PRODUCTS OF PSEUDO CELLS

BY C. H. EDWARDS, JR.1

Communicated by Deane Montgomery, July 30, 1962

By a pseudo n-cell is meant a contractible compact combinatorial n-manifold with boundary (whose boundary is not necessarily an (n-1)-sphere). Poenaru [6] and Mazur [5] gave the first examples of pseudo 4-cells which are not topological 4-cells, and Curtis [4] has shown that, for each $n \ge 4$, there exists a pseudo n-cell which is not a topological n-cell because its boundary fails to be simply connected. By a homotopy n-cell is meant a pseudo n-cell whose boundary is the (n-1)-sphere S^{n-1} . It follows from the generalized Poincaré conjecture and the generalized Schoenflies theorem that a homotopy n-cell is a topological n-cell if $n \ge 5$ [4].

The following consequence of theorems of Brown and Stallings generalizes results of Curtis [4], who has shown that the cartesian product of a pseudo n-cell and an interval is the topological (n+1)-cell I^{n+1} if $n \ge 5$, and Andrews [1], who has shown that the product of a homotopy 3-cell with I^3 and the product of a homotopy 4-cell with I^2 are both I^6 .

THEOREM. If M^p and N^q are pseudo cells of positive dimensions p and q respectively, with $p+q \ge 6$, then $M^p \times N^q = I^{p+q}$.

COROLLARY. If $n \ge 8$, then I^n is the product of two combinatorial manifolds with boundary, neither of which is a topological cell.

The following lemma is perhaps well known, but it does not seem to have appeared in print.

LEMMA. If C^n is a compact n-manifold with boundary such that Int $C^n = E^n$ (euclidean n-space) and $B = \text{Bd } C^n = S^{n-1}$, then $C^n = I^n$.

PROOF. By Brown's result that the boundary of a manifold is collared [3], there is a homeomorphism h of $B \times [0, 1]$ into C^n such that h(x, 0) = x if $x \in B$. Then, by the generalized Schoenflies theorem [2], the collared (n-1)-sphere $h(B \times 1/2)$ bounds a closed n-cell A in Int $C^n = E^n$. Hence $C^n = A \cup h(B \times [0, 1/2])$ is a closed n-cell.

PROPOSITION. If C^n is a compact combinatorial n-manifold with boundary, $n \ge 6$, with Int $C^n = E^n$, then $C^n = I^n$.

PROOF. By the Lemma it suffices to show that the boundary B of C^n is an (n-1)-sphere. By the generalized Poincaré conjecture, it is therefore sufficient to show that $\pi_i(B)$ is trivial for $0 \le i < n-1$ [7, 9].

¹ This research was supported by N.S.F. Contract G-11665.

² Equality here denotes topological equivalence.

Let D be an (i+1)-cell whose boundary is the i-sphere T, $0 \le i < n-1$, and let k be a continuous map of T into B. By Brown's theorem [3], there is a homeomorphism f of $B \times [0, 1]$ into C^n such that f(x, 0) = x for each $x \in B$. Let A be a tame n-cell in Int $C^n = E^n$ such that $f(B \times 1) \subset Int A$. Choose $\epsilon > 0$ so small that $f(B \times \epsilon) \subset Int C^n - A$, and let $s(x) = f(x, \epsilon)$ be the natural homeomorphism of B onto $f(B \times \epsilon)$. Now Int $C^n - A \subset f(B \times [0, 1])$ and Int $C^n - A$ is homeomorphic to $S^{n-1} \times E^1$, so that $\pi_i(Int C^n - A)$ is trivial if $0 \le i < n-1$. Consequently the map sh of T into Int $C^n - A$ can be extended to a continuous map g of D into Int $C^n - A$. Now let r be the deformation retraction of $f(B \times [0, 1])$ onto B defined by $r(f(x, t)) = x \in B$. Then the continuous map rg of D into B is an extension of the map k of T into B. Therefore B is a combinatorial homotopy sphere of dimension $n-1 \ge 5$, and is therefore homeomorphic to S^{n-1} [7; 9].

PROOF OF THEOREM. Since M^p and N^q are pseudo cells, Int M^p and Int N^q are contractible open combinatorial manifolds (when given infinite triangulations). By Stallings' result to the effect that the product of two contractible open combinatorial manifolds is a Euclidean space if the sum of their dimensions is greater than four, it follows that Int $(M^p \times N^q) = \text{Int } M^p \times \text{Int } N^q$ is homeomorphic to E^{p+q} [8]. By the above Proposition it now follows that $M^p \times N^q = I^{p+q}$.

As a corollary to this proof, it follows that, if the 4-dimensional Poincaré conjecture is true, then the product of a homotopy 3-cell with I^2 and the product of a pseudo 4-cell with I^1 are both homeomorphic to I^5 .

REFERENCES

- J. J. Andrews, Embedding homotopy cells, Proc. Amer. Math. Soc. 12 (1961), 917.
- 2. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 3. ——, Locally flat imbeddings of topological manifolds, Ann. of Math. 75 (1962), 331-341.
- 4. M. L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961), 819-820.
- 5. B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961), 221-228.
- 6. V. Poenaru, La decomposition de l'hypercube en produit topologique, Bull. Soc. Math. France 88 (1960), 113-129.
- 7. J. Stallings, *Polyhedral homotopy-spheres*, Bull. Amer. Math. Soc. 66 (1960), 485–488.
 - 8. ——, The piecewise-linear structure of Euclidean space, (to appear).
- 9. E. C. Zeeman, The generalised Poincaré conjecture, Bull. Amer. Math. Soc. 67 (1961), 270.

University of Wisconsin