
NOTE ON r*-SEMIGROUPS 

BY TAKAYUKI TAMURA 

Communicated by Edwin Hewitt, February 20, 1962 

The system L(S) of all nonvoid subsemigroups of a semigroup 5 
is generally a semilattice1 with respect to the inclusion relation. L(S) 
is called the subsemigroup semilattice of 5. In the previous paper 
[ l ] we determined all the T-semigroups,2 i.e., the semigroups whose 
subsemigroup semilattices are chains. In detail, all the types of T-
semigroups are 

(1.1) cyclic groups G(pn) of order of prime power, 
(1.2) quasi-cyclic groups G(£°°), 
(1.3) unipotent semigroups generated by d with each of the follow­

ing denning relations: 
(1.3.1) d2 = d3, 
(1.3.2) d* = d\ 
(1.3.3) d2 = d*>m+2,p prime, 
(1.3.4) d3 = ^ w + 3 , £ p r i m e ^ 2 . 

In the present note, we shall define r*-semigroups as generalizations 
of T-semigroups and shall report the structure of r*-semigroups ex­
cept for a part of infinite T*-groups. The proof will be omitted here 
but will be given elsewhere.3 

DEFINITION. A semigroup 5 is called a T*-semigroup if every sub-
semigroup different from S is a T-semigroup. 

5 is a r*-semigroup if and only if L(S) is a semilattice satisfying: 
Any subset which contains the greatest element is a subsemilattice. 

A semilattice of this kind is called a Co-semilattice. Obviously all the 
semigroups of order 2 are r*-semigroups, and a homomorphic image 
of a r*-semigroup is also a r*-semigroup. 

LEMMA 1. Every element of a T*-semigroup is of finite order, that is, 
for any element x there is an idempotent e and a positive integer n such 
that xn = e. 

LEMMA 2. A T*-semigroup of order >2 is unipotent. {i.e., an idem-
potent element is unique). 

Generally a unipotent semigroup any element of which is of finite 

1 By a semilattice we mean a partially ordered set in which there is a join of two 
elements. 

2 In [l] we called them T-monoids. 
8 Semigroups and their subsemigroups semilattices, to appear. 
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order is determined by a group and a Z-semigroup (i.e., a unipotent 
semigroup with zero) [2; 3] . By Lemmas 1 and 2, we can make the 
discussion proceed to r*-Z-semigroups, T*-groups, and then to the 
general cases. 

THEOREM 1. Any T*-Z-semigroup is of order ^ 4 . All the types of 
T*-Z-semigroups other than T-semigroups are listed as follows: 

(2.1) {0, a, b} of order 3 where xy = 0 for all x, y, 
(2.2) {0, a, b, c) of order 4 defined as 

(2.2.1) b2 — c2 = a and other products = 0. 
(2.2.2) b2 — cb = c2 = a and other products = 0. 
(2.2.3) b2 — c2 = bc = cb — a, and other products = 0. 

As far as the T*-groups are concerned, we shall limit ourselves to the 
case of T*-groups which are properly homomorphic to T-groups. 

We can prove that any T*-group which is properly homomorphic to 
a T-group has a normal subgroup of index of a prime number. Making 
use of the theory of finite groups [4; 5; 6] , we have 

THEOREM 2. Any T*-group, which is not a T-group and is homo­
morphic to a T-group of order > 1, has one of the following types. 

(3.1) The groups of order pq where p and q are different primes. 
There are two types (3.1). 

(3.2) The elementary abelian group: G(p) XG(p). 
(3.3) The generalized quaternion group of order 8. 

Incidentally a finite T*-group, which is not a T-group, is homo­
morphic to a T-group; a commutative T*-group which is not a T-
group is the direct product of two groups of prime order. Conse­
quently we see that the result of Theorem 2 includes the cases where 
a r*-group is homomorphic to a nontrivial finite group or a com­
mutative group. However the problem of determination of the re­
maining case is still open. 

Next, let 5 be a unipotent r*-semigroup which is neither a group 
nor a Z-semigroup. Then we can prove that S must be finite. The 
kernel (i.e., the least ideal) of S is of type G(pn), and the difference 
semigroup D of 5 modulo G(pn), due to Rees [7] is a Z-semigroup 
which has one of the types (1.3.1), (2.1), (2.2.1), (2.2.2), (2.2.3). 

Let e be the unique idempotent of 5, and let d be a generator of D. 
G(pn~l) will denote the subgroup of order pn~l of G(pn). 

THEOREM 3. When G(pn) is given, we can determine all the unipotent 
T*-semigroups, non Y-semigroups, whose kernel is G(pn), by the product 
of e and d in the following way. 
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(4.1) In the case D of order 2, S=G(pn)\J{d}, w^O, 

ed G G(p«~l) - G(^~2).4 

(4.2) 7w tóé case D <?ƒ order 3, P is of type (2.1) and S=*G(pn) 

(4.2.1) ed1 = ed2<EG(pn)-G(pn-1), 
(4.2.2) £ n ^ 2 , edi3*e&; edi, ed2e.G(pn)-G(pn~1). 

(4.3) /ra tóe case I> o/ onter 4, S=G(£n)U{di, rf2, d 3 } ,^ = ^ = ii , 
w^O, £5*2. 

(4.3.1) Pof (2.2.1)1 
(4.3.2) Dof (2.2.2)} ed2 = edzeG(pn)-G(p»-1). 
(4.3.3) D of (2.2.3)J 

According to the above-mentioned theorems, we see that if 5 is a 
finite r*-semigroup, the finite Co-semilattice L(S) satisfies Jordan-
Dedekind condition (or /-condition cf. [8]). Generally a finite Co-
semilattice K satisfying /-condition is called a Co/-semilattice. Let 
ô denote the dimension of K (cf. [8]), X the breadth, i.e., the number 
of the maximal chains in K, and JU. the order, i.e., the number of ele­
ments of K. 

! 

r-Semigroups 
Idempotent Semi­
groups of order 2 (2.1), (3.1) (2.2) 

THEOREM 4. A finite CoJsemilattice K is isomorphic to certain L(S) 
for some finite T*-semigroup S if and only if 8, X, and ix satisfy the fol­
lowing conditions. 

(5.1) 5 + X - M = 0, 
(5.2) X = a + 1 where a — 0 or 1 or any prime number, 

4 A—B denotes the set of elements of A which are not in B. 
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(3.1), (3.2) (3.3) (4.1), (4.2), (4.3) 

{ if X = 1 or 2, then Ô can be taken as an arbitrary positive integer, 
if\ = 3, then 8 = 2 or 3, 
if X = £ + l, p being a prime number > 2 , then 8 = 2. 

Finally we shall show the diagrams of L(S) for a finite ^ - s e m i ­
group 5. 
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