## NOTE ON T\*-SEMIGROUPS

## BY TAKAYUKI TAMURA

Communicated by Edwin Hewitt, February 20, 1962

The system L(S) of all nonvoid subsemigroups of a semigroup S is generally a semilattice with respect to the inclusion relation. L(S) is called the subsemigroup semilattice of S. In the previous paper [1] we determined all the  $\Gamma$ -semigroups, i.e., the semigroups whose subsemigroup semilattices are chains. In detail, all the types of  $\Gamma$ -semigroups are

- (1.1) cyclic groups  $G(p^n)$  of order of prime power,
- (1.2) quasi-cyclic groups  $G(p^{\infty})$ ,
- (1.3) unipotent semigroups generated by d with each of the following defining relations:
  - (1.3.1)  $d^2 = d^3$ ,
  - (1.3.2)  $d^3 = d^4$ ,
  - (1.3.3)  $d^2 = d^{p^m+2}$ , p prime,
  - (1.3.4)  $d^3 = d^{p^m+3}$ , p prime  $\neq 2$ .

In the present note, we shall define  $\Gamma^*$ -semigroups as generalizations of  $\Gamma$ -semigroups and shall report the structure of  $\Gamma^*$ -semigroups except for a part of infinite  $\Gamma^*$ -groups. The proof will be omitted here but will be given elsewhere.

DEFINITION. A semigroup S is called a  $\Gamma^*$ -semigroup if every subsemigroup different from S is a  $\Gamma$ -semigroup.

S is a  $\Gamma^*$ -semigroup if and only if L(S) is a semilattice satisfying: Any subset which contains the greatest element is a subsemilattice. A semilattice of this kind is called a  $C_0$ -semilattice. Obviously all the semigroups of order 2 are  $\Gamma^*$ -semigroups, and a homomorphic image of a  $\Gamma^*$ -semigroup is also a  $\Gamma^*$ -semigroup.

LEMMA 1. Every element of a  $\Gamma^*$ -semigroup is of finite order, that is, for any element x there is an idempotent e and a positive integer n such that  $x^n = e$ .

LEMMA 2. A  $\Gamma^*$ -semigroup of order > 2 is unipotent. (i.e., an idempotent element is unique).

Generally a unipotent semigroup any element of which is of finite

<sup>&</sup>lt;sup>1</sup> By a semilattice we mean a partially ordered set in which there is a join of two elements.

<sup>&</sup>lt;sup>2</sup> In [1] we called them  $\Gamma$ -monoids.

<sup>&</sup>lt;sup>3</sup> Semigroups and their subsemigroups semilattices, to appear.

order is determined by a group and a Z-semigroup (i.e., a unipotent semigroup with zero) [2; 3]. By Lemmas 1 and 2, we can make the discussion proceed to  $\Gamma^*$ -Z-semigroups,  $\Gamma^*$ -groups, and then to the general cases.

THEOREM 1. Any  $\Gamma^*$ -Z-semigroup is of order  $\leq 4$ . All the types of  $\Gamma^*$ -Z-semigroups other than  $\Gamma$ -semigroups are listed as follows:

- (2.1)  $\{0, a, b\}$  of order 3 where xy = 0 for all x, y,
- (2.2)  $\{0, a, b, c\}$  of order 4 defined as
  - (2.2.1)  $b^2=c^2=a$  and other products =0.
  - (2.2.2)  $b^2 = cb = c^2 = a$  and other products = 0.
  - (2.2.3)  $b^2 = c^2 = bc = cb = a$ , and other products = 0.

As far as the  $\Gamma^*$ -groups are concerned, we shall limit ourselves to the case of  $\Gamma^*$ -groups which are properly homomorphic to  $\Gamma$ -groups.

We can prove that any  $\Gamma^*$ -group which is properly homomorphic to a  $\Gamma$ -group has a normal subgroup of index of a prime number. Making use of the theory of finite groups [4; 5; 6], we have

THEOREM 2. Any  $\Gamma^*$ -group, which is not a  $\Gamma$ -group and is homomorphic to a  $\Gamma$ -group of order >1, has one of the following types.

- (3.1) The groups of order pq where p and q are different primes. There are two types (3.1).
  - (3.2) The elementary abelian group:  $G(p) \times G(p)$ .
  - (3.3) The generalized quaternion group of order 8.

Incidentally a finite  $\Gamma^*$ -group, which is not a  $\Gamma$ -group, is homomorphic to a  $\Gamma$ -group; a commutative  $\Gamma^*$ -group which is not a  $\Gamma$ -group is the direct product of two groups of prime order. Consequently we see that the result of Theorem 2 includes the cases where a  $\Gamma^*$ -group is homomorphic to a nontrivial finite group or a commutative group. However the problem of determination of the remaining case is still open.

Next, let S be a unipotent  $\Gamma^*$ -semigroup which is neither a group nor a Z-semigroup. Then we can prove that S must be finite. The kernel (i.e., the least ideal) of S is of type  $G(p^n)$ , and the difference semigroup D of S modulo  $G(p^n)$ , due to Rees [7] is a Z-semigroup which has one of the types (1.3.1), (2.1), (2.2.1), (2.2.2), (2.2.3).

Let e be the unique idempotent of S, and let d be a generator of D.  $G(p^{n-1})$  will denote the subgroup of order  $p^{n-1}$  of  $G(p^n)$ .

THEOREM 3. When  $G(p^n)$  is given, we can determine all the unipotent  $\Gamma^*$ -semigroups, non  $\Gamma$ -semigroups, whose kernel is  $G(p^n)$ , by the product of e and d in the following way.

(4.1) In the case D of order 2, 
$$S = G(p^n) \cup \{d\}$$
,  $n \neq 0$ ,  $ed \in G(p^{n-1}) - G(p^{n-2})$ .

(4.2) In the case D of order 3, D is of type (2.1) and  $S = G(p^n)$  $\bigcup \{d_1, d_2\}, n \neq 0.$ 

 $(4.2.1) ed_1 = ed_2 \in G(p^n) - G(p^{n-1}),$ 

(4.2.2)  $p^n \neq 2$ ,  $ed_1 \neq ed_2$ ;  $ed_1$ ,  $ed_2 \in G(p^n) - G(p^{n-1})$ .

(4.3) In the case D of order 4,  $S = G(p^n) \cup \{d_1, d_2, d_3\}, d_2^2 = d_2^2 = d_1$ ,  $n \neq 0, p \neq 2.$ 

(4.3.1) D of (2.2.1)

 $\begin{array}{ccc} (4.3.2) & D \text{ of } (2.2.2) \\ (4.3.3) & D \text{ of } (2.2.3) \end{array} \right\} ed_2 = ed_3 \in G(p^n) - G(p^{n-1}).$ 

According to the above-mentioned theorems, we see that if S is a finite  $\Gamma^*$ -semigroup, the finite  $C_0$ -semilattice L(S) satisfies Jordan-Dedekind condition (or *J*-condition cf. [8]). Generally a finite  $C_0$ semilattice K satisfying J-condition is called a  $C_0J$ -semilattice. Let  $\delta$  denote the dimension of K (cf. [8]),  $\lambda$  the breadth, i.e., the number of the maximal chains in K, and  $\mu$  the order, i.e., the number of elements of K.



THEOREM 4. A finite  $C_0J$ -semilattice K is isomorphic to certain L(S)for some finite  $\Gamma^*$ -semigroup S if and only if  $\delta$ ,  $\lambda$ , and  $\mu$  satisfy the following conditions.

(5.1)  $\delta + \lambda - \mu = 0$ ,

(5.2)  $\lambda = \alpha + 1$  where  $\alpha = 0$  or 1 or any prime number,

 $<sup>^4</sup>A-B$  denotes the set of elements of A which are not in B.



(5.3)  $\begin{cases} if \ \lambda = 1 \text{ or } 2, \text{ then } \delta \text{ can be taken as an arbitrary positive integer,} \\ if \ \lambda = 3, \text{ then } \delta = 2 \text{ or } 3, \\ if \ \lambda = p+1, \text{ $p$ being a prime number } > 2, \text{ then } \delta = 2. \end{cases}$ 

Finally we shall show the diagrams of L(S) for a finite  $\Gamma^*$ -semigroup S.

## REFERENCES

- 1. T. Tamura, On a monoid whose submonoids form a chain, J. Gakugei Coll. Tokushima Univ. 5 (1954), 8-16.
- 2. —, Note on unipotent inversible semigroups, Kōdai Math. Sem. Rep. 3 (1954), 93-95.
- 3. ——, The theory of construction of finite semigroups. III, Osaka Math. J. 10 (1958), 191-204.
  - 4. M. Hall, The theory of groups, Macmillan, New York, 1959.
- 5. H. Zassenhaus, The theory of groups, 2nd ed., Vandenhoeck and Ruprecht, Göttingen, 1956.
  - 6. M. Osima, Group theory, Kyoritsusha, Tokyo, 1954 (Japanese).
  - 7. D. Rees, On semigroups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400.
- 8. G. Birkhoff, *Lattice theory*, Amer. Math. Soc. Colloq. Publ., Vol. 25, Amer. Math. Soc., New York, 1948.

TOKUSHIMA UNIVERSITY AND UNIVERSITY OF CALIFORNIA, DAVIS