NOTE ON T*-SEMIGROUPS ## BY TAKAYUKI TAMURA Communicated by Edwin Hewitt, February 20, 1962 The system L(S) of all nonvoid subsemigroups of a semigroup S is generally a semilattice with respect to the inclusion relation. L(S) is called the subsemigroup semilattice of S. In the previous paper [1] we determined all the Γ -semigroups, i.e., the semigroups whose subsemigroup semilattices are chains. In detail, all the types of Γ -semigroups are - (1.1) cyclic groups $G(p^n)$ of order of prime power, - (1.2) quasi-cyclic groups $G(p^{\infty})$, - (1.3) unipotent semigroups generated by d with each of the following defining relations: - (1.3.1) $d^2 = d^3$, - (1.3.2) $d^3 = d^4$, - (1.3.3) $d^2 = d^{p^m+2}$, p prime, - (1.3.4) $d^3 = d^{p^m+3}$, p prime $\neq 2$. In the present note, we shall define Γ^* -semigroups as generalizations of Γ -semigroups and shall report the structure of Γ^* -semigroups except for a part of infinite Γ^* -groups. The proof will be omitted here but will be given elsewhere. DEFINITION. A semigroup S is called a Γ^* -semigroup if every subsemigroup different from S is a Γ -semigroup. S is a Γ^* -semigroup if and only if L(S) is a semilattice satisfying: Any subset which contains the greatest element is a subsemilattice. A semilattice of this kind is called a C_0 -semilattice. Obviously all the semigroups of order 2 are Γ^* -semigroups, and a homomorphic image of a Γ^* -semigroup is also a Γ^* -semigroup. LEMMA 1. Every element of a Γ^* -semigroup is of finite order, that is, for any element x there is an idempotent e and a positive integer n such that $x^n = e$. LEMMA 2. A Γ^* -semigroup of order > 2 is unipotent. (i.e., an idempotent element is unique). Generally a unipotent semigroup any element of which is of finite ¹ By a semilattice we mean a partially ordered set in which there is a join of two elements. ² In [1] we called them Γ -monoids. ³ Semigroups and their subsemigroups semilattices, to appear. order is determined by a group and a Z-semigroup (i.e., a unipotent semigroup with zero) [2; 3]. By Lemmas 1 and 2, we can make the discussion proceed to Γ^* -Z-semigroups, Γ^* -groups, and then to the general cases. THEOREM 1. Any Γ^* -Z-semigroup is of order ≤ 4 . All the types of Γ^* -Z-semigroups other than Γ -semigroups are listed as follows: - (2.1) $\{0, a, b\}$ of order 3 where xy = 0 for all x, y, - (2.2) $\{0, a, b, c\}$ of order 4 defined as - (2.2.1) $b^2=c^2=a$ and other products =0. - (2.2.2) $b^2 = cb = c^2 = a$ and other products = 0. - (2.2.3) $b^2 = c^2 = bc = cb = a$, and other products = 0. As far as the Γ^* -groups are concerned, we shall limit ourselves to the case of Γ^* -groups which are properly homomorphic to Γ -groups. We can prove that any Γ^* -group which is properly homomorphic to a Γ -group has a normal subgroup of index of a prime number. Making use of the theory of finite groups [4; 5; 6], we have THEOREM 2. Any Γ^* -group, which is not a Γ -group and is homomorphic to a Γ -group of order >1, has one of the following types. - (3.1) The groups of order pq where p and q are different primes. There are two types (3.1). - (3.2) The elementary abelian group: $G(p) \times G(p)$. - (3.3) The generalized quaternion group of order 8. Incidentally a finite Γ^* -group, which is not a Γ -group, is homomorphic to a Γ -group; a commutative Γ^* -group which is not a Γ -group is the direct product of two groups of prime order. Consequently we see that the result of Theorem 2 includes the cases where a Γ^* -group is homomorphic to a nontrivial finite group or a commutative group. However the problem of determination of the remaining case is still open. Next, let S be a unipotent Γ^* -semigroup which is neither a group nor a Z-semigroup. Then we can prove that S must be finite. The kernel (i.e., the least ideal) of S is of type $G(p^n)$, and the difference semigroup D of S modulo $G(p^n)$, due to Rees [7] is a Z-semigroup which has one of the types (1.3.1), (2.1), (2.2.1), (2.2.2), (2.2.3). Let e be the unique idempotent of S, and let d be a generator of D. $G(p^{n-1})$ will denote the subgroup of order p^{n-1} of $G(p^n)$. THEOREM 3. When $G(p^n)$ is given, we can determine all the unipotent Γ^* -semigroups, non Γ -semigroups, whose kernel is $G(p^n)$, by the product of e and d in the following way. (4.1) In the case D of order 2, $$S = G(p^n) \cup \{d\}$$, $n \neq 0$, $ed \in G(p^{n-1}) - G(p^{n-2})$. (4.2) In the case D of order 3, D is of type (2.1) and $S = G(p^n)$ $\bigcup \{d_1, d_2\}, n \neq 0.$ $(4.2.1) ed_1 = ed_2 \in G(p^n) - G(p^{n-1}),$ (4.2.2) $p^n \neq 2$, $ed_1 \neq ed_2$; ed_1 , $ed_2 \in G(p^n) - G(p^{n-1})$. (4.3) In the case D of order 4, $S = G(p^n) \cup \{d_1, d_2, d_3\}, d_2^2 = d_2^2 = d_1$, $n \neq 0, p \neq 2.$ (4.3.1) D of (2.2.1) $\begin{array}{ccc} (4.3.2) & D \text{ of } (2.2.2) \\ (4.3.3) & D \text{ of } (2.2.3) \end{array} \right\} ed_2 = ed_3 \in G(p^n) - G(p^{n-1}).$ According to the above-mentioned theorems, we see that if S is a finite Γ^* -semigroup, the finite C_0 -semilattice L(S) satisfies Jordan-Dedekind condition (or *J*-condition cf. [8]). Generally a finite C_0 semilattice K satisfying J-condition is called a C_0J -semilattice. Let δ denote the dimension of K (cf. [8]), λ the breadth, i.e., the number of the maximal chains in K, and μ the order, i.e., the number of elements of K. THEOREM 4. A finite C_0J -semilattice K is isomorphic to certain L(S)for some finite Γ^* -semigroup S if and only if δ , λ , and μ satisfy the following conditions. (5.1) $\delta + \lambda - \mu = 0$, (5.2) $\lambda = \alpha + 1$ where $\alpha = 0$ or 1 or any prime number, $^{^4}A-B$ denotes the set of elements of A which are not in B. (5.3) $\begin{cases} if \ \lambda = 1 \text{ or } 2, \text{ then } \delta \text{ can be taken as an arbitrary positive integer,} \\ if \ \lambda = 3, \text{ then } \delta = 2 \text{ or } 3, \\ if \ \lambda = p+1, \text{ p being a prime number } > 2, \text{ then } \delta = 2. \end{cases}$ Finally we shall show the diagrams of L(S) for a finite Γ^* -semigroup S. ## REFERENCES - 1. T. Tamura, On a monoid whose submonoids form a chain, J. Gakugei Coll. Tokushima Univ. 5 (1954), 8-16. - 2. —, Note on unipotent inversible semigroups, Kōdai Math. Sem. Rep. 3 (1954), 93-95. - 3. ——, The theory of construction of finite semigroups. III, Osaka Math. J. 10 (1958), 191-204. - 4. M. Hall, The theory of groups, Macmillan, New York, 1959. - 5. H. Zassenhaus, The theory of groups, 2nd ed., Vandenhoeck and Ruprecht, Göttingen, 1956. - 6. M. Osima, Group theory, Kyoritsusha, Tokyo, 1954 (Japanese). - 7. D. Rees, On semigroups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400. - 8. G. Birkhoff, *Lattice theory*, Amer. Math. Soc. Colloq. Publ., Vol. 25, Amer. Math. Soc., New York, 1948. TOKUSHIMA UNIVERSITY AND UNIVERSITY OF CALIFORNIA, DAVIS