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0. Introduction. This is a report on the polynomial convex hull of a 
compact set, X, in complex w-space, Cn. By definition, it is hull(X), 
the set of all p in Cn such that 

\f(p)\ ^ m a x | / ( * ) | , 
sex 

for every polynomial, f(z\, • • • , zn). When X = hull(X), we say X is 
polynomially convex. In studying the polynomial convex hull, it helps 
to introduce also i^-hull(X), the rational convex hull of X. By defini­
tion, RA\\i\\(X) is the set of all p in Cn such that 

| g(p) | ^ max | g(x) | , 
xex 

for all rational f unctions, g, which are analytic about X. Equivalently, 
R-hull(X) may be described as the set of all p in Cn for which f(p) 
belongs to f(X), for every polynomial, ƒ. When X = i?-hull(X), we 
say that X is rationally convex. Evidently, 

X C JK-hull(X) C hull(X), 

and these hulls are compact. 
Polynomially convex sets occur prominently in the theory of uni­

form approximation. Every finitely-generated function algebra can be 
realized as the uniform closure of the polynomials on a compact sub­
set, X, of some O ; in which case, its maximal ideal space is precisely 
hull(X) [13]. 

I. Local descriptions of the hulls. To begin, we explain what we 
mean by a curve of analytic hypersurfaces in an open subset, 0, 
of Cn. If U is a domain in O and Ft, 0 St < 1, is a curve of nonconstant 
analytic functions on £7, we let Ht be the zero-set of Ft in U. If each 
Ht is closed in 0, then we say that (Ftl Ht) is a curve of analytic hyper­
surfaces in O. We shall denote it, simply, by (Ht). 

Almost all the results of §§I and II are based on the following 
beautiful local characterization of the polynomial convex hull, given 
by K. Oka in 1937, in [ó]. 

(1.0) OKA'S CHARACTERIZATION THEOREM. Let 0 be a neighborhood 
of hull(X) in Cn. If (Ht) is a curve of analytic hypersurfaces in 0 such 
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that some Ht intersects hull(X), but some other Ht' does not, then some 
Ht" must intersect X. 

Oka's proof uses both his solution of the Cousin I problem [5], and 
the Oka-Weil Approximation Theorem [S], as a way of passing, in 
two steps, from local to global information. 

Theorem 1.0 yields very easily 
(1.1) Rossi 's LOCAL MAXIMUM MODULUS PRINCIPLE. If Y is a sub­

set of hull(X) —X, then Y is contained in1 hull(ôF) [7]. Moreover, by 
analyzing the Cousin I problem solved in the proof of Theorem 1.0 
and appealing to E. Bishop's "1/4 — 3/4" description of peak points,2 

[ l ] , we obtain also 

(1.2) Rossi 's LOCAL PEAK POINT THEOREM. On hull(X), every local 
peak point2 is a peak point [7], 

In the original proofs of Theorems 1.1 and 1.2, Rossi used a some­
what more difficult argument, based on a solution of a Cousin II 
problem,3 (see [7]), and obtained somewhat stronger results. I t hap­
pens that, for the corresponding local description of the rational con­
vex hull (Theorem 1.3 below), a Cousin II type argument is essential. 

(1.3) THEOREM. If Y is a subset of R-hull(X) — X, and if* 
H2(R-hul\(X)\ Z) = 0 , then Y is contained in iMiull(dF). 

The topological restriction is really needed. I t can be shown, by 
an example, that the conclusion of Theorem 1.3 may not obtain if 
H2(R-hu\l(X);Z)^0. 

II . Applications to simply-coconnected set£. We shall say that X is 
simply-co connected when5 Hl(X\ Z ) = 0 . If X is a compact subset of 
O , we say that X is polynomially convex in dimension one if6 XC\ V 
is polynomially convex, for every V which is a complex one-dimen­
sional analytic subvariety of O . 

(11.0) REMARK. Every simply-coconnected, rationally convex set is 
polynomially convex in dimension one. However, there do exist simply-
coconnected sets which are polynomially convex in dimension one, 
but which are not rationally convex. (Consider, for example, the non-
rationally convex arc described by J. Wermer in [9].) 

1 d denotes topological boundary (in the hull of X). 
2 As defined in [7, p. 6], for the uniform closure of the polynomials on hull(X). 
3 However, A. Browder noticed that a Cousin I solution would suffice in 1.1. 
4 Cech cohomology with integer coefficients. 
5 Equivalently, every map of X into Cl — {0} has a log. 
6 This is a semi-topological condition, asserting that every component of 

V~(Xr\V) is unbounded. 
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All the results of this section will depend on the following 

(11.1) THEOREM. Let X be a compact set in Cn and let f be a poly­
nomial. If a branch oflog(f) is defined on X, andf(X) does not intersect 
f(hull(X) —X), then f does not vanish at any point of hull(X). 

The proof is based on Oka's Characterization (1.0). Roughly, if ƒ 
were to vanish at a point of hull(X), then log(/) would "unwind" X 
from hul lpO. In that case, we study the image, under log(/), of a 
neighborhood of X, and construct a certain curve of analytic hyper-
surfaces which would contradict Oka's Characterization. 

A direct corollary is 

(11.2) THEOREM. If X is a compact, simply-coconnected subset of Cn, 
and if there is a polynomial, ƒ, such that f(X) does not intersect 
f (hull (X) —X), then X is polynomially convex. 

We put our most general application of Theorems II. 1 and 11.2 
in the following way. 

(11.3) THEOREM. Let X be a compact subset of Cn which is simply -
coconnected and polynomially convex in dimension one. Suppose there are 
n — \ polynomials, f\, • • • , fn-u which are in general position* on Cn, 
and such that, for each f ~ 1, • • • , n-~ 1, fj(X) is contained in the mini­
mal boundary8 for the uniform limits of functions analytic about 
fj(hu\l(X)). Then X is polynomially convex. 

We next list some very special cases of Theorem 11.3. But first, 
define the n-torus, T(n) = {pE.Cn: \zi(p)\ = 1 , i=l, • • • , n}. Then, 

(11.4) THEOREM. If X is simply-coconnected and rationally convex (or, 
if X is an arc) and lies in T(n — 1) X Cl, then X is polynomially convex. 

Since every subset of T(n) is rationally convex, this implies 

(11.5) THEOREM. If X is contained in a simply-coconnected subset of 
T(n), then X is polynomially convex. Moreover, every complex-valued 
continuous function on X is a uniform limit of polynomials. 

Also, we have 

(11.6) THEOREM. If X is simply-coconnected and rationally convex 
(or, if X is an arc) and lies in C2, and if there is a nonconstant poly­
nomial, f, with \f\ =1 on X, then X is polynomially convex. 

REMARK. We would be delighted to know the answer to the 
7 Their common level sets have complex dimension, at most, one. 
8 Denned in [l; 13]. In many cases it is identical with d(fj(hu\\(X))). 
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(II.7) QUESTION. 75 every simply-coconnected, rationally convex set 
polynomially convex? 

Theorem 11.2 is as close as we have come to an affirmative answer. 
(But see also Remark III.3.) 

III. Approximation by analytic polyhedra. By an analytic poly­
hedron, P, in Cn, we shall mean a polynomially convex set of the form 

P = {uGU: I ƒ,-(«) I g * y , i = 1, • - - , r } , 

where U is an open subset of Cn, the ƒ,- are analytic on U, and the kj are 
non-negative constants. 

It is evident, from the very definition of a polynomially convex 
set, that it can be expressed as a decreasing intersection of analytic 
polyhedra (where the defining functions are, in fact, polynomials). A 
far deeper result of E. Bishop, [2, p. 225], shows that, in Cn, we can 
arrange that every approximating polyhedron be defined by exactly 
n inequalities. 

By the general theory of function algebras, [13], it is known that, 
for every compact subset, X, of Cn, there exists Sx, the unique small­
est closed subset for which hull(5z) = hull(X). We call Sx the Silov 
boundary of hu\l(X). For an analytic polyhedron, P , in O , defined by 
precisely n inequalities, \fj\ ^ 1 , j = l , • • • , n, the Silov boundary, 
Sp, has an especially pleasing form. 

SP = {u(E U: \fj(u)\ = l , j = 1, • • . , » } . 

Thus, it "lies over" the n-torus. 
A number of people have recognized the value of an affirmative 

answer to the following 

(111.0) QUESTION. If L is a polynomially convex set, is it always pos­
sible to find Li} a sequence of analytic polyhedra, converging* to L, in 
such a way that the Silov boundaries, SLV converge to 5 L ? Unfortunately, 
the answer is "no." This will be a consequence of the next few results. 

(111.1) THEOREM. Let L be an analytic polyhedron. If h is analytic 
about L and log (ft) is defined on SL, then h does not vanish at any point 
of L. 

Moreover, this persists in the limit. That is, 

(111.2) COROLLARY. Let Li be a sequence of analytic polyhedra con­
verging to a compact set, L. Let S be the limit set of the sequence, SL^ 
If h is analytic about L and log(fe) is defined on S, then h does not vanish 
at any point of L. 

9 Convergence in the usual Hausdorff topology for the compact subsets of Cn. 
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(111.3) REMARK. It follows, that if S is simply-coconnected and ration­
ally convex, then S — L. Compare this with Question II.7. 

However, there is an 
(111.4) EXAMPLE. There is a polynomially convex set, L, in C2, such 

that the coordinate function, %\, vanishes at a point of L, even though 
logOsi) is defined on SL. 

Such an example (in some Cn) was first constructed by K. Hoffman 
to refute a conjecture10 of the author. Later, E. Bishop suggested the 
following, extremely simple, example. Let E — E^JEi, where 
£ 1 = { ( 6 ^ 2 2 ) : 0 â e ^ 7 r , | s 2 | = l } and E 2 = {(eie, 0): ir^d^lir). If we 
set L = hull(E), then SL is contained in E. Since E\ and E2 are dis­
joint, and log(3i) is denned on each, it follows that logOsi) is denned on 
SL. But it is easily verified that hull(E) contains (0, 0), at which 
point Z\ vanishes. 

Clearly, 111.2 and 111.4 together give a "no" answer to Question 
III.O. 

We can also use the E of Example 111.4 to show 
(111.5) There is a rational polyhedron {a compact set defined by a 

finite number of rational inequalities) whose polynomial convex hull is 
not an analytic polyhedron. 

For, E is rationally convex and is, therefore, a decreasing intersec­
tion of rational polyhedra. Hence, there is a rational polyhedron, R, 
which contains E and on which log(zi) is defined. Since hull(i?) must 
contain (0, 0), we may now apply Theorem I I I . l to deduce that 
hull(jR) is not an analytic polyhedron. 

IV. A hull with no analytic structure. The set hull(X) is defined by 
a certain maximum modulus relation (see §0). Is this anything more 
than the classical maximum modulus principle for analytic functions 
on an analytic variety? In particular, does the set hull(X)— X consist 
of (or, at least, contain) positive dimensional analytic varieties? For 
some fairly general cases, the analytic varieties making up hull(X) —X 
have been exhibited. (See [3; 4; 10; 12].) However, our result is 

(IV. 1) THEOREM. 1 1 There is a compact set, X, in C2, such that 
X^hull(.X'), but hull(X) does not contain any positive dimensional 
analytic varieties. 

Our approach is to construct an X 7*h\il\(X), such that neither one 
of the coordinate projections, zi(hull(X)), 32(hull(X)), contains any 
open subset of the plane. I t follows from the open mapping property 

Namely, that there was no such example! 
A proof is given in [8]. 
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of analytic functions on an analytic variety, that hull(X) cannot con­
tain any analytic varieties (of positive dimension). 

Acknowledgments. We are indebted to E. Bishop and K. Hoffman 
for their examples used in answering Question III.O. Also, we bene­
fited greatly from the advice of both K. Hoffman and I. M. Singer 
while working on parts of §§I and IV. Finally, we were guided, at 
many points, by works of J. Wermer [9; 10; 11 ]. 

All proofs will appear elsewhere. 
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