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Let S be a topological space. We consider condition (*) : For each 
neighborhood P of the diagonal in SX S there is a neighborhood Q of 
the diagonal such that Q o Q QP (neighborhoods are understood to 
be open sets). Condition (**) means that (*) is satisfied by each open 
subset of S in the relative topology. Condition (*) is known to be an 
intermediate condition between full normality and normality of 5 
[l , problems 5.U and 6.L]. In particular, it is immediately seen that 
every metric space S satisfies condition (*) and hence condition (**). 

We shall prove the following theorem. A special case (for metric 
spaces, in particular smooth manifolds in Rn) has recently been used 
[2] in the theory of partial differential equations of first order. 

THEOREM. Let S and E be topological spaces satisfying condition (**) 
and 4> a map of S into E. Let T be a subset of S. Assume that 

(i) <j> is topological on T; 
(ii) for each x £ T there is a neighborhood U(x) such that </> is topo­

logical on U(x) and cj>(U(x)) is open. 
Then there is a neighborhood U of T such that cf> is topological on U and 
<j>(U) is open. 

PROOF. We put 

H = U U(x). 

Then <f> is continuous on H. Furthermore, each open subset A of H 
has an open image <t>(A)t since we have 

A= U AC\U(x), 4>{A) = U 4>(AC\U(x)), 
xeT xeT 

and <i>{Ar\U{x)) is open in view of (ii). Thus, if <j> is one-to-one on an 
open subset U of H, then cj> is topological on U. We now construct in 
three steps a neighborhood U C.H of T on which <j> is one-to-one. 

First step. The set 

P = U U(x) X U(x) 
xET 

is a neighborhood of the diagonal in HXH. We take a neighborhood 
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Q of the diagonal such that QoQoQ C.P, then for each xÇzT a 
neighborhood V(x) CU(x) such that V(x)XV(x) CQ. 

Second step. For each x G T , the set V{x)C\T is a neighborhood of x 
in the relative topology of T. Hence, in view of (i), the set <j>(V(x)r\T) 
is a neighborhood of </>(x) in the relative topology of <fi(T). This means 
that 

4>(V(x) r\T) = BC\ 4>(T) = BC\ 4>(Y(x)) H <t>(T), 

where B is a neighborhood of 4>(x) in E. From (ii) we have Br\<fi(V(x)) 
~<l>(W(x)), where W(x) C V(x) is a neighborhood of x. I t follows that 

ct>(W(x))r\(t>(T) =4>(v(x)niT) =4>(W(x))ni<f>(V(x)niT) =<t>(W(x)r\T)y 

since <£ is one-to-one on V(x). 
Third step. We put 

F = U <K^M). 

The set 

If = U 4>(W(x)) X 0(W(*)) 

is a neighborhood of the diagonal in FXF. We take a neighborhood 
N of the diagonal such that N o N C.M, then for each x £ T a neigh­
borhood i?(x) CW(x) such that <t>(R(x)) X<l>(R(x)) CN. 

We now prove that </> is one-to-one on the neighborhood 

U = U £(*) C H 
xeT 

of T. Assume that 

4>(P) = <K<?) tor p,q<EU: p <E R(x), q G «(y) for x, y G T. 

Then we have (<Hx), 4>(p))i (</>(#)> 4>(y))ÇzN, hence (</>(x), </>(y))G-M, 
or <K#), «K^OG^C^^O) for a certain a<E.T. From the second step it 
follows that 

*(*), *(y) e *(w(a)) n *(r) = <i>(w(a) n r), 
hence x, ^GPF(a), since <£ is one-to-one on T. From this we have 

(P> %), (*> y), (y, q) G (?, 

hence (£, g ) G ? , or £, gG £/(s) for a certain zG^T. This implies p = q, 
since 0 is one-to-one on U(z). The theorem is proved. 

REMARK. We mention another version of the theorem which can be 
proved along the same lines. The conclusion of the theorem remains 
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true if instead of condition (**) for the spaces S and E one assumes 
that (i) 5 is Hausdorff, (ii) each open subset of E is fully normal in 
the relative topology, and (iii) one of the spaces 5 and E is locally 
connected. 
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