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1. For a finite set .S of elements and a family F of subsets of S, a
cover C of S from F is a subfamily CC F such that U(C)=S. A cover
C is called minimum if its cardinality | C| is as small as possible. A
packing D in F is a subfamily of F whose members are disjoint. It is
called maximum if its cardinality l Dl is as large as possible. Theorem
1 here is relevant to the task of finding minimum covers. Theorem
2, which follows easily from Theorem 1, is the analogous result on
maximum packings. Finally, Theorem 3 extends the foregoing to
“a-covers.”

Minimum covers are equivalent to solutions of the following integer
program: Minimize »_x; by a vector £=(xy, - - - , %)’ of zeroes and
ones for which Ax=1=(1, - - -, 1)". Here 4 is the zero-one incidence
matrix of members of F (columns) versus members of S (rows). Where
1 is replaced by a vector « of arbitrary positive integers, Fulkerson
and Ryser call min _x; the a-width of 4. In [3] they find a lower
bound for the a-width of zero-one matrices 4 with given row and
column sums.

By analogy with a-width, an a-cover of S from F, where a is a vector
whose components correspond to the members of S, is a subfamily of
F of which at least @; members contain y,ES. A B-packing in Fis a
subfamily of F of which at most 8; members contain y,&.S. Where
a;~+B: is the number of members of F which contain y;E€.S, the com-
plement in F of an a-cover is a B8-packing, and conversely.

The Berge-Norman-Rabin theorem [1], which concerns a-covers
where each member of F contains exactly two elements, is based on
“alternating paths,” invented in 1891 by Peterson and used fre-
quently to prove theorems about linear graphs. Theorem 1 general-
izes the N-R instance [5] of the B-N-R theorem, where a=1, by
extending the notion of alternating paths to “alternating trees.”
Analogously, Theorem 2 includes the Berge theorem [2] on maximum
matchings (packings of edges) in a graph. By introducing “self-
intersecting trees,” Theorem 3 generalizes the B-N-R theorem. Its
proof, essentially the same as the proof of Theorem 1, is not given.

Although present knowledge on practical algorithms is quite
limited, in theory at least minimum covering and related program-
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ming problems have many combinatorial applications. One well known
in electrical engineering is the search for a “simplest” normal disjunc-
tive form of a Boolean function (cf. [6]). To cite another example,
if block designs [4] exist for a given set of parameters including A=1,
they correspond precisely to the minimum covers (maximum pack-
ings) from a certain family of sets.

I am deeply indebted to Dr. A. J. Goldman at the National Bureau
of Standards for his help and encouragement.

2. Represent a finite set S of elements and a family F of its subsets
by a linear graph B whose vertices are the members of S and the mem-
bers of F so that an S vertex, ¥, is joined (by an edge) in B to an F
vertex, x, if and only if y&Ex. These are the only edges in B. A cover
C is a subset of the F vertices at least one of which is joined to each
S vertex. Denote F—C by C; thus the vertices of B fall into three
disjoint classes, .S, C and C.

Here it is convenient to define tree inductively: A graph T is a tree
either if it consists of a single vertex or else if it consists of two disjoint
trees, T1 and T, together with an edge joining a vertex in T} to a
vertex in T2 We say graph G’ =G —e is obtained from graph G by
deleting edge ¢, if G consists of G’ and an edge e not in G’ which joins
a pair of vertices of G’. We use the fact that the graph obtained by
deleting any edge from a tree consists of exactly two disjoint trees.

THEOREM 1. 4 cover CCF of S is not minimum if and only if B
contains as a subgraph a tree T such that

(1) each ST vertex meets exactly two edges of T, one joining it to
a CN\T vertex and the other joining it to a CN\T vertex;

(2) each CN\T vertex meets exactly two edges of T';

3) C'=(C—1T)J(CNT) is a cover.

ProoF oF surriclENCY. Each SNT vertex together with its two
edges in T may be regarded as a single edge, which we call a bi-edge,
joining a CNT vertex to a CN\T vertex. Each CN\T vertex together
with its two bi-edges in T° may be regarded as a single bi-bi-edge
joining two CNT vertices. The bi-bi-edges, in 1-1 correspondence
with the CN\T vertices, form a tree whose vertices are those of CN\T.
It is well known and obvious that the number of vertices of a tree is
one greater than the number of its edges. Therefore | C'| <| C|.

3. LEMMA. If cover C is not minimum then B contains a tree obeying
(1), (3) and
2" |eNT|<|CeNT], e, | C] <] C].

The lemma holds as well, if cardinality is replaced by any real
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additive set-function on the subfamilies of F. The proof would be the
same as below if cardinality were replaced in some places there by
function-value.

PROOF OF THE LEMMA. Since | C| is not minimum, there is a cover
M of smaller cardinality. Among these covers M choose one for which
l (C—M)U(M—C)l is minimum. The graph B does contain trees T
obeying condition (1) as well as

2"y CNTSC—M and CNTCM~C, ie., CNT=MNT (where
M=F—M)and CNT=MNT.

A single vertex of the nonempty set (C—M)U(M—C) is such a
tree. Among such trees 7', choose one with a maximum number of
vertices.

We first show that T" obeys condition (3). Any S— T vertex, v, not
joined in B to a C— T vertex must be joined to a CNT vertex, x, since
Cis a cover. Since M is a cover, y must also be joined in B to some M
vertex, z. If 2 were not in T (thus not in C by the hypothesis on y)
then T could be enlarged to a tree still obeying (1) and (2"’) by adjoin-
ing the bi-edge from x to y to 2. This contradicts the maximality of T,
sozisin T, i.e., zisin MNT=CNT.So any S— T vertex y not joined
toa C— T vertex is joined to a CN\T vertex. Since every SNT vertex
is joined to a CN\T vertex by condition (1), C’ of condition (3) is
indeed a cover.

Similarly we can show that M'=(M—T)\J(MNT) is a cover. If
MNT=CNT were no larger than MNT=CNT, then M’ as well as
M would be a smaller cover than C. This contradicts the choice of M
since (C—MNJ(M'—C)=[(C—M)IJ(M—C)]—T is smaller than
(C—M)J(M—C). Therefore (2'), |CNT|<|CNT|, and so the
lemma is proved. In fact, it follows that CNT=C— M, CN\T=M—C,
and C'= M.

4. Proor oF THEOREM 1. For a vertex x in a tree T, let T'(x) denote
the number of edges in T which meet x. In a tree T obeying (1) and
(2") of the lemma, either (2) holds, i.e., 7'(x) =2 for all x&CNT, or
else there is an x©CNT such that T'(x)>2. For suppose neither
holds. By removing from T each xo&CNT for which T(xo)=1 to-
gether with the bi-edge joining x¢ to a CN\T vertex, one obtains a
tree 7" obeying (2). As cobserved in the sufficiency proof, (1) and (2)
imply that 7" has only one more C vertex than C vertices. Since T”
was obtained by deleting CN\T vertices, we have a contradiction to
29.

It also follows from (2’) that each x&CNT with T(x)>2 meets
at least one bi-edge ¢ of T such that the component, R, of T—e con-
taining x has more C vertices than C vertices. The other component
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of T'—e will be called R,. The desired e can be obtained by choosing
one for which | CNMRy| <|CNRy| if possible, and otherwise by choos-
ing any bi-edge to x.

Assuming C is not minimum, there exist by the lemma trees T
obeying (1), (2') and (3). Let f(T)= > . (T(x) —2), where x&CNT
and T'(x)>1. We want to show that at least one of these trees satis-
fies (2)—that is, f(T) =0.

Assume to the contrary that f is positive for all of the trees. Then
from among those that minimize f we can choose one, still calling it
T, which contains an e such that R, as defined above, contains a
minimum number of vertices. We shall obtain a contradiction from T°
by deleting the e which joins R; and R, and then reconnecting these
components by a new bi-edge ¢, from B to obtain a new T'* obeying
(1), (2') and (3), such that f(T*) =f(T), and containing an Rs* smaller
than Ro.

Component R; is a tree with properties (1) and (2’) and such that
f(Ry) <f(T). Therefore, by the choice of T, Ry cannot have property
(3)—that is, some S vertex ¥, is joined neither to a C— R; vertex nor
to a CN\R; vertex. This y, will be the S vertex of the bi-edge ¢,. For
T* to be a tree obeying (1), yo must not lie in either Ry or R,, which is
true since each S vertex of R; is joined to a CN\R; vertex and each S
vertex of R; is joined to a C— R, vertex.

Observe that y, is joined (in B) to a 20& CMNR; because C is a cover,
and also to an x¢& CNR; because (C—T)\J(CNT) is a cover. Thus
o can be taken as the bi-edge joining %o to ¥, to 2. Tree T*=R,\UR,
Ue, obeys (1), (2’) and (3).

Recall that x is the C vertex of bi-edge e. Since ¢, has its C vertex in
R; and its C vertex in Ry, the reverse of the situation for e, we have
xo7#«x. Therefore T*(x) = T(x) —1 and T*(xo) = T'(x0) + 1. For all other
vertices x1 in CN\T*=CNT, T*(x1) = T(x1).

If T*(xo)=2 then x, contributes neither to f(T) nor to f(T¥),
whereas, by definition, x does contribute to f(T'). Thus we have
f(T*)=f(T)—1, contradicting the minimality of f(T). Therefore
T*(x0) >2, and f(T*)=f(T).

The choice of T and R; also requires that T'* contain no R3, de-
fined like R; in T, with fewer vertices than R, However, let e;7¢
be a bi-edge of T* which meets x,. If there are any, let e; be one such
that Rs, the component of T* —e¢; not containing xo, contains no more
C vertices than C vertices. Since T*(xo) >2, and | CNT*| >|CNT*|,
the other component R of T*—e; has more C than C vertices. Since
T*(x0) >2, R is a proper subtree of R,. Therefore the minimality of
R, is contradicted and the theorem is proved.
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5. When each set in F consists of exactly two elements from .S, each
F vertex in graph B meets exactly two edges and hence the tree is a
path. For this case all except the lemma of the necessity proof is
superfluous. It is convenient in this case to regard (S, F) as a graph
G, whose edges are the members of F and whose vertices are the
members of S.

CoROLLARY 1 (NORMAN AND RABIN [5]). If C, a family of edges in G
which meets each of the vertices in G, is not one of minimum cardinality
then there exists in G a path P (simple except possibly at vertices which
are ends of the path) such that (1) edges of P are alternately in C and C,
and (2) C'=(C—P)\J(CNP) is a smaller cover than C.

Like the lemma, Corollary 1 holds when cardinality is replaced by
the value of an arbitrary real additive function on the sets of edges
in G.

6. Another important special case of Theorem 1 is when each ele-
ment of Sis contained in exactly two members of F. This is equivalent
to minimum covering the edges of a graph G by vertices of G; the
edges are the members of S (the bi-edges of B) and the vertices are
the members of F. For this case, iff C is a cover, D=C is a packing.
Graphically speaking, iff C is a set of vertices which meets every edge
at least once, then the vertices not in C meet each edge at most once
since an edge has two ends. A set D of vertices in G such that no
two are joined by an edge is called an internally stable set or a pack-
ing in G. Thus for a graph G with a nonmaximum packing D, Theo-
rem 1 yields a COROLLARY 2 asserting the existence in G of a tree
each of whose edges joins a D vertex to a D= F— D vertex and which
obeys properties (2) and (3) of T in Theorem 2 below.

THEOREM 2. 4 packing D CF is not maximum if and only if B con-
tains as a subgraph a tree T such that

(1) each ST vertex meets exactly two edges of T, one joining it to
a DT vertex and the other joining it to a DINT vertex;

(2) each DT vertex meets exactly two edges of T';

(3) D'=(D—-T1)J(DNT) is a packing.

Corollary 2 leads almost immediately to Theorem 2, the packing-
analog of Theorem 1. Graph B is the same as before. Consider also a
graph G whose vertices are the members of F and such that two ver-
tices are joined by an edge if and only if, as sets, their intersection is

nonempty. The packings in F are obviously identical to the packings
in G.
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For a nonmaximum packing D, let T be one of the trees in G whose
existence is asserted by Corollary 2. Construct a subgraph T of B
as follows. The D vertices and the D vertices of T are the same as
the vertices of T. For each edge e in T, joining vertices x; and xs,
let y be one of the elements common to sets x; and x.. Let T contain
S vertex y of B and the two edges of B which join ¥ to vertices x;
and x.. It is easy to show that graph T is a tree in B with the proper-
ties described in Theorem 2,

7. In terms of the graph B, an a-cover Cis a subset of the F vertices
such that each S vertex, y;, is joined to at least a; members of C.
A B-packing D is a subset of the F vertices such that each S vertex,
¥:, is joined to at most 8; members of D.

Let a graph G, together with a graph G’ and a mapping of G’ onto
G which is bi-unique with respect to edges and which preserves edge-
vertex incidences, be called a self-intersecting copy of G’'. A subgraph
T of B we call an a-tree if it is a self-intersecting copy of a tree T”
whose vertices are partitioned into classes F’ and .§’ so thateach FN\T
vertex is the image of exactly one vertex, which lies in F’, and each
ST vertex, ¥, is the image of at most a; vertices, all in S’. For sub-
sets C and C of F, denote the inverse images of CN\T and CN\T by
C'NT’ and C'N\T’, respectively.

THEOREM 3. In Theorem 1 replace “cover” by “a-cover,” “tree” by
“a-tree,” and S, C, C, and T in condition (1) by S’, C', C', and T".

Let a;+3; be the number of F vertices joined in B to S vertex v;.
Because C is a 8-packing, it follows automatically from condition (1)
of Theorem 3 that T is a B-tree as well as an a-tree. Thus Theorem 3
generalizes Theorem 2 as well as Theorem 1.
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