
TRANSITIVE PERMUTATION GROUPS OF DEGREE 
p = 2q+l,p AND q BEING PRIME NUMBERS 

NOBORU ITO1 

1. Introduction. Let p be a prime number such that q — l{p — l) is 
also a prime. Let Q, be the set of symbols 1, • • • , p, and ® be a non-
solvable transitive permutation group on 12. Such permutation groups 
were first considered by Galois in 1832 [I, §327; III, §262]: if the 
linear fractional group LF2(l) over the field of I elements, where I is a 
prime number not smaller than five, contains a subgroup of index I, 
then I equals either five or seven or eleven. These three permutation 
groups will be denoted by A$, GV and Gu. G7 has degree 7 and order 
168; Gu has degree 11 and order 660. Next in 1861 two permutation 
groups, one, which has degree 11 and order 7,920, and the other, 
which has degree 23 and order 10,200,960, were found by Mathieu 
[l6; 17]. These two permutation groups will be denoted by Mn and 
M23. 

We say that ® is a permutation group of type M, if ® does not 
contain the alternating group Ap of the same degree. Then G7, Gu, 
Mn and M23 are permutation groups of type M. Now the following 
problem arises : does there exist any permutation group of type M differ­
ent from G7, Gu, Mn and M23? 

In 1902 Jordan proved the nonexistence of permutation groups of 
type M for £ = 47 and £ = 59 [23; IV, §116]. In 1908 Miller proved 
the nonexistence of permutation groups of type M for £ = 83. But 
he did not even write down the proof explicitly [ l8]. 

Now ® is doubly transitive by a famous theorem of Burnside. In 
particular, the order of © is divisible by q. Let O be a Sylow g-sub-
group of ©. Let NsO, and CsQ, denote the normalizer and centralizer 
of Ö in ®. In 1955 Fryer proved remarkable theorems [7], which 
may be stated as follows. Let the index of CsQ, in NsO, be even. Then 
(i) if ® contains an odd permutation, ® coincides with the symmetric 
group Sp of the same degree, and (ii) if ® does not contain any odd 
permutation and NsO, satisfies a certain appropriate condition, ® co­
incides with A v. 
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He also verified the above mentioned results of Jordan and Miller. 
In 1958 Parker and Nikolai, using computers (UNIVAC Scien­

tific Computer, Model 1103A), verified the nonexistence of further 
permutation groups of type M for £ = 4079 [22]. As a result of their 
computation, they are led to the conjecture; for p>23 there exists 
no permutation group of type M. 

However up to now, there exists no theorem which assures the non­
existence of permutation groups of type M for a set of prime numbers 
containing possibly infinitely many members. Therefore, our primary 
intention is to establish two theorems of this nature. 

THEOREM V. Let p be a prime number > 2 3 satisfying the following 
conditions: 

(1) q = %(p — l) and r = j(p — 3) are also prime numbers, 
(2) p — 4: is a prime number, and, 
(3) p is not of the form 18m2+5, where m is an odd integer. 

Then there exists no permutation group of type M f or p. 

For instance, £ = 222,647 satisfies the conditions of Theorem V. 

THEOREM VIII . Let p be a prime number > 2 3 satisfying the follow­
ing conditions: 

(1) <? = §(£•—1), r — \(p — $) and s *=§(£--7) are also prime numbers, 
and, 

(2) p — 6 is a prime number. 
Then there exists no permutation group of type M f or p* 

For instance, £ = 178,799 satisfies the conditions of Theorem VIII . 
The condition (3) in Theorem V can be dropped if it can be shown 

that the only permutation groups of type M which are not triply 
transitive are isomorphic to either Gi or Gu. In case G is not doubly 
primitive [V, §10], Wielandt proved in 1955 that @ is isomorphic to 
Gi (for a proof see [ l l ] ) . Hence in further investigations, we shall 
assume the double primitivity of ©. Then an interesting result for 
permutation groups of degree 2q due to Wielandt [29] may be useful 
in this connection. 

Furthermore the condition (2) in Theorem VIII can be dropped, 
if the conjecture of Schreier concerning the solvability of the outer 
automorphism group of a simple group is true, because of the follow­
ing remarkable theorem of Wielandt [30]: every permutation group 
which does not contain the alternating group of the same degree is at most 
septuply transitive, if the above conjecture of Schreier is true. 

We prove Theorems V and VIII by successively showing that @ 
has higher and higher degree of transitivity. Since © is already 
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doubly transitive by a theorem of Burnside, our first step is to show 
the triple transitivity of ®. In order to do this and to proceed further, 
our present method requires us to assume that (not only p, q = %{p — 1) 
but also) r = \{p — 3) is a prime number, even though some parts of 
our proofs do not depend on this assumption. Hence throughout this 
paper we impose 

ASSUMPTION a: r = l(p-~3) is a prime number. 
It should be mentioned here that p = 7, 11 and 23 satisfy this as­

sumption. (It is convenient to admit 1 as a prime number.) Hence 
throughout this paper we make the further 

ASSUMPTION b : p is greater than 23. 
Then the triple transitivity of © is an easy consequence of the 

above mentioned theorem of Wielandt [29] (see Theorem I in §2). 
In our proof of quadruple transitivity of © we can assume that © 

is a permutation group of type M, and that © does not contain any 
odd permutation. Let *$ be a Sylow ^-subgroup. Let Nsty and Csty 
be the normalizer and centralizer of $ in © respectively. Then we 
have that $ = Csty and Nsty has order pq. I t is rather easy to show 
that q divides the order of © only to the first power, 0 = CsO, and 
iVsO has order either #(# — 1) or qr. Now our proof mainly relies on 
the following results of Frobenius [5; 6; 25] and Brauer [3] (see 
Theorem II in §3). 

PROPOSITION A (FROBENIUS). Let X°Q and XQ0 be irreducible char­
acters of Sp corresponding to Young diagrams 

0 0- • - 0 

0 

0 

and 

0 0 • • - 0 

0 0. 

Then © is quadruply transitive, if and only if X°Q restricted on © and 
X00 restricted on © are irreducible characters of ®. We have that 

Xo(S) = i(«(.S) - 1)(«(5) - 2) + p(S) 
0 

and 

Xoo(S) = i a ( 5 ) ( « ( 5 ) - 3 ) + | 8 ( 5 ) , 

for every permutation S of Sp, where a(S) denotes the number of symbols 
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of Q fixed by S and /3(5) denotes the number of transpositions in the cycle 
structure of S. In particular, the degrees of Xg and XQ0 are equal to 
(q—l)p + l and (# —1)/>, respectively. 

PROPOSITION B (BRAUER). The degree of an irreducible character X 
of ® is congruent to either 1 or 0 or — 1 or — ôpq modulo p and either 1 
or 0 or — 1 or Sqr modulo q, where 8P and 8q are equal to ± 1 , respec­
tively. Furthermore if the order of Nsd equals q(q— 1), then dqr can be 
omitted above. We say that X has p-type A or D or B or C, according 
as the degree of X is congruent to 1 or 0 or — 1 or — hvq modulo p, respec­
tively. Similarly we say that X has q-type A or D or B or C, according 
as the degree of X is congruent to 1 or 0 or — 1 or •— Sqr modulo q, respec­
tively. Let P be an element of order p of ©. Then we have that X{P) = 1 
or 0 or —' 1, according as X has p-type A or D or B. Let Q be an element 
of order q of ®. Then we have that X(Q) = 1 or 0 or — 1, according as X 
has q-type A or D or B. There exist just two irreducible characters of 
p-type C which take the same value at any p-regular element and the 
sum of whose value at P equals 8P. If the order of Ns£X equals qr, then 
there exist just two irreducible characters of q-type C which take the 
same value at any q-regular element and the sum of whose value at Q 
equals dq. 

The significance of Proposition B lies in the fact that it eliminates 
all but a few possibilities for the decompositions of X°Q restricted on 
® and X0Q restricted on ® into irreducible characters of ©. Consider­
ing this, it seems to be unnecessary to assume that r = l(p — 3) is a 
prime number; but there are some critical cases, which seem to be 
difficult to handle without this assumption. In one such case a 
theorem of Manning concerning uniprimitive2 permutation groups is 
very useful [14], 

There are many results about quadruply transitive permutation 
groups that are now available to us. One such result which is due to 
Parker [21, Theorem 2] has an immediate and useful consequence: 

PROPOSITION D (PARKER) . The order of every permutation group ® 
of type M is divisible by r = l(p — 3) only to the first power. 

Now it is rather easy to prove the following theorem. 

THEOREM I I I . Every permutation group © of type M does not contain 
an odd permutation. 

In other words, if a nonsolvable transitive permutation group of degree 

* Uniprimitive means primitive, but not doubly transitive. This terminology is 
due to Professor Wielandt. 



1963] TRANSITIVE PERMUTATION GROUPS 169 

p contains an odd permutation, then it is equal to Sp. At this point we 
want to propose the following question: let I be a prime number 
greater than three. Let x be a nonsolvable transitive permutation group 
of degree I. If x contains an odd permutation, then is 36 equal to the 
symmetric group Si of degree I? 

Let & be the maximal subgroup of © consisting of all the permua-
tions each of which fixes the symbol 1 of 0. Then using a theorem of 
Bochert [ l ] concerning the minimum degree3 of quadruply transitive 
permutation groups, we can associate with § a (definite) subgroup 
51 of § , which can be faithfully represented as a permutation group 
of type M with degree q (Lemma 13 in §5). 

Our proof of the quintuple transitivity of © (Theorem IV in §5) 
requires at first the triple transitivity of 2t (as a permutation group 
of degree q). Then it heavily relies again on the above mentioned 
results of Frobenius and Brauer (Propositions A and B), and more­
over on the following theorem due to Frame [4, Theorem B ] : 

PROPOSITION E (FRAME). Let A be the set of symbols 1, • • • , n. Let 
TU be a transitive permutation group on A. Let £) be the subgroup of 36 
consisting of all the permutations of H each of which fixes the symbol 1 of 
A. Let A» (i= 1, • • • , k) be the domains of transitivity of g) on A. Let 
U denote the length of A* ( i = l , • • • , k). Put N=nk~2h • • • lk. Let 
1$ be the character of 36 induced by the principal character 1$ of §). Let 

h = z J dXi (*< = 1; i = 1, • • • , /) 

be the decomposition of 1$ into irreducible characters of ï . Let x% denote 
the degree of Xi (i= 1, • • • , /). Put 

D=x$ • • •*{?. 

T hen the number N/Dis a rational integer. Further more, if Xlf • • • yXi 
are rational characters, then it is a perfect square. 

Theorem V is now obtained as a corollary of Theorem IV. 
The sextuple transitivity of © follows easily from the quintuple 

transitivity of © (Theorem VI in §6). 
Now let us assume that not only p, q^^ip — l), r = l(p — 3)j but 

also 5 = \{p — 7) is a prime number. Then we can apply to 21 our above 
reviewed theorems. This, together again with results of Frobenius, 
Brauer and Frame (Propositions A, B and E), leads us to the septuple 
and octuple transitivity of © (Theorems VII and IX). 

8 The word Class is used in older literatures. This terminology is also due to Pro­
fessor Wielandt. 
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Theorem VIII is now obtained as a corollary of Theorem VII. 
In any event we show that ® has a high degree of multiple transi­

tivity. In this circumstance we should like to mention interesting re­
sults of Holyoke [9], Miller [20 ] and Witt [3l] concerning multiply 
transitive permutation groups, though we could not use them in this 
paper. The theorem of Miller led Parker to his above mentioned 
theorem (Proposition D). Furthermore, it may be possible to make 
full use of some interesting results of Bochert [ l ] , Luther [13], 
Manning [15], Weiss [27] and Wielandt [28] concerning the mini­
mum degree of multiply transitive permutation groups. Here we can 
refer to one theorem of Manning [lS ; III, Theorem V] , which implies 
the following proposition. 

PROPOSITION F (MANNING) . Every permutation group ® of type M 
is at most elevenfold transitive* 

Finally it should be mentioned that quite a number of very inter­
esting papers are dedicated to GV, Gn, Mw and M23. For instance we 
want to mention Miller [19], Jordan [12], Witt [31 ] and M. Hall [8]. 

2. Triple transitivity. We use the same notation as in §1. We want 
to emphasize here that we have Assumptions a and b. 

LEMMA 1. Let ® be a permutation group of type M. Then the order 
of O is equal to q. Let Q be an element of O with order q. Then the cycle 
structure of Q consists of two q-cycles. 

PROOF. By a theorem of Burnside [II, p. 234] ® is doubly transitive. 
Therefore the order of ® is divisible by q. If the order of O is greater 
than q, ® contains a g-cycle. Then by a theorem of Jordan [V, 13.9] 
® must contain Av. This contradiction shows that the order of O 
is equal to q. 

THEOREM I. % is triply transitive. 

PROOF. We can assume that ® is a permutation group of type M. 
Since ® is not equal to Gi by Assumption b, by a theorem of Wielandt 
[ l l , Theorem l ] ® is doubly primitive. Hence § is a primitive 
permutation group of degree 2q. Let us assume that ® is not triply 
transitive. Then § is not doubly transitive. Therefore, by a theorem 
of Wielandt [29], there exists an odd integer m such that 2q = m2 + l. 
Hence we have that 4r = ra2 — l = (w + l)(w — 1), which by Assump-

4 We shall show in the following that ® contains an element T of order 3 such that 
a(T)—r (see Lemma 11). This, together with the mentioned theorem of Manning, 
proves Proposition F. 
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tion a implies that m+l = 2r and m—l = 2. Thus we have obtained 
that r = 2, g = 5 and £ = 1 1 , contradicting Assumption b. 

3. Quadruple transitivity. Our main purpose of this section is to 
prove the following theorem. 

THEOREM I I . © is quadruply transitive. 

In order to prove this theorem, we can evidently assume that © is 
a permutation group of type M and that © does not contain any odd 
permutation. Then we can show, first of all, the following two 
lemmas. 

LEMMA 2. (i) The order of Nsty equals pq, (ii) the order of Cs£X 
equals q and (iii) © is simple. 

PROOF, (i) If the order of Nsty is even, let us consider an involution 
I in Nsty. I t is easy to see that the cycle structure of / consists of q 
transpositions. Thus i" is an odd permutation, in contradiction to the 
assumption. If the order of Nsty equals p, then by the splitting theo­
rem of Burnside © contains a normal subgroup of index p, which 
necessarily coincides with § . Then the transitivity of © implies that 
§ = 1 and © becomes solvable, in contradiction to the assumption. 

(ii) If the order of CsD, is greater than g, then by Lemma 1 CsO, 
contains an element V, whose cycle structure consists of a single 2q-
cycle. Thus V is odd, in contradiction to the assumption. 

(iii) If © is not simple, let 5JI be a proper normal subgroup ( ^1 ) of 
®. Since © is doubly transitive, 5ft is transitive and therefore 5JI con­
tains $ . Then using Sylow's theorem we have that (Nsty) Sft = ©. 
Therefore, we see that ®: yi = q and WnNsty^y. But the latter fact 
implies as before that $1 is solvable. Then © becomes solvable, too, 
in contradiction to the assumption. 

LEMMA 3. The order of NsQ, equals either qr or q(q—l). 

PROOF. By Lemma 2, (ii) we see that the order of NsO, is a divisor 
of q(q — 1). If it is equal to g, then by the splitting theorem of Burnside 
© contains a normal subgroup of index q contradicting the simplicity 
of ®. If it is equal to 2q, then by a previous result [ l l , Theorem 2]© 
is isomorphic to either G7 or Gn, in contradiction to the assumption. 

Now we use the following notation: (X, Y) denotes a nonprincipal 
irreducible character of ©, which has £-type X and g-type 
Y (X, Y=A, B, C, D). Then Proposition B enables us to compute 
the least possible and the next least possible degree of the nonprin­
cipal irreducible characters of © as follows: 
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Next Least Possible 
Type 
(A, A) 
(A,B) 
(A,Q 

(A,D) 
(B,A) 
(B,B) 
(B,Q 

(B,D) 
(C,A) 

(C,B) 

(C,D) 

(D,A) 
(D,B) 
(D,Q 

(D,D) 

Least Possible Degree 
qp + \ 
(q-2)p + l 
(q-r-l)p + l 
(r-l)p + l 
(q-l)p + l 
2p-l 
qp-l 
(q-r + l)p-l 
(r + l)p-l 
p-l 
Kp+i) 
H3P-D 
h((2q-3)p + l) 
h((2q-l)p-l) 
4((22-l)/» + l) 
*(/>-!) 
P 
(q-\)p 
(q-r)p 
rp 
qp 

Degree 

2 (g - l ) ^ + l 
(2q-r-l)p + l 
(q+r-l)p + l 

(q+2)p-l 

(2q-r + l)p-l 
(q+r + l)p-l 
(q + l)p-l 
§((2<z+l)£ + l) 
i((2q+3)p-l) 

U(2q + l)P~l) 
(q+l)p 

(2q-r)p 
(q+r)p 

8 a =l 
5 j = - l 

8 « = 1 
S a = - 1 

* , = 1 
8 P = - 1 
8„ = 1 
S „ = - l 
8 „ = 1 
8 P = - 1 

8 S = 1 
8 8 = - l 

We need the following results of Brauer and Tuan [3; 26] : 

PROPOSITION C (BRAUER, T U A N ) . If © possesses an irreducible char­
acter of degree \{p~\) or 1(^ + 1), then it is isomorphic to LF%(p). 

On the other hand, we have the following lemma. 

LEMMA 4. © cannot be isomorphic to LF2(p). 

PROOF. Since © contains a subgroup of index py we have, by the 
first mentioned theorem of Galois [ill, §262], that £ = 5 or 7 or 11. 
This contradicts Assumption b. 

Lemma 4 removes the possibility of an appearance of an irreducible 
character of © of type (C, A) with 8P = 1 or of type (C, D) with Sp= — 1 
as an irreducible part of X^ restricted on © or Xoo restricted on ®. 

Using this fact we can show the following two lemmas. 

LEMMA 5. There are only four possible cases of the decomposition of 
X°Q restricted on ® into the irreducible characters of © : 

(i) X°Q restricted on © is irreducible. 
(ii) Xl=(A, B) + (D, A), where the degrees of (A, B) and (Z>, A) 

are equal to (q — 2)p + l and p, respectively. 
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(iii) XQ
Q=(A, C)i + (A, C ) 2 +(£ , A), where the degrees of (A, C)i 

(i=l, 2) and (B, A) are equal to (r — l)p + l with Sfl= —1 and 2p — l, 
respectively. 

(iv) X°0=(A, C)i+(A, C)2+(B, D) + (D, A), where the degrees of 
(A} C)i ( i = l , 2). ( 5 , D) and (D, A) are equal to (r-l)p + l with 
ô^= — 1, >̂ — 1 and p, respectively. 

PROOF. Since X%(P) = 1, by Proposition B an irreducible character 
of ® of £-type A or £-type C with bp = 1 must appear as an irreducible 
part of X°Q restricted on ®. Since ® is doubly transitive, by a theorem 
of Frobenius [ó] the principal character of ® does not appear here. 
Let us assume that X% restricted on ® is reducible. Then we see from 
the table on page 172, that either a character (A, B) with degree 
(q — 2)p + l or a pair of characters (-4, C)» (i—1, 2) with degree 
(r — l)p + l and S3 = —1 must appear. Again by inspecting the table 
on page 172 we see the validity of Lemma 5. 

LEMMA 6. There are only five possible cases of the decomposition of 
Xoo restricted on © into the irreducible characters of ® : 

(i) Xoo restricted on ® is irreducible. 
(Ü) Xoo = (A, B)+(B, D), where the degree of (A, B) and (B, D) 

are equal to (q — 2)p-\-l and p — 1, respectively. 
(iii) X00 = (A, Qi+(A, C)2+(B, D)i+(B, D)2r where the degrees of 

(A, C)i ( i = l , 2) and (B, D)i (i=l, 2) are equal to ( r - l ) £ + l with 
bq = — 1 and p — 1, respectively. 

(iv) Xoo = (A, C)i+(A, C)2+2(B, D), where the degrees of (A, C)< 
(i—1, 2) and (B, D) are equal to (r — l)p + l with Sg= —1 and p — 1, 
respectively. 

(v) Xoo=(A C)i+(D, C)2, where the degree of (D, Q» (i = l, 2) 
is equal to rp with ôq— — 1. 

PROOF. Since Xoo(Q) = — 1 , by Proposition B an irreducible char­
acter of g-type B or g-type C with dq = — 1 must appear as an irreduci­
ble part of Xoo restricted on ®. Let us assume that X0o restricted on 
® is reducible. Then we see from the table on page 172 that either 
a character (A, B) with degree (q — 2)p + l or a pair of characters 
(A, C)i (i—1, 2) with degree (r — l)p + l and bq— —1 or a pair of char­
acters (D, C)i {i—1, 2) with degree rp and ôfl= — 1 must appear. 
Again by inspecting the table on page 172 we see the validity of 
Lemma 6. 

LEMMA 7. Case (iv) in Lemma 5 and Cases (ii), (iii) and (iv) in 
Lemma 6 cannot occur. 

PROOF. Let us suppose that one of these cases occurs. Let us con-
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sider the character (B, D) (or (B, D)i) of degree p — l. Let Xo be 
the irreducible character of Sp (and, by the double transitivity, of ®) 
such that its value is given by the formula X0(S) = a(S) — 1 for 
every permutation 5 of Sp. Since © is triply transitive, by a theorem 
of Frobenius [ó] X0 is orthogonal to both X|j and Xoo. Hence we 
have that (5 , D) (or ( 5 , £>)i)^X0. Let « be the subgroup of © 
consisting of all the permutations in © each of which fixes each of 
the symbols 1 and 2 of 0. Let Fo be the irreducible character of SP-i 
(and by Theorem I of >̂) such that its value is given by the formula 
Y0(T) =a(T)—2 for every permutation T of Sp-i, where Sp-i is the 
subgroup of Sp consisting of all the permutations each of which fixes 
the symbol 1 of 0. Then we have the following three equalities, 
which are also due to Frobenius [5]: 

1© + 2Xo + X0 + X0o, 
0 

H + Fo, 

1© + Xo] 

where 1®, 1$ and la are principal characters of @, p̂ and $ respec­
tively, l j and 1% are characters of © induced by 1$ and la respec­
tively, and l | is the character of § induced by 1$. Therefore we have 
the following equality: 

• 
Fo = Xo + Xo + Xoo, 

0 

where F* is the character of © induced by F0. Then by the reciprocity 
theorem of Frobenius (B, D) (or (5 , D)i) restricted on $ contains F0 

as an irreducible part. Therefore we have that 

(B,D) (or (5 , £>)i) = F0 + L, 

where L is a nonprincipal (because of (£ , D) (or (J5, D)i) ?*Xo) linear 
character of £ . Then again by the reciprocity theorem of Frobenius 
we have that 

L* = (5 , Z?) (or (5 , 2))!) + M, 

where L* is the character of © induced by L and M is a nonprincipal 
linear character of @, contradicting the simplicity of ®. 

LEMMA 8. Case (iii) in Lemma 5 cannot occur. 

PROOF. Let us assume that this case occurs. Then Case (v) in 
Lemma 6 cannot occur, because © possesses only two irreducible char­
acters of g-type C (Proposition B). Therefore in this case Xoo re-

i ; -

4 = 
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stricted on ® must be irreducible. Hence the norm of l | equals nine. 
Now let us consider ® as a permutation group on Ö2, where O2 denotes 
the set of vectors (x, y) having components in 0 and x?*y. Then it is 
known [V, 28.4, 29.2] that the number of domains of transitivity of 
$ from O2 equals the norm of l | and therefore it is nine. Put T = fi 
— {l, 2} . Now the vectors (1, 2) and (2, 1) themselves constitute 
domains of transitivity of $ , and furthermore the vectors of (i, T) 
and ( r , i) ( i = l , 2), each constitutes domains of transitivity of St. 
Therefore we see that the vectors of T2 are divided into three domains 
of transitivity of $ , where T2 is defined similarly as O2. Since $ is 
transitive on T, every domain of transitivity of $ on T% contains a 
vector of the form (3, T— {3}). Hence we see that the symbols of 
T— {3} are divided into three domains of transitivity of 8, where 8 
denotes the subgroup of ® consisting of all the permutations in ® 
each of which fixes each of the symbols 1, 2 and 3 of Q. 

Let 9Î be a Sylow r-subgroup in NsD,. By the triple transitivity 
of ® we can assume that 9Î is contained in 8. Moreover the cycle 
structure of any element (5^1) of 9Î consists of four f-cycles (cf. 
Lemma 1). Therefore F—{3} is divided into four domains $»• 
( i= 1, 2, 3, 4) of transitivity of 9?. Let 8(f) be a Sylow f-subgroup of 
8 containing 9î. Then by a theorem of Witt [V, 9.4] we see that 
Ns%(r)/Ns%(r)r\2 is isomorphic to 5 3 on {1, 2, 3} , where Ns%(r) is 
the normalizer of 8(f) in @. Let T be a 3-element in Ns%(r), whose 
cycle structure has the form (123) • • • . Then T is contained in 
Ns%, where Ns8 denotes the normalizer of 8 in ®. Now we can as­
sume, without loss of generality, that $1, $2, $3^*4 are three domains 
of transitivity of 8 from T — {3}. Then T must fix $ 3 U$ 4 and there­
fore each of <£* ( i = l , 2, 3, 4). Let 91» denote the maximal subgroup 
of 8 (r) consisting of those permutations of 8(f) which fix the symbols 
in <ï\- (i= 1, 2, 3, 4). Then T normalizes each 9?» ( i= 1, 2, 3, 4). Now 
8(f) is an elementary abelian f-group of order at most f4. If it is f*, 
then ® contains an f-cycle. Hence by a theorem of Jordan [V, 13.9] 
® coincides with Ap, in contradiction to the assumption. Therefore 
8(f) has order at most f3. Now T cannot centralize 8(f). In fact, 
otherwise, T must be the 3-cycle (123) and ® coincides with Ap, in 
contradiction to the assumption. If 8(f) has order f, then r —-1 must 
be divisible by 3, which leads us to the absurdity # = 2f + l = 0 (mod 3). 
If T centralizes one of 9t*- (i— 1, 2, 3, 4), say 9îi, then by the complete 
reducibility theorem of Maschke, 8(f) is decomposed into the direct 
product of 9îi and a T-invariant subgroup 9?i* of order f. T cannot 
centralize 9?*, which leads us to the same contradiction as before. So 
we can assume that T does not centralize any of 9t» ( i = l , 2, 3, 4). 
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Then it is easy to find a subgroup of 2(r) of order r, which is normal­
ized, but is not centralized by T. So we have the same contradiction 
as before. This proves Lemma 8. 

LEMMA 9. Case (ii) in Lemma 5 cannot occur. 

PROOF. Let us assume that this case occurs. Then let us consider 
the character (P , A) of degree p. As in the proof of Lemma 7 we 
see that (D, A) restricted on $ is decomposed into one of the follow­
ing forms: 

( A A) = F0 + 2£, 

(D, A)= Fo + U + Lh 

(D, A) = Fo + T, 

where L, L\ and L2 are nonprincipal linear characters and T is an 
irreducible character of degree two of ^p. The first case cannot occur, 
because then we have that L* = 2(I>, A)+ • • • by the reciprocity 
theorem of Frobenius and it is absurd since the degree of L* equals p. 
Let us assume that the second case occurs. Since (D, A) is a rational 
character, L\ and L% must be algebraically conjugate with each other. 
Let us assume that the field of L\ (and of L2) is the field of rath roots 
of unity. Then since the degree of this field is </>(m) and since we have 
that <t>(m) = 2 , we obtain that ra = 3 or 4. Thus the index of the com­
mutator subgroup & of § in § is divisible by either 3 or 4. Since § 
is doubly transitive (Theorem I), § ' is transitive and contains O . 
Using Sylow's theorem we have that (i\7sO)^>' = § , which implies 
that the order of NsO, is divisible by either 3 or 4. Since the order of 
NsQ, is equal to either q(q — 1) or qr by Lemma 3, we obtain that 
g = 3, p = 7 or 5 = 5, £ = 11, in contradiction to Assumption b. Hence 
we can assume that the last case occurs. Let Sir be the kernel of T. 
Since (D, A) and therefore T are rational characters, the order of 
§ / $ r cannot be divisible by a prime number greater than 3. In fact, 
otherwise, let H$T be an element of S&/&T of prime order l>3. Let 
€ be a primitive /th root of unity, which appears as a characteristic 
root of T(H). Then we have that T(H) = € + e"~1, since T(H) is ra­
tional. This implies that € has degree two over the field of rational 
numbers. But this is a contradiction, because it is well known that 
the degree of e over the field of rational numbers equals /—1>2. 
Thus, in particular, ®T contains O . Using Sylow's theorem we have 
that (NsQ)$ÎT = fQ, which implies that the order of NsO, is divisible 
by either 6 or 8 or 27, because &/$£T must be nonabelian. Since the 
order of NsD, is equal to either q(q — 1) or qr by Lemma 3, this is a 
contradiction. 
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Thus we have shown that X°0 restricted on ® is irreducible. 

LEMMA 10. Case (v) in Lemma 6 cannot occur. 

PROOF. Let us assume that this case occurs. Then the norm of 
l | equals eight. Let us consider ® as a permutation group on 02. Then 
as in Lemma 8 the number of domains of transitivity of $ on £22 is 
eight. Put r = 0 - { l , 2} . Then we see as before that the vectors of 
r 2 are divided into two domains of transitivity of $ and that the 
symbols of T — {3} are divided into two domains of transitivity of 8. 
Now we use the notation 9Î, *< (*= 1, 2, 3, 4), 8(r), 81 < ( i= 1, 2, 3, 4) 
and T just as in the proof of Lemma 8. If the two domains of transi­
tivity of 8 from T — {3} have the form such as <$iU3>2 and $ 8 ^$4 , 
then T must fix each of <£* ( i= 1, 2, 3, 4) and hence normalize each 
of 9?» (i= 1, 2, 3, 4), which leads us to a contradiction as in the proof 
of Lemma 8. Therefore, we can assume that the two domains of 
transitivity of 8 from T— {3} have the form4>iW$2VJ$3 and $4, and 
that T transfers $1 to 3>2, $ 2 to $3 and $3 to $1. Then T fixes $4 and 
normalizes 9Î4. If r does not centralize 8(r)/9Î4, then we obtain the 
contradiction r = l (mod 3), g = 0 (mod 3) as before. Hence we can 
assume that T centralizes 8(r)/9?4, which implies that a(T) =r. Since 
Xoo(T) = è r ( r - 3 ) and ( 0 , C)i(r) = (D, C)2(r) , we have that (£>, C)i(T) 
— \r{r — 3). This implies, in particular, that r^3 (mod 4). If ® con­
tains an r-element 5 whose cycle structure consists of two or three 
r-cycles, then we have that a(S) = 2r+3 or r+3. Therefore we have 
that (D, C)i(S) = | r ( 2 r + 3 ) or J r ( r + 3 ) , which is a contradiction, be­
cause these numbers are not integers. Thus we have obtained that 
8(r) =9Î has order r and T centralizes 9Î. 

We can represent Nsdt as an intransitive permutation group 
P(Ns9l) of degree 7 on {l, 2, 3; $1, $2, *3 , $4}. Then we know that 
P(T) = (123) ($i$2<3>3). Now as long as we observe an r-regular ele­
ment in Cs9î, where Cs?ft denotes the centralizer of 9Î in ®, this 
permutation representation is faithful, since such an element fixes 
each of the symbols of $* if it fixes <£; as a set (i = 1, 2, 3, 4). More­
over we already know that every 3-element in Ns$l is contained in 
Csdt. Then we see that the order of Ns$t is not divisible by 9. In fact, 
otherwise, P(iVs9î) contains a 3-cycle (123), which comes from a 3-
element of ®. Now such an element is also the 3-cycle (123) in ©, 
since it is contained in Cs$l. Then © coincides with AP1 in contradic­
tion to the assumption. 

Now let us consider Ns2 as a permutation group on $>4 and let $4 
be the kernel of this permutation representation. Then 8 H $ 4 is a 
normal subgroup of Ns%. Let us consider the subgroup (8n®4)$ft. Let 
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X be an element ( T ^ I ) of 8 n $ 4 , which is commutative with some 
element ( ^ 1 ) of 9Î. Then since X is contained in Cs9î, we can con­
sider P(X). Since P(X) fixes each of the symbols 1,2,3 and $4, P(X) 
must be a transposition, say P(X) = (^r^) . Then the (original) cycle 
structure of X consists of r transpositions and X becomes an odd 
permutation contradicting the simplicity of ©. Therefore there exists 
no such element X, Hence by a theorem of Thompson [24], SO $4 is 
nilpotent. Now let us consider Ns2 as a permutation group on 
$ iU$2^$3 . Since 8H$4 fixes 1, 2, 3 and each of the symbols in 
$4, 8P\$4 is faithful on $ iW$ 2 ^*3 . Now since Ns2 is transitive on 
<EiU<&2VJ$3 and since the order of 8 n $ 4 is prime to r, the lengths of 
domains of transitivity of 8 n $ 4 on $ iU$ 2 U$3 divide 3. Since 2C\$i 
is nilpotent, it is a 3-group. 

Now we want to show that $ is primitive on T. Let us assume that 
$t is imprimitive on V and let §) be a maximal subgroup of $ contain­
ing 8. Then §) is intransitive on F and moves the symbol 3. Hence 
{3, $ i U $ 2 U * 3 l , or {3, #4} is a domain of transitivity of §). Thus the 
index of 8 in g) equals either 3r + l or r + 1. Since the index of 8 in $ 
is 4r + l, this implies that either 4r+l/3r + l or Ar + l/r + l is an 
integer. This is only possible when r ~ 2 . This contradicts Assumption 
b. Thus $ is primitive on T. If $ is doubly transitive on T, then @ 
is quadruply transitive and then Case (v) in Lemma 6 cannot occur 
(Proposition A). Therefore $ is not doubly transitive on T. Now if 
8 is doubly transitive on $4, then by a theorem of Manning [14] the 
length of # i U $ 2 ^ $ 8 must divide r(r — 1), Then we have that 
rE=l (mod 3) and q^O (mod 3). This is a contradiction. Therefore 8 
is not doubly transitive on $4. Therefore by a theorem of Burnside 
[II, p. 234] 8/8P\$4 is metacyclic and has an order dividing r(r —1). 
Since we already know that r ̂ 3 (mod 4) and that 8P\$ 4 is a 3-group, 
4 is the highest power of 2 dividing the order of @. This implies, in 
particular, tha t there exists an involution J* in 8, which normalizes, 
but does not centralize 9Î. In fact, if J* centralizes 8Î, then / * fixes 
all the symbols in $4 and is contained in 8 H $ 4 . But 8P\$4 is a 3-
group and does not contain J*, Hence we have that a(J*) S 7. 

Now an ordinary transfer argument implies that all the involutions 
in ® are conjugate with each other, because ® is simple. 

Since by a theorem of Witt [V, 9.4] Ns$i/Ns$tr\% is doubly transi­
tive on {l , 2, 3 } , N$$l contains a 2-element ( — involution, in our 
case) J such that J~1TJ= T~~l. Then P(J) has a cycle structure, 
such as P(J) ~ (23)($i<£2). If / does not centralize 9?, then we must 
have that a ( J ) = 3, j6 ( / )~2r and (D, C)i(J)~ r. Let us assume that 
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CD, &)i(J)5 possesses a characteristic roots 1 and b characteristic 
roots — 1. Then we have that a+b = rp and a — b~r. This implies 
that b = rq, namely that b is odd. Then the determinant of (2), S)i(J) 
is — 1 , contradicting the simplicity of ®. Thus / must centralize 9? 
and we have that a(J) = 2r + L Since a(J) = a ( J * ) , we have the con­
tradiction r S 3. 

Thus we have shown that X0o restricted on ® is irreducible. 
Therefore by Proposition A © is quadruply transitive. 

Then using Proposition D and from the proofs of Lemmas 8 and 10 
we see the validity of the following lemma. 

LEMMA 11. T always centralizes dt and (T) is a Sylow 3-group of 
NsVt. 

4. Proof of Theorem III. Let us assume that there exists a permuta­
tion group ® of type M, which contains an odd permutation. Let 
®* be the subgroup of ® consisting of all the even permutations in ®. 
Then the index of ®* in @ equals two. Using Sylow's theorem we 
have that ( i \ ^ ) ® * = ®. Since the order of Ns^ni®* equals qp by 
Lemma 2, we have that the order of Nsty equals p(p — i). Hence Nsty 
contains a cyclic subgroup S of order 2q. Since ty is transitive on fl, 
we can assume that 3 is contained in § . 3 is a direct product of O 
and a subgroup 3 of order two. NsQ, contains a Sylow r-subgroup 9Î 
of ® (Proposition D, Lemma 3). Since § is doubly transitive on 
£1— {1} by Theorem I, we can choose ty, O and 9t so that 9î is con­
tained in 8. Now let <ï>; (i— 1, 2, 3, 4) be the domains of transitivity 
of 9Î on T— {3} such that {2, <ï>i, <ï>2} and {3, $3, $4} are the two 
domains of transitivity of O on 0— {1}. Then we can representCs$l 
as a permutation group P(Cs9l) of degree 7 on {1, 2, 3; $1, <E>2, $3, $4}. 
The kernel of this permutation representation is 9Î. 

Since CsQ = O X 3 (Lemma 2, (ii)) and 9ÎCJVsO, we see that 3 
is contained in Csdt. Let i" be the generator of 3 . Since / exchanges 
two domains of transitivity of O on £2 — {1}, the cycle structure of 
P(I) has one of the following two forms: 

P(J) = (23) (*!*,) (*2*<) 
and 

POO = (23)(*i*4)(*2*s). 

On the other hand, by a theorem of Witt [V, 9.4] Ns3t/Ns$ir\2 is 
isomorphic to £3. Let T be a 3-element in iVs9î, whose cycle structure 
has the form: T=(123) • • • . By Lemma 11 T is contained in Csdl. 

6 ($), (S)i denotes a representation of ® corresponding to the character (D, C)t. 
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Since T is not a 3-cycle, the cycle structure of P(T) is one of the 
following eight forms: 

P(T) - (123)(*i*,$8), 

P{T) = (123)($^3^2), 

P(T) « (123)(*i*2#4), 

P(T) = (123) ($!#4*2), 

P(T) = (123)($1*3$4), 

P(T) - (123)(Si*4*s), 

p ( r ) = (i23)(#2$3^>4) 

and 

P(T) = (123) (#2*4*8). 

Now let us consider the commutator of P{T) and P ( I ) , P(T~lITI)t 

which is also contained in Cs$t. I t is easy to see that the part of 
P(T~lITI) on {1, 2, 3} is a 3-cycle and the part of it on {$>i, 3>2, $3, * 4 } 
is an involution. Therefore we see that (T~1ITI)2r is a 3-cycle. Hence 
® contains Ap and coincides with Sp. This contradiction shows the 
validity of Theorem III. 

5. Quintuple transitivity. We begin with the following lemma. 

LEMMA 12. Let ® be a permutation group of type M. Then we have 
that2r\Nsdt^2r\Csm. 

PROOF. Let us assume that 2r\Ns$t = %PiCs$l. Then by the split­
ting theorem of Burnside 8 contains a normal subgroup © of index r. 
Let Sft be the subgroup of @ consisting of all the permutations in © 
each of which fixes each of the symbols 1, 2, 3, 4 of ft. Then clearly 
© contains ÜD? as a subgroup of index four. Since 8 is transitive on 
ft— {1, 2, 3} (Theorem II) and @ is normal in 8, © is semitransitive 
on ft— {1, 2, 3} [V, §11]. The domain of transitivity of © containing 
the symbol 4 of ft has length four, since the index of 9JÎ in © equals 
four. Hence the length of all the domains of transitivity of ©on 
ft— {1, 2, 3} equals four and the number of domains of transitivity 
of © on ft- {1, 2, 3} is r. Therefore we see that the order of © has 
the form 2W3*. Let ©(3) be a Sylow 3-group of © such that 9î normal­
izes ©(3). Then we have that ©(3) 5*1, since a conjugate element of 
T is contained in 8, because of the fact that a(T) = r ^ 3 and the triple 
transitivity of ©. Let $ be the set of symbols of ft which are fixed by 
every element of ©(3). Then we see that <ï> contains at least r + 3 ele-
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ments, because ©(3) fixes each of three symbols 1, 2 and 3 of 0, and 
has to fix at least one symbol of 12 in each of r domains of transitivity 
of © of length four. This implies, in particular, that a ( r ) è r + 3, 
which contradicts the fact a(T)=r. 

Now we prove the following key lemma. 

LEMMA 13. Let ® be a permutation group of type M. Then § contains 
a subgroup 2Ï, which can be faithfully represented as a transitive permuta­
tion group of type M and of degree q. 

PROOF. Let {1}, {2}, {3} ; * i , *2 , $3, $4 be the domains of transitiv­
ity of Jft on 0 such that { l } , * i = {2, * i , *2} and ^ 2 = {3, *3 , $4} are 
the domains of transitivity of O on Q. Then we can represent Ns$t 
as a permutation group P(Nsdi) of degree 7 on {1, 2, 3; $1, $2, $3, $4}. 
Now we want to show that there exists an r-regular element S of 
NsW-Csïï such that 5 fixes {1}, * i , ^2. If the order of Sl^NsVt/Z 
r\Cs$l is divisible by a prime number Z>2, then let S be an /-element 
of Zr^Nsdl-ZnCsW. Then we have that / > 3 by Lemma 11. Hence 
it is clear that P(S) = 1, because the lengths of domains of transitivity 
of P(Ns^ft) are a t most four. Therefore we can assume that %r\Ns%i/% 
r\Cs$l is a cyclic 2-group. Let S* be a 2-element of %r\Ns$t such that 
S* and %r\Cs$l generate SrWsSK. By Lemma 12 we have that S* 
does not belong to SPiCsSR. If P(S*) = 1, then we can put 5 = 5*. 
Now we can assume as before that P(T) = (123)($1*2*3). Then if the 
cycle structure of P(5*) consists of one or two transpositions, then 
it is easy to see that a transform of 5* by some element of (T) fixes 
{1}, ^ 1 and ^2 and we can choose such an element as S. Hence we 
can assume that the cycle structure of P(S*) consists of one 4-cycle. 
If S*2 is not contained in Cs$t, then we can consider S*2 instead of 
S* from the beginning and we will obtain an element 5. Hence we 
can assume that 5*2 is contained in Csdl and different from the 
identity. Then 8P\Cs9î contains an involution S*2. If 2r\Csïïl con­
tains an involution / such that the cycle structure of P(I) consists 
of one transposition, then by a theorem of Bochert [ l ] ©contains 
Ap, because of its quadruple transitivity (Theorem II) . This is a con­
tradiction. Therefore, Sf^CsSÎ does not contain such an involution. 
Now it is easy to show that 8P\Cs9î is a direct product of 9Î and an 
elementary abelian subgroup 33 of order four, because P(5*2) and 
P(T) are not commutative with each other. Let SB be a Sylow 2-sub-
group of 2r\Ns$l such that T normalizes SB. There exists such a sub­
group SB, because SfWsSft is normal in Nsdt. Then SB has order eight 
and is isomorphic to either a dihedral group or an abelian group of 
type (4, 2). Hence T must commute with an element (s^l) of SÎ.But 
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since every element ( T ^ I ) of 93 is not commutative with T, this is a 
contradiction. 

Now let 2Ï be the subgroup of ® consisting of all the permutations 
each of which fixes {1}, Sl̂ i and SŜ . Then 2t is contained in & and con­
tains Q , 9? and ©. Let us represent 21 as a permutation group on ^ i . 
If this permutation representation of 21 is not faithful, let A(T^1) be 
an element of prime order contained in the kernel. Then we have that 
a(A)^q+2, because A fixes at least one symbol on Ŝ 2 since the 
length of ^2 equals q. Since ® is quadruply transitive by Theorem II , 
we have by a theorem of Bochert [ l ] that p — a(A) ~^\p — 1, which 
implies that q+3/2 ^a(A). This contradiction proves the faithfulness 
of this permutation representation of 21 on SE'i (and similarly on ^ 2 ) . 
If 21 is solvable, then %C\$t must be cyclic by a theorem of Burnside 
[II, p. 234]. But %C\§t contains 9t and 5, where S, by definition, does 
not centralize 9Î. This contradiction shows the nonsolvability of 21. If 
21, as a permutation group on Sti, contains Aq, then 21 is, in particular, 
triply transitive on ^1 and on ^ 2 . Hence by a previous result [10, 
Satz 4] all the subgroups of 21 of index q are conjugate with each 
other. So the cycle structure of a permutation of 2Ï on ^1 and ^2 is 
similar. Therefore 2Ï contains a permutation whose cycle structure 
consists of two 3-cycles. Then again by a theorem of Bochert [ l ] we 
have that 6 è | £ ~ 1, which implies that £ ^ 1 3 . This contradicts As­
sumption b. Thus 21 is a permutation group of type M and of degree q. 

Now we want to prove the following theorem, which is the main 
result of this section. 

THEOREM IV. Let ® be a permutation group of type M and of degree 
p. If 21 in Lemma 13 is triply transitive, then ® is quintuply transitive. 
If the order of Ns£l equals q(q—l), then 21 is always triply transitive. 

PROOF. ( I) : The case where the order of Ns£i equals q(q — 1). NsD, 
contains a cyclic subgroup S of order 2r. S is a direct product of 9Î 
and a subgroup 3 of order two. Let J* be an involution in 3 . Now 
we use the same notation as in the proof of Lemma 13. Since J 
is an even permutation (Theorem III) , / does not permute ^1 
and >?2 and so fixes each of them. Thus J is contained in 2Ï. Since 
21 contains $ , too, we see that the order of %r^NsQ. equals <z(g —1). 
Therefore by a theorem of Wielandt [V, 27.1] 2Ï is triply transitive 
on ^1 (and on ^ 2 ) . 

Furthermore since J fixes 1, ^1 and SI/2 and is elementwise com­
mutative with 9Î, J fixes the symbols 2 and 3 of 0 and is contained in 
%r\Csdt. Therefore as before 8P\Cs9î is a direct product of 9t and 
an elementary abelian subgroup 93 of order four. Then since %r\Cs$l 
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is semi-regular on ft—{l, 2, 3} [V, §4] and the order of 8nCs9î 
equals 4r, SHCs&J is regular and transitive on ft — {1, 2, 3} . Thus we 
have the factorization: 8 = 2fl(8nCs8t) and SWHCtfRnS» 1. 

Now we have that P(T) = (123)(#1*2*3) and that T fixes all the 
symbols in 4>4. Since © is quadruply transitive (Theorem II) , we can 
assume, by at most a renumeration of <E>» (i= 1, 2, 3, 4), that the sym­
bol 4 of ft lies in $4. 

Since 21 is triply transitive on ^1 and on ^ 2 , all the subgroups of 2t 
of index q are conjugate with each other [lO, Satz 4] . 9Î is contained 
in 21 and fixes only the symbols 1, 2 and 3 of ft. Therefore every ele­
ment of 21 which fixes the symbol 2 of Ŝ i fixes the symbol 3 of ^2 
and conversely. Similarly the symbol 4 of ^2 corresponds with a sym­
bol, say 5, of Sfri. Let 58 be the subgroup of 2Ï consisting of all the per­
mutations of 21, each of which fixes each of the symbols 1,2,3,4 and 5 
of ft. Since 21 is triply transitive on ^1 and on ^2, 33 is transitive on 
Ti = ^1 - {2, S} and on T2 = ^2 - {3, 4 } . The length of I \ equals 
q — 2 (i— 1, 2). 93 is contained in 3JÎ. Let us assume that M is intransi­
tive on ft — {l , 2, 3, 4 } . The set {5,X\} (i —1 or 2) cannot be a domain 
of transitivity of 50Î, because then 9W contains a subgroup of index 
2r~q — 1 contradicting Proposition D. Hence 9)î must fix the symbol 
5 of ft. Since 8 is transitive on ft— {1, 2, 3} , 8 contains a permutation 
which transforms the symbol 4 of ft to the symbol 5 of ft. Such a 
permutation is contained in the normalizer NsWt of 9J? in @. Then the 
index of Wl in %r\Ns$Jl equals two. In fact, otherwise, 9JÎ must fix one 
more symbol of ft— {l, 2, 3, 4, 5} , which implies that g —2 = 1, con­
tradicting Assumption b. Since 8 = 2)î(8nCs9î) and 2 W n 8 n C s 8 l = l , 
ZnNsWl admits the factorization: %r\NsWt = m(%r\NsWir^Cs$l) and 
mnSr^NsWinCsW^ l, where %niNsWir\Cs$t has order two. Let J' 
be an involution in RHiNsfflir^Csdl. Then J' has a cycle structure of 
the form (45) • • • . Now since T fixes the symbol 4 of ft by assump­
tion and is not commutative with J7, T cannot fix the symbol 5 of 
ft. So let us assume that T transfers the symbol S of ft to a symbol, 
say 6, of ft. Then since T fixes the symbol 4 of ft and normalizes 50Î, 
NsM and 8, the element T~lJ'T is contained in %r\Nsm. But T~lJ'T 
has a cycle structure of the form (46) • • • . Then SD? must fix the 
symbol 6 of ft— {1, 2, 3, 4, S}. This implies that q — 2 = 1, contradict­
ing Assumption b. Therefore 9Ji must be transitive on ft— {1 ,2 ,3 ,4} 
in this case. 

( I I ) : The case where the order of NsD, equals qr. In this case 2Ï 
is triply transitive on >?i and on ^ 2 by assumption. Now we show that 
8P\Cs9î = 9î. In fact, otherwise, we have, as before, that 8nCs9î 
= S3X9Î, where 33 is an elementary abelian subgroup of order four. 
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Then SI, as a permutation group on ^ i , contains an odd permutation, 
which is one of the involutions in 35. This implies that the order of 
NsQ, equals q(q~ 1). Therefore the situation here is quite similar to 
Case (I), but it is more difficult. Let us assume that the symbols 2 
and 5 of S&i correspond with the symbols 3 and 4 of ^2. As in Case 
(I) we see that 9K fixes the symbol 5 of Q. 

Let us assume that Wl admits I \ and T% as domains of transitivity. 
Then S0Î fixes 1, ^1 and ^ 2 , and is contained in 21. Hence 9DÎ is con­
tained in S3. Since conversely 93 is evidently contained in 9JÎ, we have 
that 39 = 9DÎ. Since O and 9Î are contained in 2t and iVsO^ODt, 
NsD, is contained in 21. Therefore using Sylow's theorem we have 
that § : 21^=1 (mod q). On the other hand, we have that 

§:2t = $:aW/«:« 
= 2q(2q - l)(2g - 2)/q(q - 1) 

= 4(2g - 1). 

Hence we have that 5^=0 (mod g), contradicting Assumption b. 
Therefore {5} and TiVJ^ are the domains of transitivity of S0Î on 
0 - { l f 2 , 3 , 4 } . 

$ is simple, because iVsG; 0 = r and p̂ is triply transitive (Theo­
rem II) . 

Now we are in a similar situation as in the proofs of Lemmas 7 and 
8. In the first place, we have the following three equations of Fro-
benius [5]: 

it = l & + 2 F o + F0 + Too, 
0 ° 

U = la + Zo, 

1& = 1$ + Fo, 

where lg is the principal character of 8, l | is the character of £ induced 
by lg, 1§ is the character of $ induced by lg, F[J and Foo are irreducible 
characters of Sp~i such that their values are given by the formulae 

Yo(T) = § (a (D - 2)(«(D - 3) - 0 ( D 
0 

and 

Foo(r) = i(«(20 ~ 1)(«(D - 4) + 0(T) 

for every permutation Tof Sp-i, respectively, and Zo is the irreducible 
character of 5P_2 (and of $ by Theorem II) such that its value is 
given by the formula Zo(U) =a(U) —3 for every permutation U of 
5P_2, where Sp^ is the subgroup of Sp consisting of all the permuta­
tions each of which fixes each of the symbols 1 and 2 of Q. Fjj re­
stricted on § and Foo restricted on & may be reducible. From the 
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above three equations of Frobenius we obtain the following equation : 

Z\ = Fo + F0 + Foo. 
0 

In the next place, let us consider § as a permutation group on 
(12—{l})2, where the notation is to be similarly understood as 02. 
Then it is known [V, 28.4, 29.2] that the number of domains of 
transitivity of 8 from (&•—{l})2 equals the norm of 1$. Put A = £2 
- { 1 , 2 , 3 } and E = 0 ~ {1, 2, 3, 4 } . Then the vectors (2, 3) and (3, 2) 
themselves constitute domains of transitivity of length 1 of 8, and 
furthermore the vectors of (i, A) and (A, i) (i = 2, 3) each constitute 
domains of length 2(# — l) of 8. Since 8 is transitive on A (Theorem 
II) , every domain of transitivity of 8 on A2 contains a vector of the 
form (4, E). Since 9JI is transitive o n E ~ { s } , the vectors of A2 are 
divided into two domains of transitivity of 8. One, which contains 
the vector (4, 5), has length 2(#—1), and the other has length 
4(# — l)(g —2). Therefore the norm of lg equals eight and F{j+F0o is 
decomposed into three irreducible characters of § . 

Now the rest of our proof rests on Proposition E of Frame. First of 
all we show that F0o restricted on $ cannot be irreducible and there­
fore FJ restricted on & must be irreducible. In fact, let us assume that 
Foo restricted on $£ is irreducible. In our case we have in the notation 
of Proposition E that 

N = (22(2(7 - l))6(2(<z - l))«2(j - 1)4(Ç - \){q - 2) 

- 21V(2? - \)\q - \Y(q - 2). 

On the other hand the degree of Foo equals g(2g —3). But it is clear 
that 2g — 3 does not divide iV. This contradicts Proposition E. 

Now let Foo= F i + F2 be the decomposition of Foo restricted on $ 
into irreducible characters of § . We have here by a theorem of Fro­
benius [ó] that Yi9* Fo (i= 1, 2), because § is triply transitive. Since 
the degree of F0o is odd, the degrees of Y\ and F2 are different, and 
therefore they are rational characters. Since 

l g = l$ + 2 F o + F 0 + F i + F 2 
0 

is the decomposition of 1$ into irreducible characters of § , all the 
irreducible components of lg are rational. Therefore by Proposition E 
the number N/D is a perfect square. Now we have that 

N = (2g(2g - l))°(2(g - l))*2(g - l)4(g - l)(g - 2) 

(*) D (2g - l)*(2g - l)(g - 1 ) W 2 

= 2 iy(2g - l)(g - l)*(g - 2)/yiyi, 

where y» denotes the degree of F< ( i= 1, 2). 
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Since the degree of Foo is divisible by q two cases arise concerning 
the g-types of Y\ and F2: (1) Both Y\ and F2 have g-type Dy and (2) 
one, say Fx, has g-type A and the other, F2, has g-type B. 

We know already that 8HC53Î = 9Î, and since Ns$t/2r\Ns$l is 
isomorphic to 53 on {l, 2, 3 } , £HiVs9î/8niVs3î has order two. 
Therefore we see that the order of fQC\Cs$l is not greater than 2r. 
Hence using a theorem of Brauer [3, Theorem 10 ] we see that the 
degrees of rational irreducible characters of § are congruent to either 
1 or 0 or — 1 modulo r. And so as in Proposition B we can speak of 
r-types of the (rational) irreducible characters of $ . Since the degree 
of Foo is congruent to — 1 (mod r), we can assume in Case (1) that 
one, say Y%} has r-type D and the other, F2, has r-type B. In Case (2) 
two cases must be distinguished: (i) Y\ has r-type D and F2 has r-
type B, and (ii) Y\ has r-type B and F2 has r-type D. 

We shall proceed to eliminate case after case. 
Case (1). We can put that yx — arq and y2=(br — l)q with a+b — é, 

where a and b are positive integers. Hence three subcases are to be 
distinguished: (1, a) yi — Srq and 3>2=(r--l)g, (1, b) yi~2rq and y% 
= (2r — l)g, and (1, c) yi = rq and y 2=(3r — l)g. 

Subcase (1, a). Since g ^ — 1 (mod 3) and q~l = 2r ( r>5) , dividing 
(*) by q*r\ we have that A = 2 1 9 ( 2 g - l ) ( g - 2 ) / 3 ( g - 3 ) is a perfect 
square. Then it is easy to see that the prime power factor decomposi­
tion of g —3 has the following form: q — 3~2B5C, where B is an odd 
number, because A is a perfect square. Now if we have that C = 0, 
then dividing A by 219~B we have that ( 2 g - l ) ( g ~ 2 ) = 3Z>2, where D 
is an integer. Since g ̂ 3 (mod 4), this implies that ls=3D2 (mod 4). 
This is a contradiction. Hence we can assume that C > 0 . Since 
( 2 g - l , g - 2 ) = 3 , we can put 2 g - l = 3E5FG2, where E, F and G a r e 
integers and £ > 0 and F^C. Hence we have that 5 = (2g —-1) 
-2(2-3)~3*5*G a--2*+15 (> f which implies that C = l and 1 = 
3E5F~1G2 — 2B+l. Since B is odd, we have a contradiction that 1 = — 1 
(mod 3). 

Subcase (1, b). Dividing (*) by g4, we have that 2 1 3 ( 2 g ~ l ) ( g - l ) 4 

is a perfect square. This is absurd, because the exponent of 2 is evi­
dently odd. 

Subcase (1, c). Dividing (*) by g4r4, we have that 

A = 219(2g - l)(a - 2)/(3g - 5) 

is a perfect square. Then it is easy to see that the prime power factor 
decomposition of 3g —S has the following form: 3g —5 = 2B7C?, where 
B is odd, because A is a perfect square. This is a contradiction, be­
cause it implies that I s — 1 (mod 3). 
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Case (2, i). We can put that yi~(ar — l)q + l and y^brq — l with 
a+& = 4, where a and b are positive integers. As before three subcases 
are to be distinguished: (2, i, a) yi=(3r—l)g + l and y<L~rq—\, 
(2, i, b) y i = ( 2 r - l ) g + l and y* = 2rq-l, and (2, i, c) y i = ( r - l ) g + l 
and 3>2 = 3rg — 1. 

Subcase (2, i, a). Dividing (*) by gV4, we have that 

2 " ( 2 f f - l ) / ( 3 g - 2 ) ( g + l ) 

is a perfect square. Since 3q-— 2 is odd and bigger than 2g— 1, this is 
a contradiction. 

Subcase (2, i, b). Dividing (*) by g6, we have that 

2 " ( 2 g - l ) ( g - 2 ) r V ( « 2 - f f - l ) 

is a perfect square. Since the exponent of r equals three (odd), this 
is a contradiction. 

Subcase (2, i, c). Dividing (*) by gV4, we have that 

A = 219(2g - l)/(3g2 - 3q - 2) 

is a perfect square. Then it is easy to see that the prime power 
factor decomposition of 3g2 — 3g~2 has the following form: 3q2 — 3q 
-~2 = 2B11C, where B is odd, because A is a perfect square. Further­
more it is easy to see that g = — 1 or —2 (mod 5), since we have 
assumed that r>5. If g = — 1 (mod 5), then we have that — 1 
= 2* (mod 5). If g = — 1 (mod 5), then we have that 1 = 2 B (mod 5). 
Both of these congruences give us a contradiction, because B is odd. 

Case (2, ii). We can put that yx = (ar~2)q + l and y^ — (br + l)q — 1 
with &+6 = 4, where a and b are non-negative integers. Now by the 
reciprocity theorem of Frobenius F2 restricted on $ contains Zo as 
an irreducible component. Since the degree of Zo is 2(g~~ 1), we have 
that & è l . Hence as before three subcases are to be distinguished: 
( 2 > i i , a ) y i = ( 3 r - 2 ) 2 + l a n d y 2 = ( r + l ) g - l , ( 2 , ü l b ) y i - ( 2 r - 2 ) 2 + l 
andy 2 =(2r + l ) g - l , a n d ( 2 , i i , c ) y i = ( r - 2 ) g + landy2=(3f + l ) g - l . 

Subcase (2, ii, a). Dividing (*) by gV4, we have that 

2"(2q-l)/(q+2)(3q-l) 

is a perfect square. Then g + 2 , as an odd number, must divide 
2g—1, which implies that q = 3. This is a contradiction. 

Subcase (2, ii, b). Dividing (*) by g6r4, we have that 

2"(2q -l)(q- 2)/(?» - 3q + l)(ç + 1) 

is a perfect square. Since g2 — 3g + l is odd and g + 1^0 (mod 3), we 
have that 3 (g 2 -3g + l) ^ ( 2 g - l ) ( g - 2 ) , which implies that g2 + l 
^4g . This is a contradiction, because we have assumed that g > l l . 
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Subcase (2, ii, c). Since we have assumed that r>5, dividing (*) by 
q*r\ we have that 2lç>(2q-l)(q-2)/(q2-5q+2)(3q+2) is a perfect 
square. Since 3q+2 and q — 2 are relatively prime, 3g+2 must divide 
2g — l. This is absurd. 

Thus the proof of Theorem IV is completed. 
PROOF OF THEOREM V. Let © be a permutation group of type M 

and of degree p. Then by a theorem of Wielandt [29] the assumption 
(3) of Theorem V assures the triple transitivity of 31. Therefore by 
Theorem IV © is quintuply transitive. Hence the order of © is divisi­
ble by p — 4:. Thus © contains a (£--4)-cycle. Therefore by a classical 
theorem of Jordan [V, 13.9] © contains Ap. This contradiction shows 
the validity of Theorem V. 

The following list shows all prime numbers between 4,080 and 
250,000 satisfying the conditions of Theorem V (see [22] for prime 
numbers ^4,079). 5,927; 6,047; 7,607; 7,727; 13,967; 15,647; 20,327; 
28,607; 44,687; 51,287; 57,287; 58,967; 77,767; 89,087; 93,287; 
148,727; 165,527; 168,527; 174,767; 192,887; 195,047; 210,207 and 
222,647. 

6. Sextuple transitivity. We want to prove the following theorem. 

THEOREM VI. Let © be a permutation group of type M and of degree 
p. If 2Ï is triply transitive, then © is sextuply transitive. 

PROOF. We use the same notation as in the proof of Theorem IV. 
Let -ft be the subgroup of © consisting of all the permutations in © 
each of which fixes each of the symbols 1, 2, 3, 4 and 5 of 0. Then by 
definition 58 is contained in 5ft. If -Jl is intransitive on fi — {1, 2, 3,4,5} 
then 5t fixes Ti and T2 and is contained in 21. Therefore -K is contained 
in S3 and we have that 9̂  = 95. We know also that NsQ, is contained 
in 21. Therefore using Sylow's theorem we see that Jp: 21 ==1 (mod q). 
On the other hand, we have that 

$:« = ($:9t)/(H:ö) 
= 2q(2q - l)(2q - 2)(2q - S)/q(q - 1) 

= 4(2? - l)(2q - 3). 

Hence we have that 11 s=0 (mod q) contradicting Assumption b. 

7. Septuple transitivity. The purpose of this section is to prove the 
following theorem. 

THEOREM VII. Let p, 2 = M£-1)> r = i ( p - 3 ) and s = l(p-7) be 
prime numbers. Let © be a permutation group of type M and of degree p. 
Then ® is septuply transitive. 
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PROOF. We use the same notation as before. Since q, r = J(q — 1) and 
s~l(q — 3) are prime numbers, 21 is quadruply transitive by Theorem 
II . Therefore © is sextuply transitive by Theorem VI. Let the symbol 
6 of Q belong to >?i. Let £) be the subgroup of © consisting of all the 
permutations of © each of which fixes each of the symbols 1, 2, 3, 4, 5 
and 6 of Œ. Since 21 is quadruply transitive, by a previous result [lO, 
Satz 4] all the subgroups of 21 of index q are conjugate with each 
other. So the cycle structure of a permutation of 21 on SE'i and ^ 2 is 
similar. Then let us assume that the symbol 6 of ^1 corresponds with 
a symbol, say 7, of Sf̂ . Let S be the subgroup of 21 consisting of all the 
permutations of 2Ï each of which fixes each of the symbols 1, 2, 3, 4, S, 6 
and 7 of Q. Put Ai = ¥ i - {2, 5, 6} and A2 = * 2 - {3, 4, 7} . Then since 
21 is quadruply transitive on ^1 and on SŜ , S is transitive on Ai and 
on A2. Now S is contained in O. 

Hence even if © is not septuply transitive, only the following four 
cases are possible for the decomposition of £2— {1, 2, 3, 4, 5, 6} into 
the domains of transitivity of £): (1) O fixes {7}, Ai and A2, (2) O 
fixes Ai and T 2= {7, A2}, (3) £> fixes {7, Ax} and A2 and (4) £) fixes 
{7} andAxUA2 . 

Case (1). In this case O coincides evidently with S. Therefore as 
before we have that § : 21=1 (mod q) and 

<p:2t = ($:<S)/(«:6) 
= 2q(2q - l )(2j - 2){2q - 3)(2ff - 4)/j(g - l ) ( j - 2) 

= 8(2? - 1)(28 - 3). 

Hence we have that 23 = 0 (mod q). This contradicts the theorem of 
Jordan mentioned in the Introduction. 

Case (2). In this case O coincides again with Ê. But it is impossible, 
because every permutation of 2Ï, which fixes the symbol 6 of SÎ i, 
must fix the symbol 7 of ^2. 

Case (3). Let O7 be the subgroup of O consisting of all the permuta­
tions of O each of which fixes the symbol 7 of ÏÏ. Then the index of 
07 in O equals q — 2. Since O7 fixes { 7} , Ai and A2, it fixes {1}, ^ 1 and 
^2. Therefore O7 is contained in 21. Then D7 coincides with E. Hence 
as before we have that § : 21=1 (mod q) and 

§:2t = 0p:O7)/(2t:S) 

= 2q(2q - l)(2g - 2)(2q - 3)(2g - 4)(8 - 2)/ j(8 - l ) ( j - 2) 

= 8(2q-l)(2q-3Xq-2). 

Hence we have that 49 = 0 (mod q). This contradicts Assumption b. 
Case (4). Let © be a Sylow s-subgroup of 21. Then by Proposition D 
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the order of © equals s. Moreover © fixes only the symbols 1, 2, 3, 4, 
5, 6 and 7 of 12 (Lemma 3). Let A»- (i= 1, • • • , 8) be the domains of 
transitivity of © on Q—{l, 2, 3, 4, 5, 6, 7} such that Ai=AiVJA2 

UA3VJA4 and A2=A^JA(iUAi[UAs. Let ®(s) by a Sylow s-subgroup 
of © containing ©. Then since we have assumed that q is bigger than 
5, ®(s) is an elementary abelian subgroup of order at most s* and 
admits A* ( i = l , • • • , 8) as the domains of transitivity on 
0 - { l , 2, 3 ,4 , 5,6, 7} . Thus©(5) fixes { l j , ¥ i a n d ¥ a . Hence ©(5) 
is contained in 3Ï. Therefore we have that ©(5) = @, namely s divides 
the order of © only to the first power. 

Let iVs© and Cs© denote the normalizer and centralizer of © in ©. 
Then by a theorem of Witt [V, 9.4] iVs©/£)P\iVs@, as a permutation 
group on {l , 2, 3, 4, 5, 6, 7} , is sextuply transitive (Theorem VI), 
and therefore equals £7. On the other hand, since the order of © 
equals s, iVs©/Cs© and ©CiVs©/£)nCs© are cyclic groups whose 
orders divide 5 — 1 . Therefore Cs@/£)nCs©, as a permutation group 
on {1, 2, 3, 4, 5, 6, 7} , contains A7. Now let SB be the Sylow s-comple-
ment of Cs®: Cs© = ©X SB. Then let us represent SB as a permutation 
group of degree 8 on {A* (i= 1, • * • , 8)} . This is possible, because 
SB is contained in Ns@. Moreover, this permutation representation of 
SB is faithful. In fact, otherwise, let W be an element of SB which is 
contained in the kernel of this permutation representation. Clearly W 
fixes all the symbols of A»-, if it fixes A» as a whole (i = 1, • • • , 8). There­
fore, W, as a permutation on £2, moves at most seven symbols. Hence 
if W?*l, this implies, by a theorem of Bochert [ l] that 1^\p — \ 
(Theorem II) , which contradicts Assumption b. Now since the order 
of SB, which is isomorphic to Cs©/©, is a multiple of f (7!), it is easy 
to see that SB, as a permutation group on {A,- ( i= 1, • • • , 8 )} , con­
tains a 3-cycle. Therefore the minimum degree of © equals a t most 
3^+6. But since © is sextuply transitive, we have, by a theorem of 
Manning [15, I I I , Theorem I I ] , that 5(3s + 6)>3p = 3(8s + 7), which 
is obviously a contradiction. 

Thus the proof of Theorem VII is completed. 
PROOF OF THEOREM VIII . Let © be a permutation group of type 

M and of degree p. Then since by Theorem VII © is septuply transi­
tive, the order of © is divisible by p — 6. Hence © contains a (p — 6)-
cycle. Therefore by a classical theorem of Jordan [V, 13.9], © con­
tains Ap. This contradiction shows the validity of Theorem VIII . 

The following list shows all prime numbers between 4,080 and 
250,000 satisfying the conditions of Theorem VIII (see [22] for 
prime numbers ^4,079). 9,839; 11,279; 51,599; 84,719; 96,959 and 
178,799. 
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8. Octuple transitivity. 

THEOREM IX. Under the same conditions as in Theorem VII ® is 
octuply transitive. 

PROOF. We use the same notation as in the proof of Theorem VIL 
Let U be the subgroup of © consisting of all the permutations of ® 
each of which fixes each of the symbols 1, • • • , 7 of 0. Then S is 
contained in U. If U is intransitive o n Q — { l , • • • , 7 } , then U fixes 
each of A»- ( i = l , 2) and is contained in 3Ï. Hence we have that 
U = (S. Therefore as before we have that § : 31=1 (mod q) and 

$:a=($:U)/(ït:© 
= 2q(2q - l)(2q - 2)(2q - 3)(2g - 4)(2g - 5)/q(q - l ) ( j - 2) 

= 8(2j - l)(2q - 3) (2a - 5). 

Hence we have that 121=0 (mod q), contradicting Assumption b. 
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