s_{n+1} - s_n, b_n = t_{n+1} - t_n)$

are analytic and bounded in the unit circle D in the complex z-plane, then $s * t = \{\sum_{k=0}^{n} \sum_{j=0}^{k} a_j b_{k-j} \}$. We note that the power corresponding to s * t is S(z)T(z).

(c) If s and t are bounded sequences, and $B = (b_{nk})$ is a positive

¹ This research was supported by Nonr (710)16.

regular triangular summation matrix, we define $s * t = \{\sum_{k=0}^{n} b_{nk} s_k t_k \}$. (d) If s and t are two bounded sequences, B has all properties

stated in (c), and, in addition,

$$\lim b_{n,n-r}=0, \qquad r=0, 1, \cdots,$$

then

$$s * t = \left\{ \sum_{k=0}^{n} b_{nk} s_k t_{n-k} \right\}.$$

Convolutions (a) and (b) are commutative and associative, convolution (c) is commutative but not associative while convolution (d) is neither commutative nor associative. If ϕ is a regular homomorphism relative to (a), (c), or (d) we turn $S(\phi)$ into a Banach space by imposing the norm $||s|| = \sup |s_n|$; if ϕ is a homomorphism relative to (b) we use the norm $||s|| = \sup S(z)$, the supremum being taken over all points z in D.

THEOREM 1A. If ϕ is a regular homomorphism relative to (a) or (c), and s is in $S(\phi)$, then $\phi(s)$ is a cluster value of s.

We first show that $\liminf s \leq \phi(s) \leq \limsup s$. If $\phi(s) = \sigma > \limsup s$ then $\limsup [s/\sigma]^{(m)} \to 0$ as $m \to \infty$ (here $s^{(m)}$ denotes the sequence s convolved with itself m times). We use the fact that ϕ is a linear continuous functional to conclude that $\phi(s/\sigma)^{(m)} \to 0$. Since ϕ is a homomorphism, we must have $\phi(s/\sigma^{(m)}) = 1$ for all m. We have a contradiction; thus $\phi(s) \leq \limsup s$. Similarly we see that $\phi(s) \geq \liminf s$. In particular ϕ must evaluate the sequence $(s-\sigma)^{(2)}$ to 0, since $(s-\sigma)^{(2)}$ is a non-negative sequence when the convolution considered is (a) or (c), 0 must be a cluster value of $s-\sigma$. In other words, σ must be a cluster value of $\phi(s)$.

THEOREM 1B. If ϕ is a regular homomorphism relative to (b), and $s \in S(\phi)$ satisfies

(1)
$$\sup |s_n| \leq M \sup_{z \in D} |S(z)|$$

for some constant M, then $\phi(s)$ is a cluster value of S(z) as $z \rightarrow 1-$.

THEOREM 1C. If ϕ is a regular homomorphism relative to (d), then $\lim \inf s_n \leq \phi(s) \leq \limsup s_n$, for each sequence s in $S(\phi)$.

When ϕ is a homomorphism relative to (d), we cannot imitate the proof of Theorem 1A to conclude that $\phi(s)$ must be a cluster value of s; with this convolution s * s may be negative.

THEOREM 2A. Suppose that the sequence s satisfies (1). If s is Abel

summable and evaluated by some method ϕ which is a regular homomorphism relative to (b), then $\phi(s)$ must equal the Abel sum of s.

THEOREM 2B. If the bounded sequence s is evaluated to σ by the matrix B and it is in $S(\phi)$, where ϕ is a regular homomorphism relative to (c) or (d), then $\phi(s) = \sigma$.

Theorem 2A follows from Theorem 1B; to prove Theorem 2B we note that if the matrix B evaluates s to σ , then $s * 1 \rightarrow \sigma$.

THEOREM 3A. If ϕ is a regular homomorphism relative to convolution (a) or (c), and s is a sequence in $S(\phi)$ which is bounded away from 0, then $\{1/s_n\}$ is in $S(\phi)$; if s and t are in $S(\phi)$, then the sequences $s \lor t = \max(s_n, t_n)$ and $s \land t = \min(s_n, t_n)$ are in $S(\phi)$.

If ϕ is a regular homomorphism relative to (a) or (c), $s \in S(\phi)$, and $\phi(s) = \sigma$, then $(s - \sigma)^{(2)}$ is a non-negative sequence which ϕ evaluates to 0. Consequently, if ϵ is a positive number, the set of integers n, on which $|s_n - \sigma| > \epsilon$ is sparse. The same must be true for the set of integers on which $|1/s_n - 1/\sigma| > \epsilon$ and $\phi(\{1/s_n\}) = 1/\sigma$.

To show that $s \vee t$ is in $S(\phi)$, we note that if $\phi(s) = \sigma$, $\phi(t) = \tau$, then there exist subsequences $\{s_{n_j}\}$, $\{t_{m_j}\}$ which converge to σ and τ ; moreover the sequences of integers $\{n_j\}$ and $\{m_j\}$ are fairly dense. Consequently, the sequence $\{n_j\} \cap \{m_j\}$ is also fairly dense and $s \vee t$ has a subsequence converging to max (σ, τ) along this intersection. Hence $\phi(s \vee t) = \max [\phi(s), \phi(t)]$, and similarly $\phi(s \wedge t) = \min [\phi(s), \phi(t)]$.

This theorem could have been proved by Banach algebra theory in the case where ϕ is a regular homomorphism relative to (a). By such a method we can prove:

THEOREM 3B. If ϕ is a homomorphism relative to (b), and s is a sequence in $S(\phi)$ such that the corresponding power series S(z) is bounded away from 0 and (1) is satisfied, then the sequence corresponding to 1/S(z) is in $S(\phi)$.

THEOREM 4. If ϕ is a regular homomorphism relative to (b), and $\{s_n\}$ is a sequence in $S(\phi)$, then $\{s_{n+1}\}$ is in $S(\phi)$ and $\phi(\{s_{n+1}\}) = \phi(s_n)$.

Let ϕ_0 be a regular homomorphism and let ϕ denote the set of all homomorphisms ϕ such that $\mathcal{S}(\phi) \supseteq \mathcal{S}(\phi_0)$. According to the weak topology a regular homomorphism is in the closure of a set $\{\phi_\alpha\}$ if and only if $s(\phi_0)$ is a cluster value of the set $\{\hat{s}(\phi_\alpha)\}$ for each s in the common convergence field. We denote the topological spaces formed by Φ_a , Φ_b , Φ_c , Φ_d , according as the convolution is (a), (b), (c) or (d).

THEOREM 5A. The spaces Φ_a and Φ_c are totally disconnected.

The proof depends on the fact that if ϕ is a regular homomorphism relative to (a) or (c), then each sequence in $S(\phi)$ has a very dense subsequence which converges to $\phi(s)$.

Now suppose that s is a sequence such that the corresponding power series S(z) is analytic in |z| < 1. If σ is a number between $\limsup_{z\to 1-} S(z)$ and $\liminf_{z\to 1-} S(z)$, then there exists a sequence of points $\{z_n\}$ such that $z_n\to 1-$ and $S(z_n)\to \sigma$. The functional $\phi(s)=\lim_{z_n\to 1-} S(z_n)$ is a regular homomorphism relative to (b). In other words, for regular homomorphisms relative to (b), $\mathfrak{s}(\phi)$ takes on each value between its upper and lower bound. Thus

THEOREM 5B. The space Φ_b contains a continuum.

The following is an example of a totally disconnected space Φ_d . Let the matrix $B = (b_{nk})$, defining the convolution, be given by

$$b_{n,n/2}=1, \quad b_{nk}=0, \quad k\neq n/2, \quad n \text{ even,}$$
 $b_{n,k}=1/(n+1), \quad k\leq n, \quad b_{n,k}=0, \quad k>n, \quad n \text{ odd.}$

Let the method ϕ_0 be defined by the matrix $A = (a_{nk})$ where

$$a_{n,n} = 1$$
, $a_{n,k} = 0$, $k \neq n$, n even,
 $a_{n,n-1} = 1$, $a_{n,k} = 0$, $k \neq n - 1$, n odd.

The set of regular homomorphisms ϕ such that $S(\phi) \supseteq S(A) = S(\phi_0)$ forms a totally disconnected space Φ_d under our weak topology.

I do not know whether spaces Φ_d containing a continuum exist.

University of Minnesota