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For the purpose of this paper a fiber bundle F—>X over a Riemann 
surface X is meant to be a fiber bundle in the sense of N. Steenrod 
[62] where the base space is X, the fiber a complex space, the struc
ture group G a complex Lie group that acts as a complex transforma
tion group on the fiber, and the transition functions g%j{x) are holo-
morphic mappings into G. Correspondingly, cross-sections are as
sumed to be holomorphic cross-sections. We shall use freely the nota
tions of [62], Whenever we report about families of fiber bundles we 
mean holomorphic families of fiber bundles; the basic notations con
cerning families of fiber bundles can be found in [30 ] and shall also 
be used freely. Triviality of bundles resp. families of bundles is always 
supposed to be holomorphic triviality. 

1. Classification of fiber bundles and reduction of the structure 
group. The classification of fiber bundles over noncompact Riemann 
surfaces offers no problem on account of 

THEOREM 1.0 [15; 54]. Every fiber bundle over a noncompact Rie
mann surface is trivial, provided the structure group G is connected.1 

For compact Riemann surfaces, however, the situation is entirely 
different. In the general case it seems to be quite difficult to give a 
classification. Yet one has some results if either the fiber and the 
structure group or else the base space is sufficiently special. 

For the rest of this section X shall always denote a compact Rie
mann surface unless stated otherwise. 

There is a preliminary result concerning line bundles L—>X, i.e. 
fiber bundles with fiber the complex line C1 and structure group the 
multiplicative group GL(1, C) of complex numbers acting upon C1 in 
the usual way, a result that first has been proved in a much more 

An address delivered before the Milwaukee meeting of the Society on November 
18, 1961, by invitation of the Committee to Select Hour Speakers for Western Sec
tional Meetings; received by the editors January 2, 1962. 

1 If G is not connected, the theorem fails to be true as can be seen from the follow
ing example: Let X be the complex plane without the origin, G the multiplicative 
group of nth roots of unity acting on the unit circle by (left) multiplication, and the 
fiber bundle be defined by a covering of X, consisting of two domains Uit V% bounded 
by straight lines through the origin, and the transition function that equals 1 in one 
component of U\ ^\ U2 and e2x*/n in the other component of U\C\ U%. 
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general setting ([29], for an elementary proof in our case see [54; 
56]), namely 

PROPOSITION 1.1. The set of isomorphy classes of line bundles L-^X is 
in a bijective correspondence with the set of divisor classes of X. 

Let us consider vector bundles W—>X of rank r, i.e. fiber bundles 
with fiber the complex number space Cr of dimension r and structure 
group the group GL{r, C) of complex fXr-matrices acting upon Cr 

in the usual way. A nonzero vector bundle is called decomposable if it 
is the Whitney sum of two nonzero vector bundles; otherwise it is 
called indecomposable. A Remak decomposition of a vector bundle is a 
decomposition into a Whitney sum of indecomposable vector bundles. 
Then we get 

THEOREM 1.2 [5]. Every vector bundle over a compact Riemann sur
face admits a Remak decomposition. This decomposition is uniquely 
determined up to rearrangement of the summands in the decomposition. 

Theorem 1.2 shows that it is sufficient to classify indecomposable 
vector bundles in order to achieve a classification of vector bundles. 
This classification can be carried out in case X is the Riemann sphere 
P1. The result is 

THEOREM 1.3 [7; 18]. The line bundles are the only indecomposable 
vector bundles over P1. 

On account of Theorem 1.2 the statement of Theorm 1.3 is equiva
lent to : every vector bundle over P1 is the Whitney sum of line 
bundles. Thus the classification of vector bundles over Pl is com
pleted if we have classified line bundles over P1. For that purpose 
we choose a nonconstant, single valued, meromorphic function x(Q) 
on P\ Then UQ= {Q\ X(Q) ^ oo }, JJ»= {Q\X(Q) ^ 0 } constitute an 
open covering of Pl. Denoting the line bundle defined by the transi
tion function go,<»((?) = x(Q) by L\—»PX, an easy argument involving 
Proposition 1.1 leads to 

PROPOSITION 1.4. For every line bundle L—^P1 there is a (uniquely 
determined) integer d such that L is isomorphic to the Whitney product 
L\ of d copies of L\. 

From this one derives 

PROPOSITION 1.5 [18]. The structure group of a vector bundle W—>Pl 

can be reduced to the complex orthogonal group if and only if W is iso
morphic to its dual bundle W*~->Pl. 
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Theorem 1.3 together with Proposition 1.4 state that the isomorphy 
classes of vector bundles of rank r over P 1 are in a bijective corre
spondence with the set of r-tuples of integers (fei, • • • , kr) fulfilling 
ki â &2 S • • • * ^ kr. This classification in turn gives rise to a complete 
classification of principal PGL(r, C)-bundles where PGL(r, C) is the 
complex projective group corresponding to GL(r + l, C). Indeed, from 
the exact sequence of groups 

0 -> GL(1, C) -> GL(r + 1, C) -> PGL(r, C) -> 0 

we get a surjective mapping2 

#*(* , GZ,(r + 1, O . ) -> H\X, PGL(r, C%). 

Thus our last remark shows (cf. also [23]) 

PROPOSITION 1.6. The set ofisomorphy classes of principal PGL(r, C)-
bundles over P1 is in a bijective correspondence with the set of r-tuples of 
non-negative integers (fei, • • - , kr) fulfilling J i ^ f e â • * • ^ kr. 

In case the structure group of a fiber bundle over P 1 is not of as 
simple a structure as the ones dealt with so far, we cannot expect the 
results to be as smooth. Yet one has 

THEOREM 1.7 [l8]. Let F—>Pl be a fiber bundle whose structure group 
G is reductive. Then F—>PX admits a reduction to the Car tan subgroup of 
G ; this is unique up to an action of the Weyl group of G. 

So far the results have pertained to fiber bundles over the Rie-
mannian sphere. Now we shall turn to another case in which we can 
get ample information, the case in which the base space X is a torus 
Tl, i.e. a compact Riemann surface of genus 1. In order to be able to 
phrase the statements we need a few definitions. 

Let W—^X be a vector bundle. Then we can associate with it a line 
bundle det W—+X by switching from the transition functions gij defin
ing W to the transition functions det g^. Furthermore, let C\{W) be 
the first Chern class of W and IJLÇZH2(X, Z) the fundamental class. 
Then there is an integer d such that d -ju = Ci(W). d is called the degree 
of W and denoted by deg(W). It is easy to see that deg(W) 
= deg(det W). Given a line bundle L—>X and a meromorphic section 5 
in L, 5 defines in an obvious manner a divisor div 5 and we have the 
relation deg(div s) =deg(L) where deg(div s) equals the number of 
zeros of 5 minus the number of poles of 5, both counted according to 

2 For a complex Lie group G, Go, denotes the sheaf of germs of holomorphic map
pings (of a given complex space X) into G; Hl(X, Gœ) is the first cohomology set of X 
with values in Gu. 
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their multiplicities. I t can be shown easily that the integer d occurring 
in Proposition 1.4 is actually equal to deg(L). 

Next we denote by &(X) the set of all isomorphy classes of vector 
bundles over X and by d(X; r, d) the subset of @(X) corresponding to 
indecomposable vector bundles of rank r and degree d. With these 
notations follows 

PROPOSITION 1.8. Let L be a line bundle of degree 1 over X. Then the 
mapping that sends the vector bundle E into E®Ln determines a bijec-
tive mapping (S(X; r, d)—»@(X; r, d-\-nr). 

This shows that we may restrict ourselves to the discussion of 
@(X; r, d) where 0^d<r holds. 

THEOREM 1.9 [3]. There exists exactly one isomorphy class in 
(S(rx; r, 0) that contains a vector bundle Wr admitting a nontrivial holo-
morphic section. The mapping L—>Wr®L of line bundles into vector 
bundles or rank r gives rise to a bijective mapping (§(T1 ; 1, 0) —>@(Tl ; f, 0). 
In particular, there is a natural isomorphism between W and Wr <8>det W, 
r being the rank of the vector bundle W of degree 0. 

Plaving chosen a line bundle L of degree 1 we now want to define 
by induction a mapping ar>d: ©(T1; h, 0)—^©(r1; r, d) where h is the 
greatest common divisor of r and d. For that purpose we define the 
mapping âr,d for vector bundles of rank h and degree 0 inductively by 

(i) âr,o(W) = W, 

(Ü) âr,r+d(W) = âr,d(W) ® L, 

(iii) 1 denoting the trivial line bundle over T1 there is an exact se
quence 

0 -> ld -> âr,d(W) -> tir-dAW) -> 0 

provided that 0<d<r holds. 
I t can be shown [3] that by passing to isomorphy classes these 

conditions determine the mappings ar,d uniquely and that there are 
mappings fulfilling the conditions (i)-(iii). Furthermore 

THEOREM 1.10 [3]. ar,d: ©(r1 ; h, 0)->(g(r i ; r, d) is bijective. 

Therefore we have bijective mappings ©(T1; ry d)—^^{Tl\ 1, 0). 
But ©(T1; 1, 0) can be easily seen to be in a bijective correspond
ence with T1 itself. This finally gives rise to a bijective mapping 
Pr,dm' &CT1; r, d)—>T1, for which the formula 

h-Pr.d(W) =/3i,d(detW0 

holds, where h is again the greatest common divisor of r and d and 
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h'X equals x+x + • • • +x (h times), the addition being the one in 
the abelian group T1. 

Theorem 1.9, Theorem 1.10, and our last remark describe com
pletely the additive structure of (&(Tl) induced by the Whitney sum. 
It is equally interesting to determine the multiplicative structure of 
d(Tl) induced by the Whitney product. This is carried out in [3] but 
shall be omitted here. 

Since for a line bundle L both W and W®L decompose simultane
ously, we may speak of a principal PGL(r, C)-bundle as being inde
composable. Then we derive from a more detailed study of Theorem 
1.9 

PROPOSITION 1.11 [3]. There are exactly r + 1 isomorphy classes of 
indecomposable principal PGL(r, C)-bundles over T1. 

In the case of P 1 resp. Tl as base space we got reasonably good in
formation concerning isomorphy classes, due to the fact that every 
divisor of degree 0 on P 1 is a principal divisor resp. that the canonical 
divisor on Tl is a principal divisor. Therefore, we cannot expect to 
get equally good results if the base space X has genus ^ 2 . Yet it can 
be shown that the structure group of a vector bundle can be reduced: 

PROPOSITION 1.12 [3; 60 ]. Let W—>X be a vector bundle of rank r. 
Then the structure group can be reduced to the group A(r, C) of triangular 
r X r-matrices. 

From another method of reducing the structure group of vector 
bundles, one can conclude that ®(X; r, d) is bijectively mapped onto 
F/R where F is a certain vector bundle over the Picard variety of X 
and R is a fiber preserving equivalence relation in F [3; 26]. However, 
it seems to be difficult to obtain more insight into the nature of the 
equivalence relation P , except in special cases [2]. 

Now we shall deal with fiber bundles whose group is the affine group 
GA(r, C) in dimension r over the complex number field. There we 
have an exact sequence of groups 

0 -> Cr -> GA(r, C) -^ GL(r, C) -> 0 

which induces a surjective mapping 

(1) T: Hl(X, GA(r9 C)») -» B\X, GL{r, C%). 

In order to achieve a classification of principal GA(r, C)-bundles it is 
necessary to determine 7r-1(£) for a given element £ £ i J ^ X , GL{r, C)w). 
There we have 

PROPOSITION 1.13 [2; 45; 66]. Given ^Hl{X, GL(1, C%), the set 
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7r~1 (£) consists of % itself together with a complex projective space Pk whose 
dimension k equals dime Hl(X, £)(£)) — l.3 

COROLLARY. Let X be the Riemannian sphere. Then the dimension 
k of the complex projective space mentioned in Proposition 1.13 equals 
min(0, - l - d e g ( £ ) ) - l . 

COROLLARY. Let g be the genus of X. Then ir"1^) consists of £ alone, 
provided deg(£) > 2g — 2. 

Hence we have reached a classification of principal GA(l, C)-bun-
dles over a compact Riemann surface, on account of Proposition 1.1. 
After having classified the principal GA{\, C)-bundles one can at
tempt a classification of principal PGL(1, C)-bundles. For that pur
pose let j : GA(1, C)—>PGL(1, C) be the canonical injection. Then one 
can prove by using results of [27]. 

PROPOSITION 1.14 [2]. The mapping 

W(X, GA(1, Oco) -> Hl{X, PGL(1, C)„) 

which is induced by j is surjective. 

Having already classified the principal GA(l, C)-bundles, this 
means that the classification of principal PGL(1, C)-bundles is 
finished as soon as we have a criterion telling whether two principal 
GA(1, C)-bundles define the same principal PGL(1, C)-bundle. Such 
a criterion can indeed be found [2]. Unfortunately, it is difficult to 
decide for given principal G A (I, C) -bundles whether they fulfill the 
conditions of this criterion. If the genus of X does not exceed 2 the 
calculations involved have been carried out explicitly in [2 ] and lead 
to the desired classification. Contrary to Proposition 1.11 this classi
fication is not restricted to indecomposable bundles and therefore 
not even for X =Tl contained in Proposition 1.11. In this latter case 
we get 

PROPOSITION 1.15 [2]. Every principal PGL(1, C) -bundle over Tl is 
isomorphic either to a GL(1, C)-bundle of non-negative degree or else to 
one of certain two GA(\, C)-bundles {with PGL(1, C) as fiber). 

In case the genus of X equals 2 the situation is more complicated 
[2 ] and its description may be omitted here. 

A question that is closely related to the reduction of the structure 
group is the following. Given a complex Lie group G, the constant 
sheaf G over X is a subsheaf of the sheaf Gw. A fiber bundle F—+X 
with structure group G is given by an element in Hl(X, Gw). Under 

3 £)( £) denotes the sheaf of germs of holomorphic sectons in the line bundle defined 
by *. 
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which conditions can F—+X be defined by an element in Hl(Xy G)f 
In other words, when is it possible to introduce in F fiber coordinates 
in such a way that the new transition functions are constant? Im
mediately a class of fiber bundles can be given that has the required 
property. Let /x:7Ti(X)—>G be a homomorphism of the fundamental 
group of X into G. The universal covering I of I is a principal 
wi(X)-bundle over X and hence the homomorphism ju induces a prin
cipal G-bundle £M—»X (for different descriptions see [13; 54]). Be
cause Ti(X) is discrete £„ has constant transition functions with 
respect to suitable fiber coordinates. £M—>X is said to arise from the 
homomorphism jit. With these definitions we get 

THEOREM 1.16 [4]. The following statements concerning principal G-
bundles P over X are equivalent: 

(i) P arises from a homomorphism /z: Ti(X)—>G, 
(ii) P is defined by an element of Hl(X, G), 
(iii) P has a holomorphic connection, 
(iv) P has a discrete form P#. 

The latter statement means : denoting the abstract group corresponding to 
G and being equipped with the discrete topology by G#, P # is a (topologi
cal) principal G^-bundle over X such that there is a bijective and continu
ous bundle mapping P%—*>P. 

As an immediate consequence of Theorem 1.16 we get that a prin
cipal bundle over P1 admits a holomorphic connection if and only if 
it is trivial. 

Theorem 1.16 together with some other results lead to criteria 
concerning indecomposability of vector bundles W—>X. There we 
have among others 

PROPOSITION 1.17 [4]. W—>X is an indecomposable vector bundle if 
and only if the C-algebra H°(X, £)(Hom(W^, W))) has the properties4" 

(i) H°(X, ©(HomCFT, W))) has a unit element e, 
(ii) the nilpotent elements of W{X, 0 )Hom(W, W))) form a sub-

algebra N, 
(iii) as a C-vector space H°(X, D(Hom(l¥, W))) can be written as 

{e} 0 N where {e} is the subspace generated by e. 

And finally 

THEOREM 1.16 [4; 65]. Let W\@ - • • ®Wkbe a Remak decomposi
tion of W—>X. Then W arises from a homomorphism of the fundamental 

4 Hom( W, W) is defined as the vector bundle belonging to the locally free sheaf 
Hom(O(W0, £)(W)) where £)(W) is the sheaf of germs of holomorphic sections in W. 
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group into GL(r, C) if and only if deg(WK) = 0 for K= 1, • • • , k. 

Using the results and techniques of [30 ], one is able to classify those 
principal GA(1, C) -bundles that arise from a homomorphism of the 
fundamental group: 

THEOREM 1.19 [46]. Let X be a compact Riemann surface of genus 
g g 2, J the Jacobian variety of X, and J' — J— {0}. Then there is a fiber 
bundle M—+J' with fiber the (g — 2) -dimensional complex projective space 
and a bijective mapping j of M onto the set of isomorphy classes of those 
indecomposable principal GA(1, C)-bundles that arise from homomor-
phisms of the fundamental group of X and whose image under the map
ping (1) is not trivial. Furthermore, there is a holomorphic family 
g—•>%$—»M" of principal GA(1, C)-bundles over X such that for every 
tÇzM the restriction Ft—>V% has the above properties and corresponds to 
t under the mapping j . 

In this context it should be remarked that a very detailed study of 
those vector bundles over T1 that arise from a homomorphism of the 
fundamental group can be found in [39]. 

Now we shall bring some results concerning families of fiber bundles 
g—>95—>M over Riemann surfaces whose parameter space is assumed 
to be connected. The family 9S—*M of base spaces is assumed to be 
given once and for ever. Again we deal first with families whose family 
of base spaces is a family of noncompact Riemann surfaces. 

Let Xo be a noncompact Riemann surface and suppose that 3S—>Uo 
is a holomorphic family © of complex structures on X0 whose param
eter space Uo is a polycylinder. In particular, SS—>C/o is a differentiable 
fiber bundle with fiber X0 that is differentiably trivial, i.e. differenti-
ably isomorphic to UOXXQ. Choosing a relatively compact and open 
subset X of Xo and an open subset U of Uo we can form the subset 
UXX ol UoXXo. I t corresponds to an open subset of 95 which, 
equipped with the induced complex structure, is a complex manifold 
©([ / , X). Under these circumstances we have 

PROPOSITION 1.20 [47]. For any point / £ Uo there is a neighborhood 
U such that ©(£/, X) is holomorphically complete. 

Choosing for U a polycylinder we see that Hq(UXX, Z)={0} for 
g ^ 2 . Hence every topological fiber bundle F—>UXXis topologically 
trivial provided the structure group is connected. Therefore [15] im
plies 

THEOREM 1.21. Let 93—»£/o be a holomorphic family © of complex 
structures on the noncompact Riemann surface X0 whose parameter 



1962] HOLOMORPHIC FIBER BUNDLES 133 

space is a poly cylinder. Let X be a relatively compact and open subset of 
Xo and §—->©( Z7o, X)—^Uo a family of fiber bundles whose structure 
group is connected. Then for every ££ U0 there is a neighborhood U such 
that the restriction g | ©(£/, X)—»©(£/, X) is trivial. 

In general, however, a holomorphic family 33—>M of complex struc
tures on Xo is, differentiably speaking, a fiber bundle that is defined 
by means of a certain structure group H. If every element of H hap
pens to map X onto itself, then we get in an obvious way again a 
complex manifold ©(M, X). Now suppose that we are given a family 
g—»©(ikf, X)—>M of fiber bundles. Then Theorem 1.21 states a cer
tain local triviality of this family. If we choose an open covering of M 
consisting of sufficiently small sets Ï7», i £ I , then we can reconstruct 
the global family from the family of base spaces ©(M", X)—>M and 
the restrictions %\ ©(£/*, X)—>©(£/*, X) provided we know in which 
way we have to match these restrictions. That means that the family 
defines in a unique way an element in the first cohomology set of M 
with values in the sheaf of germs of those fiber preserving automor
phisms of %—*©(ikf, X) that induce the identity mapping on @(Af, X). 
This sheaf obviously depends only on the family &(M, X)—>M of 
base spaces, the structure group G of the family of fiber spaces, and 
the fiber F of this family. Denoting it by Aut(©(M, X), F, G) we get 
the 

COROLLARY. The set of isomorphy classes of families g—»©(M, X) 
—>M of fiber bundles whose parameter space M is a complex manifold 
corresponds bijectively to the set HX(M, Aut(©(M, X), F, G)). 

Due to the restrictions imposed on X Theorem 1.21 is not quite 
satisfactory. However, in case that the family 25—» I f is locally trivial, 
i.e. a (holomorphic and not only differentiable) fiber bundle Theorem 
1.21 and its Corollary hold also for X^=X0. 

Finally we shall deal with families of fiber bundles over the Rie-
mannian sphere P 1 in which case we only require that the parameter 
space is a complex space. Then we get 

THEOREM 1.22 [56]. Let SB—>2S—>M be a family of vector bundles of 
rank r over the Riemannian sphere. Then there is an analytic subset 
AQM that is either empty or purely l-codimensional in each of its 
points, and a nondecreasing sequence of integers kifa, • • • , kr such 
that the restriction SB| (M — A)—>2S| (M — A)-*(M—A) is locally iso
morphic to 

UX® {Li\p= 1, • • • , ^ E / 0 P 1 ^ P 

where U is an appropriate neighborhood in M. In case r = 1, A is empty. 
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We say that the family SB—>%$—>M of vector bundles is of type 
(ki, - - • , kr) provided these are the integers corresponding to the 
local splitting of the family as described in Theorem 1.22. 

From Theorem 1.22 one can derive immediately an analogous theo
rem on families of principal PGL(r, C)-bundles over P 1 . 

Now consider a family g—»3S—>M of principal GA(1, C)-bundles 
over P 1 . I t corresponds to an element in iP(3S, GA(1, C)w) and as 
before we get a mapping 

TO: &(%, GA(1, O-) -» flTHS, GL(1, C)w). 

On the other hand, Theorem 1.22 shows that for a polycylinder U 
and the projection p: UXP1—>P1 the induced mapping 

p*: H\U X P\ GL(1, O») -> ff1^1, GZ(1, C)w) 

is bijective. Using Proposition 1.4 we get therefore a surjective map
ping "degree" that is defined as the mapping deg op* OTTUXP1 °f 
Hl(UXP\ GA(1, C%) onto Z. As in [2] one can show 

PROPOSITION 1.23. The set of isomorphy classes of principal 
GA(\, C)-bundles $—>UXPl—>U whose degree equals d consists of 
p~l(LÎ) and the coset space H°(U, O^'^'^/H^U, £)£).5 

This proposition classifies locally the families of principal G A (1, C)-
bundles. I t can be viewed as the analog of Theorem 1.22 for principal 
G^4(l, C)-bundles. From both we can derive to some extent a global 
classification of families of vector bundles resp. principal G^4(l, C)-
bundles over P 1 , which we shall describe now. 

Let us first deal with families 3B—*9$—>Af of vector bundles of rank r 
whose parameter space is a complex manifold. Assuming that the 
family is of type (fei, • • • , kr) the proof of Theorem 1.22 shows that 
the set of all those points t of the parameter space for which the re
striction Wt—*Vt of the family is not of type (ki, • • • , kr) forms an 
analytic subset of M that is either purely 1-codimensional in each of 
its points or empty. Therefore, families that give rise to different 
analytic subsets are surely not isomorphic. Furthermore, we see that 
over M— A the family is locally trivial in the sense of Theorem 1.22. 
Hence, denoting the group of analytic fiber preserving automorph
isms of Lj1© • • • t&L\r—>Px that induce the identity mapping of 
P 1 by A{k\, * * *, kr) and anticipating (see Proposition 2.4) that 

5 Ou shall denote the sheaf of germs of holomorphic functions over U, £)k
v the direct 

sum of k copies of Dt/, and £)*v the subsheaf of Ou consisting of invertible germs; 
O^ operates on O^ by left multiplication in the usual way. 
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A (fei, • • • , fer) is a complex Lie group that acts holomorphically on 
Z£© • • • ®Lf->P\ we observe that the restriction 28| (M-A) 
—>3S] (M — A)—>(M—A) defines in a canonical way an element of 
Hl(M — A, A(ki, • • • , fer)«). Obviously, nonisomorphic families give 
rise to different elements in Hl(M — A, -4 (fei, • • • , fer)<o) and vice 
versa. On the other hand, an element rj in that cohomology set deter
mines a family 28—»25—»(M — ̂ 4) of vector bundles of rank r over P 1 

(whose exceptional set A is empty) and therefore an element 
fo, 25->M) of iP(25| ( M - 4 ) , GL(r, C)w). Considering the mapping 

(2) ffi(», GL(r, O . ) -> ffK» I (M - A), GL(r, C)w) 

induced by the inclusion 25| (M — 4 ) C25 we see that (77, 25—>Af) arises 
from a family 28—*25—>ikf if and only if it is hit under the mapping (2). 
Determining all those elements of Hl($$, GL(r, Qa) that hit (77, S3—>ikf) 
means to determine all isomorphy classes of families which define the 
same element riÇzHl(M — A, A(ki, • • • , kr)u). Thus we have 

THEOREM 1.24 [56]. The isomorphy classes of families of vector bun
dles 28—>25—» M of type (fei, • • • , fer) whose parameter space is a complex 
manifold are in a bijective relation with the set of triples (A, rj, Ç) where 
A is an analytic subset of M that is either empty or purely 1-codimen-
sionalineachof its points} 7] is an element of H1 (M—A, A(ki, • • -,fer)co), 
and f is an element of H1(25, GL(r, C)„) that hits (77, 25—>ilf) under the 
mapping (2). 

However, the question whether a given element of Hl(%\ (M-A), 
GL(r, C)co) is in the image of (2) seems to be difficult to answer. 

Turning to families g—>3S—>ikf of principal GA(\, C)-bundles over 
Pl whose parameter space M is a complex manifold we take from 
Proposition 1.23 that the given family determines in a unique way 
an element of H°(M, OT^^Z&M) where d denotes the degree of 
this family. Families of the same degree that give rise to different 
sections in D1Mn(0'~d~l)/>0% are not isomorphic. Denoting the group 
of analytic fiber preserving automorphisms of a principal GA(1, C)-
bundle of degree d over P 1 , that induce the identity mapping of P 1 , 
by G(d) and anticipating that G(d) depends only on d and is a complex 
Lie group that acts holomorphically on the bundle, we find in the 
same manner as before 

THEOREM 1.25. The isomorphy classes of principal GA(1, C)-bundle 
of degree d over P 1 whose parameter space M is a complex manifold 
correspond bijectively to the set 

H°(M, OT^^/Ol) X H\M, G(d)a). 
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In the general case, however, the best we can hope for is to get a 
reduction of the structure group of the family. This indeed can be 
achieved as we see from 

THEOREM 1.26 [56]. Let %—>35—>M be a family of fiber bundles over 
P1 whose structure group G is reductive and whose parameter space is 
either holomorphically complete or a normal projective variety. Then 
there is a 1-codimensional analytic subset A of M such that the fiber 
bundle % ( (M—A ) —»25 \(M—A) admits a reduction of the structure group 
G to the normalizer of the Cartan subgroup of G. 

Moreover, from the results of [16] resp. [56] one can conclude 

THEOREM 1.27. Let 335—>9S—>ikf be a family of vector bundles of rank r 
over a family of compact Riemann surfaces whose parameter space M is 
either holomorphically complete or a normal projective variety. Then there 
is a 1-codimensional analytic subset A of M such that the restriction 
SB| (M — A)—>2?| (M—A) admits a reduction of the structure group to 
the group A(r, C) of rXr triangular matrices. 

2. Groups of fiber preserving automorphisms. The last part of the 
previous section shows the importance of information concerning 
the group Axxt(F-^X) of fiber preserving holomorphic automorphisms 
(in the sense of [62]) of a given bundle F—*X. Denoting the group of 
holomorphic homeomorphisms of X onto itself by Aut(X) we get as 
an easy consequence of Theorem 1.0 

THEOREM 2.0. Let X be a noncompact Riemann surface and F—>X 
a fiber bundle whose structure group G is connected. Then the group 
A\it(F-*X) is isomorphic to Aut(X) XH°(X, Gw). 

For the rest of this section we assume that the base space X is a 
compact Riemann surface. First we consider principal bundles P—*X 
with structure group G. G acts by right translation on P ; the action 
of an element g of G shall be denoted by Rg. Rg induces the differential 
mapping Rg in the (real) tangent bundle of P. A tangent field H over 
P is called holomorphic if—with reference to local complex coordi
nates JSI, • • • , zn in P—it can be written as 

Z) |#(*i> ' • • > *n) — \i = 1, • • • , n> 

with suitable holomorphic functions 36*(3i, • • • , 2n). The tangent 
field §) over P is called conformai if there is a holomorphic tangent 
field X over P such that $ = 36+36 where 36 is the field conjugate to 3£. 
Obviously the set of conformai tangent fields forms a complex Lie 
algebra. With these notations we get 
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THEOREM 2.1 [40]. Let P—>X be a principal G-bundle. Then the 
group Aut(P—>X) equipped with the C-O-topology can be given the 
structure of a complex Lie group that acts holomorphically on P. Its 
Lie algebra is isomorphic to the Lie algebra of all conformai vector fields 
36 over P for which RgH = Hfor every g(EG. 

Denoting the biggest connected subgroup of a topological group H 
by Ho we have moreover 

THEOREM 2.2 [36; 42]. Let P-^Tl be a principal G-bundle. Then 
Aut0(P—>TX) acts transitively provided P—>Tl admits a holomorphic 
connection. 

Under certain circumstances the statement of Theorem 2.2 can be 
reversed, namely 

PROPOSITION 2.3 [36; 42]. Let P—+T1 be a principal fiber bundle with 
structure group a connected abelian group. Then Auto(P—+T1) acts 
transitively on the set of fibers of P—+T1 if and only if P—+T1 admits a 
holomorphic connection. In this case, the group Auto(P—>Tl) is abelian 
and acts simply transitive on P. 

Because of Proposition 2.3 it is of interest to describe the subset of 
Hx(Tl, A a), A being a connected abelian Lie group, that corresponds 
to principal bundles admitting holomorphic connections. I t can be 
shown [42] that it is a subgroup of Hl{Tl, Aw) that is isomorphic to 
A2/L where L is a connected Lie subgroup of A2 of complex dimen
sion 1. 

In this context it should be remarked that given a vector bundle 
W—+X the group Aut(W-+X) is naturally isomorphic to the group 
Aut(P— >X) where P—>X is the principal GL(r, C)-bundle associated 
with W—>X.& Moreover, one can show that for a vector bundle W-~^X 
the group Aut(W—>X) acts transitively on the set of fibers of W—±X 
if and only if, for a Remak decomposition W=Wi^ • • • ®Wk of 
W, each group Aut(WK-+X) acts transitively on the set of fibers of 
WK->X [36]. 

A fiber preserving automorphism of F—>X determines in a canonical 
way an element of Aut(X). That defines a homornorphism 
p: Aut(F—>X)—>Aut(X) of transformation groups. Having equipped 
both Aut(F—>X) and Aut(X) with the C-O-topology p obviously in
duces a homornorphism AutoC^—>X)—»Auto(X). 

PROPOSITION 2.4 [40]. Let P—+X be a principal G-bundle. Then the 

8 This is, of course, still true in general provided the structure group acts effec
tively and transitively on the fiber. 
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homomorphism Aut0(P—>X) —>AuU(X) is surjective if 
either X = Pl and the structure group G is nilpotent 
or X=Tl and P—*Tl admits a holomorphic connection. 

In case X — T1 the condition given in Proposition 2.4 for Aut0(P—>Tl) 
—>Aut0(T

l) to be surjective is also sufficient (cf. Proposition 2.3). 
In order to determine Aut(P—*X) by means of Aut(X) we have to 

get results concerning ker(Aut(P—>X)—>Aut(X)). Here we have 

PROPOSITION 2.5 [39]. Let P—>X be a principal G-bundle. Then 
ker(Aut(P—>X)-^Aut(X)) is isomorphic (as a topological group) to 
the subgroup T(P) of JÏ0(P, Gw) consisting of those mappings f f or which 

f(Rgx) = r 1 •ƒ(*)• S for a l h G P and g € G , 

r ( P ) being equipped with the C-O-topology. 

PROPOSITION 2.6 [39]. Let P-+X be a principal bundle whose struc
ture group is a simply connected nilpotent Lie group. Then 
ker(Aut(P->X)-*Aut(X)) is connected. 

And finally 

PROPOSITION 2.7 [40]. The complex dimension of ker(Aut0(P—>X) 
—>Aut0(^0) equals the complex dimension of H°(X, £)(L(P))) where 
L(P) is the vector bundle with fiber the (complex) Lie algebra & of G 
that is associated to the principal bundle P—>X by the adjoint represen
tation of G in ®. 

A means of calculating Aut(P-^X) explicitly are classification 
theorems. For instance, the classification of vector bundles over P 1 

provides us with 

PROPOSITION 2.8. Let W-+P1 be a vector bundle of type (fei, • • • , kr) 
and assume that the integers gi, • • • , qs with q\-\- • • • +q8 — r are 
chosen in such a way that kQl+...+q<r_1+i~ • • • = kqi+...+q<r for c r=l , 
• • • , s. Then ker(Aut(W~-•P1)—>Aut(Px)) is isomorphic to the group 

A (ki, ' ' ' , kr) of matrices 

A(t) = 

\An(t) 
0 

I, det A(t) 5* 0 
\A8l(t) • • • AS8(t)j 

where Aij(t) is a qiXqj-matrix whose entries are polynomials in t of 
degree kqi+...+qi — kqi+...+qj. 

W—>Pl being trivial over both C/0 and U* implies that the transi
tion function go,oo(#) defining W->Pl can be chosen as 
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fxkl 

(3) 
0 

Then A (t) maps the element w of the fiber Wx into the element A (x)w 
of Wx. From this we take that the canonical Lie group structure on 
A(ki, • • • , kr) makes this group act holomorphically on W—^P1. 

COROLLARY. If k±+ • • • + £ r ^ 0 , then Aut(W—••P1) is isomorphic 
(as transformation group) to the set of pairs (a> A(t)), a(EGL(ly C), 
A(t)ÇzA(ki, • • • , kr), equipped with the multiplication 

{a, A(t))-(a', A'(t)) = (aa', A(a't)Af(t)) 

and the operation (assuming again that W—»P* is given by (3)) (ay A (t))w 
= A(x)wÇ:Waxfor wÇzWx. 

In any case, the image of Aut(W—->P1)--»Aut(P1) contains all trans
formations x—>ax where a £ G L ( l , C). The last corollary shows that 
this is precisely the image provided k\+ • • • +kr7*0. However, if 
^_|_ . . . -|-£r = 0 and if W—>PX is not trivial, then the image may con
tain in addition the transformations x *ax 1 where a£GZ.( l , C) ; 
but these are the only elements in Aut(Px) that are hit. The trans
formations of Aut(W—>PX) that hit the mapping x—>x~l are exactly 
the matrices 

A(t) = 

Au(t) 

[Asl(T) 

Als(t)) 

Ass(t)) 

det A(t) 9^ 0, 

where Ai3(t) is a g»X^-matrix whose entries are polynomials of degree 
— kqi+...+Qi — kqi+...+qj. The matrices A(t) operate on W—^P1 in an 
analogous way to the matrices A(t). 

From these last remarks we see that the mapping Aut0(P—>X) 
—»AutoPO is m general not surjective. 

There is one more case which we should like to mention : principal 
GA(1, C)-bundles over P 1 . 

PROPOSITION 2.9. Let F-+P1 be a principal GA(1, C)-bundle of de
gree d>0 or d— — 1. Then the group Aut(P—>P1) consists of all pairs 
(a, B(t)) where aEGL(l, C), 

B(t) 
_ (b p(t)\ 

Vo 1)' 
&£GL(1, C), and p(t) is a polynomial in t of degree Sd, equipped with 
the multiplication 
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0 , B(t))-(a', B'(t)) = (aa', B(a', t)B'{t)). 

The action of this group can be described as follows: using again 
the covering { Uo, £/«>} of P 1 and fiber coordinates over these open 
sets, the element 

«-CO 
of the fiber Fx is mapped by (a, B(t)) into the element B(x)C of the 
fiber Fax-

In case the principal GA{\% C)-bundle F—>Pl is of degree zero it is 
isomorphic to the trivial bundle and hence Aut(F—»P*) isomorphic 
to AutiP^XGAil, C). 

In order to tell the automorphism group of principal GA(1, C)-
bundles of degree d^—2 over P 1 we remark that, using the covering 
{ Uo, I/*} of P \ such a bundle can be given fiber coordinates with 
respect to which the transition function defining the bundle equals 

gUx) = Vo i ) 
where pd(x) equals 

oid+i%d+1 + • • • + a-\%~1 

(pd(x) is uniquely determined up to a constant factor). Then we have 
the 

COROLLARY. Suppose that the principal G A (I, C)-bundle F-+P1 has 
degree d£—2. Then kut{F-*Pl) 

(i) consists of the identity alone provided pd(x) contains at least two 
nonvanishing terms, 

(ii) consists of all pairs 

(a~*'(o 1))' a e G I ( 1 ' c ) > 

provided pd{x) =x~~h, 
(iii) consists of all pairs 

a, b G GL(1, C), 

provided pd(x) is identically zero. 

The classification of principal GA(1, C)-bundles over compact 
Riemann surfaces of genus ^ 2 as given in [2] allows to determine 

« D) 
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completely the group of fiber preserving automorphisms of these 
bundles. However, the result is fairly complicated and may therefore 
be omitted. 

Finally we should like to remark that the complex manifolds in
vestigated in [23] correspond bijectively to the bundles described in 
Proposition 1.6 (for r—\). The fiber preserving automorphisms of 
those bundles are determined by Proposition 2.4 and its Corollary. 
Therefore, these statements also account for the group of fiber pre
serving automorphisms of bundles with fiber7 Pn over Pl whose struc
ture group is PGL(n, C). 

3. Cross-sections in fiber bundles and families of fiber bundles. 
Theorem 1.0 shows that the fiber bundle F-+X admits plenty of cross-
sections provided X is a noncompact Riemann surface and the struc
ture group of F—>X is connected. Indeed, the set of cross-sections 
corresponds bijectively to the set of holomorphic mappings of X into 
the fiber of F—>X. In particular we get 

PROPOSITION 3.1. Let W-+X be a vector bundle of rank r over a non-
compact Riemann surface X, Then H°(X, £)(W)) is a free module of 
rank r over the ring R(X) of holomorphic function on X. 

In addition it is known [14] that in this case Hq(X, £)(W)) = 0 for 

Denoting the sheaf of meromorphic functions on X by Ô, we define 
the sheaf £)(W) to be the sheaf D®oD(W). t)(W) is the sheaf of 
"meromorphic cross-sections" in W—>X. With this notation we have 
the 

COROLLARY. Let W—>X be a vector bundle of rank r over a noncompact 
Riemann surface X. Then H°(X, D(W)) is a vector space of dimension r 
over the field F(X) of meromorphic functions on X. 

Furthermore, we take from the remark following Proposition 3.1 
that H*(X, &(W))=0 for q^l. 

Before we turn to compact Riemann surfaces as base spaces we 
should like to describe briefly a useful device [17; 56]. Let p: X—+Y 
be a (nonconstant) proper8 holomorphic mapping and W—+X a 
vector bundle. Then there is a vector bundle p*(W)—»F such that 
for every open subset U of Y and q = 0, 1, • • • the modules 
H9(P~KU), O(W0) and H*(U, 0(P*(W))) resp. H*(p~l(U), £)(W)) 

7 Pn denotes the w-dimensional complex projective space. 
8 Nonconstant proper holomorphic mappings are exactly the projections of un

bounded, but possibly ramified coverings X-* Y having only finitely many sheets. 
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and Hq(U, &(P*(W))) are in a natural bijective correspondence. From 
this fact and the classification theorem of vector bundles over P 1 

(Theorem 1.3 and Proposition 1.4) one can get a very short proof of 
the well-known Riemann-Roch formula [24; 65] 

(3) dime H°(X,£)(W)) - dime H^X.OiW)) = deg(^) + r(l - g) 

where W—+X is a vector bundle of rank r over the compact Riemann 
surface X of genus g. 

As far as meromorphic cross-sections in vector bundles are con
cerned the situation is the same whether the base space is compact 
or not: 

PROPOSITION 3.2 [44; 48; 55]. Let W-*X be a vector bundle of rank r 
over a compact Riemann surface X. Then H°(X, D(W)) is a vector 
space of dimension r over F(X). In particular, given a point XQÇZX one 
can find a basis of H°(X, £)(W)) whose elements are holomorphic sec
tions over some neighborhood U of XQ and which span every fiber Wx for 
x6f / . 

Again we get in addition that Hq(X, £)(W))=0 for q^l. 
Let H—>X be the line bundle corresponding to a hyperplane section 

(X can be considered as a projective variety). Given a vector bundle 
W-+X we denote by W(n)->X the vector bundle W®Hn-*X. Then 
one can conclude immediately from Proposition 3.2 

PROPOSITION 3.3 [44]. For every vector bundle W—>X of rank r there 
is an integer n such that W(n)—>X is isomorphic to f~l(W^) where 
Wu—*GriN is the universal bundle over the Grassmann variety (of r-
dimensional vector subspaces of CN) and ƒ : X—>GrtN a suitable holo
morphic mapping. 

A vector bundle W—>X is called ample if 
(i) H*(X, D(W))=0îorq^l 
(ii) for every x£X the canonical homomorphism Ox®cH°(X, £)(W)) 

—>£)(W)x is surjective.9 

With this definition we have 

PROPOSITION 3.4 [3], Given a compact Riemann surface X of genus g, 
then for every indecomposable vector bundle W—*X of rank r and degree 
d the bundle W(n) —>X is ample provided n^(r — l) (3g — 2) — d/r 
+ 2g. 

This leads immediately to the 

9 Given a sheaf ® over X, Q$x denotes the stalk of ® in xÇzX> 
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COROLLARY. Let W—>X be a vector bundle that arises from a homo-
morphism of TTI(X) into GL{r, C). Then W(n)-~>X is ample for all 
n ^ ( r - l ) ( 3 g - 2 ) + 2 * . 

More results of this type can be found in [3], 
The statements which we encountered so far assure the existence of 

plenty of cross-sections. However, it is of interest to obtain some in
formation concerning the dimension of H°(X, £)(W)) in sufficiently 
general cases. Here we have for instance 

PROPOSITION 3.5. Let W—>X be an indecomposable vector bundle over 
a compact Riemann surface that arises from a homomorphism of iri(X) 
into A(r, C), r^2. Denoting the dual bundle of W—>X by W*-*X we 
have 

dime H°(X, O(W0) + dime £T°(X, £)QV*)) ^ r 
and 

dime H°(X, £)(W)) è 1, dime H°(X, OÇW*)) à 1. 

This proposition has been proved in [39] for X= T1. 
One can show in addition that a vector bundle W-^X of the type 

dealt with in Proposition 3.5 has a trivial subbundle of rank 
d i m e # ° ( X , 0(W)). 

An entirely different type of theorem determining the dimension 
of cohomology modules are the "vanishing theorems" [ l ; 11; 28; 44]. 
Via the Riemann-Roch theorem they admit to calculate the dimen
sion of the module of global cross-sections in certain vector bundles. 
The hypotheses of these theorems are rather complicated wherefore 
the detailed statements may be omitted. 

Turning to different types of fiber bundles we get 

PROPOSITION 3.6 [2; 55]. Let F-+X be a fiber bundle with structure 
group GA(r, C) and fiber C\ Then H»(X, &(F)) is an r-dimensional 
affine space over F(X). 

By combining Theorem 1.3, Proposition 1.4, and the construction 
of p*(W), we get 

PROPOSITION 3.7. Let F-^X be a fiber bundle with structure group 
PGL{r, C) and fiber Pr. Given any point x0(EX there are (g + l)(V + l ) , 
g being the genus of X, global cross-sections in F such that for every 
point XT^XO of X the values in x of these cross-sections span the fiber Fx. 

Finally we should like to deal with families of fiber bundles. Again 
we treat first the case where the base family is a family of noncompact 
Riemann surfaces. Using the notations preceding Proposition 1.20, 
Theorem 1.21 provides us with 
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THEOREM 3.8. Let SS—>Uo be a holomorphic family © of complex 
structures on the noncompact Riemann surface X0 whose parameter 
space is a polycylinder. Let X be a relatively compact and open subset of 
Xo and SB—>@(i[7o, X)—»Z7o a family of vector bundles of rank r. Then 
for every J £ Uo there is a neighborhood U such that i?°(@(£7, X) , £)(3B)) 
is a free module of rank r over the ring i£(©(?7, X)) of holomorphic f unc
tions on ©(£/, X). 

I t is clear that a similar statement concerning meromorphic cross-
sections holds. In addition it may be remarked that under the 
hypothesis that Uo is a trivial family (i.e. SS = UoXX0) the result of 
Theorem 3.8 is still good for X = X0 and U= Uo. 

Turning to base families that are families of compact Riemann sur
faces the basic result is 

THEOREM 3.9 [30]. Let SB—»SS—>U be a family of vector bundles over 
a family of compact Riemann surfaces whose parameter space is a poly-
cylinder. Assume that fe = dimc Hq(Vtl £)(Wt)) is independent of the 
choice of tÇzU, Wt—*Vt being the restriction of SB—»33 to the fiber Vt 

corresponding to / £ U. Then there are k elements in Hq(%$, O(SB)) whose 
restrictions to Vtform a basis of Hq(Vt, £>(Wt)) for every 2G U. 

In general, however, dimcHq(Vt, D(Wt)) will depend upon t. There
fore, it is important to have 

THEOREM 3.10 [16; 56]. Let SB—»25—>M be a family of vector bundles 
over a family of compact Riemann surfaces whose parameter space is a 
complex manifold. Then there is a 1-codimensional analytic subset A of 
M such that for each point to^M there is a neighborhood U and elements 
s\, • • • , su in Hq($$\ U, O(SB)) whose restrictions to Vtform a basis of 
Hq(Vt, 0(Wt)) for every t in U-AC\U. 

COROLLARY. If M is either (i) holomorphically complete or (ii) a nor
mal projective variety, then there is a 1-codimensional analytic subset 
A of M such that 

(i) the restriction mapping Hq(%>, £)(SB))->#«(F*, £)(Wt)) is 
surjective for every tÇ^M—A, 

(ii) the restriction mapping H*(JB, Ô(2B))fW*(S3| M-A, D(3B)) 
—>Hq(Vt, 0(Wt)) is surjective f or every tÇzM—A. 

I t can be taken from [2; 55] and the proof leading to Theorem 3.10 
that the statements of Theorem 3.9 and Theorem 3.10 (including the 
Corollary) are still true for families of bundles whose structure group 
is GA(r, C) and whose fiber is Cr. Also there is an analogue of Proposi
tion 3.7 concerning families. 
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The last results raise the question how the function 
2—Klimc Hq(Vt, 0(Wt)) behaves for a given family of vector bundles. 
The first investigations are due to K. KODAIRA and D. c. SPENCER 

[30] and state the upper semi-continuity of this function. In fact we 
have 

THEOREM 3.11 [16; 37; 56]. Let SB—•SB-̂ Af be a family of vector 
bundles over a family of compact Riemann surfaces. Then the set of all 
points t in M for which dime Hq(Vti £)(Wt)) ^ j is an analytic subset 
ofM. 

As far as meromorphic sections in families of vector bundles are 
concerned the situation is much easier. Here we get immediately from 
the proof leading to Theorem 1.22 and certain constructions in [56] 

PROPOSITION 3.12. Let 28—>9S—>w U0 be a family of vector bundles of 
rank r over a family of compact Riemann surfaces whose parameter 
space is a polycylinder. Then Jï°(3S, Ô(SSB)) is an r-dimensional vector 
space over F(Uo). In particular there are r meromorphic cross-sections 
in SB over 95 that depend holomorphically on tÇiUo and form a basis of 
H°(SB, 0(833)). 

By udepending holomorphically on t" we mean that the set of 
(polar) singularities of these sections do not contain a set «""HO; 
therefore these sections can be restricted to every fiber Vt, / £ f/o, and 
form then a J?(Ff)-basis of H°(Vh D(Wt)). 

Statements similar to Proposition 3.12 hold also for different types 
of fiber bundles but may be omitted here. 

Finally we should like to remark that a fairly complete synopsis of 
the general differential-geometric methods (currents, harmonic forms) 
in the theory of vector bundles over Riemann surfaces can be found 
in [48]. 

4. Applications. Perhaps the best known application of fiber bun
dles in the theory of functions is concerned with the theorems of 
MiTTAG-LEFFLER resp. WEIERSTRASS and G. D. BIRKHOFF [8]. There 
we are given a Riemann surface X1 a subset A of X that has no point 
of accumulation in X, and for each point aÇiA a function fa with 
values in C resp. GL(1, C) resp. GL(ry C) that is holomorphic in all 
points of some neighborhood of a except possibly in a itself. The ques
tion is then whether there is a holomorphic function ƒ on J - 4 with 
values in C resp. GL(1, C) resp. GL(r, C) such that ƒ— fa resp. f-fa1 

can be extended into a to a, holomorphic function with values in the 
corresponding group. Moreover we may ask as to whether we can 
find such a function ƒ that depends holomorphically on certain param-
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eters provided the data fa depend holomorphically on these param
eters. Attaching to these data an appropriate principal G Air, C)-
bundle and thus covering all three cases Theorem 3.8 and the remark 
following it we find 

PROPOSITION 4.1. Let X be a noncompact Riemann surface, U a poly-
cylinder, {an(t)} w„i,2, • •. a family of holomorphic mappings of U into X 
such that the family of points \an(t) }n-i,2,... uniformly has no point of 
accumulation in X, and a family {/w}n-i,2,... of holomorphic mappings 
of Un — An into G Air y C) where Un is a neighborhood of the subset 
An= {(t, an(t))| tÇi Jj\ of UXX. Then there is a holomorphic mapping 
f of 

UX X - U [An\ n= 1, 2, • • • } 

into G Air, C) such that every f-fü1 can be extended into An to a holo
morphic mapping into GA(r, C). 

Here uuniformly having no point of accumulation" means that for 
every toÇzU there is a neighborhood Uo of to and mutually disjoint 
open sets V\, Vi, • • • such that every anit) remains inside Vn as t 
varies in Uo. I t may be remarked that the hypothesis of uniformly 
having no point of accumulation can be weakened considerably; in 
particular, for some t the an(t) do not have to be mutually different. 

If X is a compact Riemann surface we cannot expect the same re
sult as in the case of a noncompact Riemann surface. Yet we have 
an analogue of Proposition 4.1. For that purpose we observe that it 
makes perfect sense to talk about meromorphic functions with values 
in G A (r, C) : interpreting GA (r, C) as a subset of Cr(r+1) we mean by a 
meromorphic function with values in G Air, G) an r(r + l) tuple of 
meromorphic functions on the complex space under consideration 
which takes on values in G Air, C) except for an analytic subset of 
positive codimension. Then we have 

PROPOSITION 4.2. Hypotheses as in Proposition 4.1, except that X is 
now a compact Riemann surface. Then there is a meromorphic mapping 
f of 

UXX - U {An\n= 1, 2, • • • } 

into G A (V, C) having the properties 
(i) there is a finite subset X0 of X such that ƒ restricted to UXiX — X0) 

is a holomorphic mapping into G Air, C), 
(ii) every f-fn1 can be extended into An — Anr\iUXXo) to a holo

morphic mapping into G Air, C). 

Proposition 4.2 is of interest only in the case where the functions 
fn have essential singularities on An. 
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One more quite well-known application [13; 48; 54] is the follow
ing. An abelian integral (resp. multiplicative function) on a Riemann 
surface X defines in a canonical way a homomorphism of TT\(X) into 
C (resp. GL(1> C)) and therefore a fiber bundle with fiber C (see 
also 1). Abelian integrals (multiplicative functions) with the given 
periods correspond bijectively to cross-sections in that fiber bundle. 
More generally we could consider mappings <£: UXTTI(X) —>C (resp. 
GL(1, C)), U being a polycylinder, which have the property that for 
fixed /(E U the mapping a—-><£(/, a) is a homomorphism and for fixed 
aÇÎTi(X) the mapping /—>$(/, a) is a holomorphic mapping; in this 
case we say that the additive (multiplicative) periods depend holo-
morphically upon tÇzU. Again the problem is to find holomorphic 
functions on UXX, X being the universal covering of X, that con
sidered as abelian integrals (multiplicative functions) on X have the 
prescribed periods for every tÇ£U. The answers to these questions are 
exactly the same ones as those given in Proposition 4.1 and Proposi
tion 4.2. In particular the analogue to Proposition 4.1 extends a well-
known result [6 ] concerning integrals of the first kind on noncompact 
Riemann surfaces. If we are interested in integrals of the first kind 
(holomorphic multiplicative functions) on compact Riemann sur
faces, Theorem 3.9 implies as an easy consequence 

PROPOSITION 4.3. Let %$—>Ube a family of compact Riemann surfaces 
whose base space U is a polycylinder. Suppose that the homomorphism 
4>: UX7Ti(Vt0)—>C (resp. GL(1, C)) depends holomorphically on / £ £ / . 
Suppose furthermore that f or every tÇzU there is an abelian integral of 
the first kind (a holomorphic multiplicative function) on Vt having the 
periods prescribed by a-*<t>(t, a). Then there is a holomorphic function 
on the universal covering %$ of %$ that considered as an integral of the 
first kind (holomorphic multiplicative functions) on each fiber Vt has the 
periods prescribed by <fi. 

I t is obvious that the last type of question can be posed and treated 
in exactly the same way as before if we replace the homomorphism 
<p\ TTi(X)—>Cby a homomorphism of wi(X) into an arbitrary Lie group 
G. Then we would end up with automorphic functions on X with 
values in some space Y on which G operates as a group of holomorphic 
automorphisms. 

A problem related to the last one is the following. Consider a 
system of r linear homogeneous differential equations on X, i.e. a 
system 

(4) dyj = 2 3 {?*«/* I * = 1> ' * * >'}> 3 = !> ' " * i * 

where the coy&'s are meromorphic differential forms on X. As is well 
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known there is always a fundamental system, that is, there are n 
solutions of (4) of which every other solution is a linear combination 
over the field of complex numbers. Denoting by A the set of poles of 
the coefficients «#, all solutions are holomorphic functions on the 
universal covering of X —A. Therefore a fundamental system of (4) 
determines a homomorphism of TI(X — A) into GL(ry C) whose class 
(modulo inner automorphisms) is independent of the choice of the 
fundamental system; this class is usually called the monodromy. In 
the points of A we have to expect singularities of the solutions. In 
case the singularities of all solutions are "pole-like,"10 (4) is said to be a 
FUCHsian system. The problem is to find out whether for a given sub
set A of X having no points of accumulation in X and a given homo
morphism of 7Ti(X — A) into GL(ry C) there is a FUCHsian system on 
X whose singularities are in A and whose monodromy is the pre
scribed one. The question has been answered affirmatively in case 
X = PX by classical means [9; 22; 50; 52]. Moreover the question 
arises in which way the FUCHsian system depends upon the points of 
A and the monodromy [34]. By constructing a family of vector 
bundles belonging to the given monodromy and extending it properly 
into the set of singularities we find 

THEOREM 4.4 [48; 54]. Let X be a noncompact Riemann surface, U 
a poly cylinder ) {an(0}n-i,2,... a family of holomorphic mappings of U 
into X such that the family of points {an(0}n-i,2,... uniformly has no 
point of accumulation, and JU: UX>iri(X—Atù--*GL(r, C) a homomor
phism that depends holomorphically on t where A t—U {an(t) \ n = 1, 2, • • • } . 
Then there is a system (4) whose coefficients depend holomorphically on 
/ £ U such that f or every fixed t(E V the corresponding system is Fvcusian, 
has singularities only in the set Atj and gives rise to the monodromy pre
scribed by the homomorphism a—»/*(£, a).11 In particular the poles of the 
coefficients of the system have order 1. 

THEOREM 4.5 [48, 54], Same hypotheses as in Theorem 4.4, except 
that X is now a compact Riemann surface. Then there is a system (4) 
whose coefficients depend holomorphically on t(EU such that for every 
fixed t£:U the corresponding system is Fvcnsian and gives rise to the 
monodromy prescribed by the homomorphism a—*ix(t, a). 

10 A (not necessarily single valued) function/(g) is said to have a pole-like singular
ity at 2 = 0 if for some integer k the function zhf(z) tends uniformly to zero as z tends 
to zero with uniformly bounded argument. 

11 Note that under the hypotheses of our theorem iri{X—At) and TTI{X— AtQ) are 
canonically isomorphic. 
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Similar results can be gotten by the same method if we prescribe 
essential singularities instead of pole-like singularities that lead to 
FUCHSian type. At the same time we can replace X by a family of 
compact Riemann surfaces. Also the hypothesis of uniformly having 
no point of accumulation can be weakened. In particular, under cer
tain additional hypotheses one can also treat cases in which the 
points an(t) are not mutually distinct for every choice of t. This is of 
interest in dealing with TEICHMÜLLER'S [63] Windungsstückkoor-
dinaten-approach to the problem of moduli of Riemann surfaces. 

Assuming that p: X—>Fis a nonconstant proper holomorphic map
ping of connected Riemann surfaces the construction of p*(l)12 may 
be viewed as a special case of the extension of vector bundles needed 
for the proof of Theorem 4.4 and Theorem 4.5. The mapping p in
duces an injective homomorphism p*: R(Y)-+R(X) of rings of 
holomorphic functions (which of course is only of interest in case Y 
is not compact). By means of Proposition 3.1 we get 

PROPOSITION 4.6 [57]. Let Y be a noncompact Riemann surface. 
Then a ring extension R of R(Y) is R(Y)-isomorphic^ to a ring exten
sion R(X)Z)R(Y) defined by an unbounded {but possibly ramified) 
covering X—* Y having n sheets if and only if 

(i) R has no zero divisors, 
(ii) R is integrally closed, 
(iii) (in its structure as an R(Y)-module) R is a free R(Y)-module of 

rank n. 
If R satisfies these conditions, then X—>Y is uniquely determined up 

to a fiber preserving isomorphism (X—» Y being considered as a singular 
fibering). 

In some sense Proposition 4.6 gives a criterion as to whether a Rie
mann surface X can be realized as an unbounded covering of a given 
noncompact Riemann surface F. The corresponding question for 
compact Riemann surfaces Y has been answered a long time ago. In 
the latter case such a realization is always possible if Y—P1 and X is 
any compact Riemann surface. I t is trivial that X which is assumed 
to have genus g can be realized as a covering of P 1 having at most 
g + 1 sheets. However, it can be shown [12; 21 ] that "in general" such 
a realization having at most [(g + 3)/2] sheets14 can be found. Using 

12 1 denotes the trivial line bundle over a Riemann surface. 
13 R( F)-isomorphic shall mean that the isomorphism leaves R( Y) element-wise 

fixed. 
14 [x] denotes the biggest integer ^X. 
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certain methods in complex function theory of several variables 
Theorem 3.11 leads to 

THEOREM 4.7 [37]. Let 33—>M be a family of compact Riemann sur
faces of genus g. Then the set of all points tÇzM for which Vt admits a 
realization over Pl that has at most d sheets forms an analytic subset 
Bd(%$—*M) of M. In particular, if ^Sg—^Mg is the TeichmUllerfamilyfor 
genus g, then [̂(ö+3)/2](33ff—>Mg) — Mg. Furthermore there is an analytic 
subset A g of M g such that f or every t(E.Mg — Ag the corresponding Rie
mann surface can be realized as a covering of P1 that has exactly 
[(g + 3)/2] sheets. 

The ideas of [37] also lead to results if we consider an arbitrary 
compact Riemann surface Y instead of P 1 . 

A result tha t is closely related to Theorem 4.7 and can also be got
ten from Theorem 3.11 is 

THEOREM 4.8 [51 ; 56]. Let 33—>M be a family of compact Riemann 
surfaces. Then the set of all points in S3 that are Weier strass points of 
the fiber to which they belong form an analytic subset of 33. 

Similar statements can be proved as we partly prescribe the gaps 
for the Weierstrass points. 

There is one more application of fiber bundle techniques to the 
theory of systems of linear differential equations. Let (4) be a system 
that is defined in the annulus 0 < | z\ <r\ we write it in the form 

(4') dtj = Q(z)t) 

where Q,(z) is now an nXn matrix of meromorphic differential forms 
in 0 < | z | <r. Then (4') is called equivalent to the system with 
matrix Ü(z) if there is a holomorphic and holomorphically invertible 
matrix H{z) defined in a full neighborhood of z = 0 such that 

(5) 5(s) = H-l{z)ti{z)H(z) - H-\z)dH(z) 

holds. The problem is to find normal forms of systems (4') under this 
equivalence relation. This question has been dealt with in various 
papers (see [10; 4 l ] ) . Now let us turn to the following situation. Sup
pose we are given a holomorphic mapping a(t) of a polycylinder U 
into C1. Let F be a neighborhood of the subset A = {(t, â(t) \ tÇz U} of 
UXC1 and Q,(t> z) an nXn matrix of meromorphic differential forms 
along C1 tha t are defined15 in V—Â and depend holomorphically on 
tÇiU. For every / £ U we have a power series expansion 

15 A meromorphic differential form along C1 is a differential form f(t, z)dz where 
ƒ(/, z) is a meromorphic function. 
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û(*, *) = £{0,(0 •(* - â(t))'dz\ v = g(Ö, • • • } 

where g(£) is either — 00 or the uniquely determined integer for which 
QflCoOO is not the zero matrix. Using these notations we get by em
ploying a suitable vector bundle, Theorem 1.22, and the method used 
in [10] 

THEOREM 4.9. Suppose that q(t) ^q for all / £ U. Then there is an 
integer N, an at most 1-codimensional analytic subset A of U, and a niero-
morphic nonsingular matrix Hit, z) defined in some neighborhood of A 
such that 

&(t, z) = H-^t, z)Q(t9 z)H(t, z)H(t, z) - H~l(t, z)dH(t, z) 

can be written as 

J^{tiv(t)-(z - â(t))vdz\ v = min(0, ? ) , • • • , # } 

where the matrices Q„(£) are meromorphic in U. Moreover f or every fixed 
tCzU—A the matrix H(t, z) establishes an equivalence between Q(£, z) 
and Q(t, z). 

The meaning of Theorem 4.9 is of course that we are able to get 
normal forms "uniformly" except for lower dimensional subsets of 
the parameter space. In particular the pole orders in 00 of the trans
formed system is uniformly bounded (by N). I t should be remarked 
that for points tÇEA the matrix H(t, z) in general is neither holo-
morphic nor invertible. However, conditions can be given which 
assure that the exceptional set A is empty. 

The classical approach to the problem treated in Theorem 4.4 and 
Theorem 4.5 makes use of what is usually called the Hubert boundary 
value problem. I t can be described as follows. Let Ci, • • • , Cn be 
mutually disjoint Lyapunov curves in the Riemannian sphere P 1 . Then 
P 1 — U{ Cv\v— 1, • • • , n\ consists of n + 1 connected components 
D0, • - - , Dn which may be arranged in such a way that the common 
border of DQ and Dv is C„, v= 1, • • • , n. Given continuous mappings 

Bv:Cv->GA(r, C), 

is it possible to find holomorphic mappings ƒ„: Dv—*Cr that can be ex
tended to continuous mappings of the closure Dv of Dv and satisfy 
the conditions 

fv(sv) = Bp(sv)fo(sv) for every sv G Cv and v = 1, • • • , n? 

An affirmative answer to this question has been given provided the 
mappings Bv are Holder-continuous (this hypothesis can be weakened) 
[35; 43; 61 ]. The same question can be posed assuming that we are 
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given an arbitrary Riemann surface X, a locally mutually disjoint 
family {Cw}w=i,2,... of curves on X (i.e. every point x in X has a 
neighborhood that is hit by at most one curve of the family) each of 
which is a closed subset of X that separates X locally, and continuous 
mappings Bn\ Cn-^GA(r, C) that depend holomorphically upon a 
parameter t ranging in a polycylinder C7;16 it should be remarked that 
we do not require that the curves Cn separate X globally. With these 
data we associate [58] a family of GA(r, C)-bundles over UXX, the 
fiber of which is Cr> in such a way that the set of those solutions of the 
problem which depend holomorphically on tÇzU correspond bijec-
tively to the set of cross-sections in this family. In fact, the sheaf of 
germs of cross-sections in this family of bundles is nothing but the 
sheaf of germs of local solutions of our problem. Then our previous 
theorems concerning cross-sections in families of fiber bundles provide 
us with 

THEOREM 4.10 [58]. Let X be a noncompact Riemann surface, 
{Cn}w=i,2,... a family of curves on X subject to the conditions stated 
previously, and Bn: UXCn—*GA(r, C), n — \, 2, • • • . Holder-continu
ous mappings that depend holomorphically upon / £ £/. Then the set of 
holomorphic mappings f of UX(X — \J{Cn\n=l, 2, • • • }) into Cr, 
fulfilling for every n — \y2, • • • 

(i) given two {mutually disjoint) onesided neighborhoods V^ and 
Vn of Cn f(t, x) can be extended to continuous mappings ƒ"(/, x) resp. 

ƒ+(/, x) of "MX V„ resp. 'RX V„ into GA(r, C) that depend holomorphi
cally on tÇzU 

(ii) for every point x £ C » 

ƒ+(*, x) = Bn(t, x)f~(t, x), 

forms a free affine space17 of rank r over the ring R(UXX) of holo
morphic functions on UXX. In case every mapping Bn takes on values 
only in GL(r, C) this affine space is a free module of rank r over R(UXX). 

A similar statement can be proved for compact Riemann surfaces 
X if we admit mermorphic solutions of our problem. If we want to 
deal with holomorphic solutions in the case of compact Riemann sur
faces we will meet certain cohomology conditions that are necessary 
and sufficient for the existence of such solutions. If X — Pl and r— 1 
the cohomology class responsible for the existence of solutions is 

16 This shall mean that for every fixed sn the mapping t-*Bn{t% sn) is holomorphic. 
17 A free affine space W over a ring R is an affine space for which there are r +1 

elements wo, • • • , wr such that every element wGW can be written in exactly one 
way as a0wo+ * * * +tfr«V with apÇzR, p = l, • • • , r, and a 0 + • • • +ar = l. 
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known as the index [43]. I t may be remarked that the method indi
cated here also leads to results in dealing with families {Cw}n==i,2,... 
of curves that depend holomorphically on a parameter ranging in a 
poly cylinder. At the same time one can subject the Riemann surface 
X to deformations of the complex structure. 

The theory of systems of linear differential equations is also linked 
with the theory of connections. Suppose that the vector bundle W-*X 
is defined by the transition functions gij(x). Then a holomorphic 
connection in W-+X is given by assigning to each element Ui of 
the covering a matrix d of holomorphic differential forms (of degree 
1) in Ui such that 

(6) gij(%)cj(x) - Ci(x)gij(x) = dgij{x) 

holds in UiC\ Uj. We speak of a meromorphic connection if we assign 
to each Ui a matrix of meromorphic differential forms (of degree 1) in 
in Ui such that (6) holds. I t can be seen easily that every vector bun
dle over a Riemann surface admits meromorphic connections. For a 
vector bundle W—>X over a compact Riemann surface and a mero
morphic connection in W—>X one can develop a theory that is very 
similar to and in fact a generalization of the classical [2l] theory of 
algebraic functions and their generalizations [31; 53] (the classical 
theory of algebraic functions is gotten by realizing a given compact 
Riemann surface Y as covering p: Y—>Pl and choosing a suitable 
connection in the vector bundle £*(1)—»P1). On the other hand if 
we are given a linear system of differential equations on a compact 
Riemann surface X we can associate with it a vector bundle in such 
a way that the solutions of the system correspond bijectively to 
the global cross-sections; the differentiation then gives rise to a 
meromorphic connection in this bundle. This set-up is of some inter
est for what is usually called "special functions" because they are 
solutions of systems of linear differential equations. And again one 
can study connections of families of vector bundles that depend 
holomorphically on parameters, thus incorporating statements con
cerning special functions on their dependence on certain parameters. 

Another problem in theory of functions that leads to connections 
is the investigation of "nomographic structures" on a Riemann sur
face [64]. This is essentially the study of the invariants of certain 
systems of linear differential equations. 

As it can be shown [59] fiber bundles play quite a role in the in
vestigation of certain functional equations. We choose as a typical 
example difference equations on Riemann surfaces. For that purpose 
let D be a connected open subset of C1 that is invariant under the 
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translation z—>z + l. Furthermore let p: X—>D be an unbounded but 
possibly ramified covering of D and T: X—>X a holomorphic mapping 
such that p(T(x)) — p(x) = l. Then we consider the equation 

(7) f(T(x)) =*(*,ƒ(*)) 

where <j> is a holomorphic mapping of X X F into F, F being a complex 
space. (7) is called a difference equation with values in F. A solution 
of (7) shall be a holomorphic mapping ƒ of X into Y such that (7) is 
satisfied for every x £ X . With (7) one can associate [59] a fibration18 

F^—^X/T whose base space X/T is gotten from X by identifying two 
points x and x' provided there is a non-negative integer n such that 
x— Tn(xf). The fibration F^-^X/T has the property that cross-sec
tions in it and solutions of (7) are in a natural bijective correspond
ence. In a similar way one can deal with the case in which the function 
4> = 4>(t, x, y) in (7) depends holomorphically upon a parameter t rang
ing over a polycylinder U (i.e. 0 is a holomorphic mapping of 
UXXXY into F). Then we ask for holomorphic mappings of U XX 
into F fulfilling (7). In this case the base space of the fibration associ
ated with (7) is UX(X/T). Obviously UX(X/T) is holomorphically 
complete and has vanishing integral homology from dimension 2 on. 
Next we remark that the fibration F^—^UXiX/T) is actually a fiber 
bundle provided (t, x)—><t>(t, x, •) is a holomorphic mapping of UXX 
into a complex Lie group G that acts holomorphically on F. There
fore, by applying the fact that F^-^UX{X/T) is trivial under these 
circumstances we get 

THEOREM 4.11 [59]. Let G be a connected Lie group that acts holo
morphically upon the complex space F, let U be a polycylinder, and X 
a noncompact Riemann surface together with a holomorphic mapping 
T: X—>X subject to the conditions described above. Let furthermore 
cj>: UXX—+G be a holomorphic mapping.19 Given a point x0ÇzX and a 
holomorphic mapping f0: U—>F there is a solution ƒ of (7) fulfilling 
f(t,xo)=Mt). 

COROLLARY. Let U be a polycylinder and X a noncompact Riemann 
surface together with a holomorphic mapping T: X—+X subject to the 
conditions described above. Let furthermore A : UXX-^>GL(r, C) be a 
holomorphic mapping. Then the family of systems of linear difference 
equations 

(8) MT(x)) = £{<*#& *)ƒ*(*, *) I * = 1, ' • ' , r], j = 1, • • • , r , 

18 A fibration is a surjective holomorphic mapping F—*M that is a fibration in the 
usual topological sense. 

19 The image of y under <f>(t, x) is here denoted by <f>(t} x, y). 
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where ((##(/, ^)))i,*-i,...,r 4̂ (/, x), has a fundamental system of solutions 
that depends holomorphically on t(£U. 

By a fundamental system we mean r solutions (/P1(x), • • • ,fPr(x)), 
p = l, • • • , r, for which the determinant det(/p(J(x))p(r=i,.. .,r has no 
zeros in X. This corollary has been proved in special cases in [25; 38; 
49]. Moreover it should be remarked that similar results can be ob
tained in case the span of (7), i.e. p(T(x))—p(x), depends on / £ £ / . 

As we have seen in the corollary to Theorem 4.11 there are funda
mental systems. From the very definition we see that given two 
fundamental systems fi and f2 the matrix C(t, x)=\r1(t, x)f2^, x) is 
holomorphic and holomorphically invertible and fulfills 

(9) C(t,T(x))=C(t,x); 

it is obvious that every holomorphic and holomorphically invertible 
matrix C(t, x) fulfilling (9) can be gotten in this way. The Riemann 
surface X, being realized by p: X—+D as a covering of D, gives rise 
to the group 35 of covering transformations (i.e. holomorphic auto
morphisms yp\ X—*X fulfilling p o\l/ = p). We assume that the matrix 
of coefficients A(t, x) of (8) is of the form A(t, p(x)) where Â is a 
holomorphic mapping of UXD into GL(r, C). Choosing a fundamental 
system f(£, x) of (8), for every i^G© the matrix f(^_1(^)) is again a 
fundamental system. Hence C(t, x)=\~1(t, x)\(t, ^1(x)) satisfies (9). 
Obviously 

(10) cVi*«0> *) = Qi(*i %)c+2(t, \pi (x)) 

holds. Here we have a question that is very similar to the one 
answered in Theorem 4.4 and Theorem 4.5, namely: to which extent 
is it possible to prescribe the "monodromy" Q(£, x)? Again, by con
structing appropriate fiber bundles and using the results of §3 we find 

THEOREM 4.12 [59]. Let X, U, 35, be as described above. Given any 
mapping C of QXUXX into GL(r> C) that depends holomorphically on 
(t, x) G UXX and fulfills (9) and (10), there is a system of linear differ
ence equations on X depending holomorphically on t<E.U that has a 
fundamental system which depends holomorphically upon tÇiU and 
gives rise to the prescribed monodromy C. 

There is another possibility for systems of difference equations. Let 
coi and C02 be two nonzero complex numbers whose ratio is not real. 
Suppose that D is a connected open subset of C1 that is mapped into 
itself by both transformations, z—>s+coi and z—>s+co2. Now we are 
interested in unbounded coverings p : X—>D on which we have two 
holomorphic mappings 7\: X—>X and TV X—>X such that p(Ti(x)) 
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— p(x)=o)i and £(T2(x)) — p(x) =co2 hold. We consider then the sys
tem of equations 

(11) / ( r i (*) ) = *i(*, ƒ(*)), f(T2(x)) = *,(*,ƒ(*)) 

where the functions 4>i and <£2 are subject to 

<t>i(T2(x), fc(x, y)) = *»(ri(a), *i(«, y)). 

In this situation too we can apply the previously mentioned methods, 
ask the corresponding questions, and get the analogous answers [59]. 

In some sense difference equations are closely related to a concept 
about which we want to speak now. Let F be a Riemann surface 
and Ha properly discontinuous group of holomorphic automorphisms 
of F (i.e. given any two points yi, y^ in F they have neighborhoods V\ 
resp. V2 such that FLPW£(F2) 9^0 holds only for finitely many <f>G.H). 
Then it is well known that the quotient space X = Y/H in a canonical 
way can be given the structure of a Riemann surface such that the 
quotient mapping q: Y—>X is a holomorphic mapping. Let now G be 
a complex Lie group. Then a factor of automorphy for (F , H) with 
values in G is a mapping k: YXH-+G that depends holomorphically 
upon yÇ. F and fulfills 

(12) k(y, 4>i<S>2) = k(y, ^Kfciy), * i ) . 

Two such factors ki and fe2 are called equivalent if there is a holo
morphic mapping /: F—»G such that 

(13) *i(y, <*>) = l~l{y)Hy} 4>)l(4>(y)) 

holds. Then one can prove 

PROPOSITION 4.13 [32]. The set of equivalence classes of factors of 
automorphy for ( F, H) with values in G is in a natural bijective relation 
with the set of isomorphy classes of those principal G-bundles F over X 
for which the induced bundle q~1(F) is trivial. 

More results in this direction can be found in [33]. 
Proposition 4.13 shows that it is reasonable to restrict ourselves to 

the case where X is a compact Riemann surface. As far as applications 
are concerned the most interesting case is G = GL(r, C). Here we call 
a factor of automorphy reducible if it is equivalent to a factor of the 
form 

/ At(y) B4(y) \ 

\ 0 QGO ) 
and get 
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THEOREM 4.14 [19; 20]. Let Y be a simply connected Riemann sur-
face and Y/H be compact. Then every irreducible factor of automorphy 
for (F , H) with values in GL(r, C) is equivalent to one of the form 
C(<j>)-k(y, <t>) where C: H—>GL(r, C) is an antihomomorphism and 
k(y, 0) a factor of automorphy f or (F , H) with values in GL(1, C). 

The classification of the latter ones, however, is classical: in case 
Y=Cl the factors of automorphy for (F , H) with values in GL(1, C) 
are of the form 

k(z, 0) = exp(a(tf>) + b{<t>)z + *(*(*)) - *(«)) 

where h(z) is an entire function and a(4>) and b(cf>) are suitable com
plex numbers; in case F is the unit disc the factors of automorphy 
for (F , H) with values in GL(1, C) are of the form 

/ d<j>(z)\mtM 

k(z, 4>) = c(4>) ( ^ T ) *(*W)*"1W 

where h(z) is an entire nonvanishing function, c(0) a suitable complex 
number, and m and M integers. 

Suppose we are given a factor of automorphy k for (F , H) with 
values in C. Suppose furthermore that G acts holomorphically as a 
group of holomorphic automorphisms on a complex space Z, and the 
action of g G G on z £ Z is denoted by zg. Then a holomorphic map
ping ƒ : Y—>Z is called an automorphic function with values in Z be
longing to k if 

(14) f(<Ky)) = f(y)k(y, 4>) 

holds for every 0G-H and every ;y£ F. Again there is a fiber bundle 
over X with fiber Z such that the set of cross-sections in it and the 
set of automorphic functions belonging to k are in a bijective cor
respondence. This together with the theorems of §3 assure the exist
ence of automorphic functions in sufficiently general cases. By the 
same method one can investigate factors of automorphy depending 
holomorphically on parameters and automorphic functions depending 
on parameters. At the same time a deformation of the complex struc
ture of X can be dealt with. 
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