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In a connected, locally connected, locally compact metric space
with no local separating point it is rather easy to construct an arbi-
trarily small connected open set whose boundary is a subset of an
arbitrary small continuum lying in its complement. In fact such sets
form a topological basis for the space. However, it seems to be much
more difficult to construct small connected open sets whose bound-
aries are connected. The author constructed such open sets (sub-
stituting something weaker for local compactness) [1, Theorem 33]
in certain special plane-like spaces but efforts at that time to general-
ize the theorem failed. Now with the help of the partitioning tech-
nique (brick partitioning, in particular) the construction may be
carried out successfully.?

LeMMA. Suppose that (1) U is a connected open proper subset of the
connected, locally connected, compact metric space M such that U= M,
(2) p is a point of U such that M —p is connected and (3) no point of
M —p is a local separating point of M. Then if € is a positive number,
there exists a connected open point set V such that (1) p&€VCVCU,
(2) M =7 is connected and (3) if xEM—V, d(x, V) <e.

INDICATION OF PROOF. Let F denote the boundary of U. Without
loss of generality we shall assume that 3e is less than d(p, F). Being
compact and locally connected, M has property S. By Theorem 8 of
[2] there exists a sequence Gi, Gg, - - - such that G; is a brick (1/1)-
partitioning of M and Gy, is a refinement of G;. Let B; denote the
subcollection of elements g of G; such that g:- F5£0 and let H; denote
the subcollection of G; consisting of the elements of B; together with
all other elements of G; which are separated from p by B}.

There exists a value of 7 such that each point of H} is within e/4
of F. For suppose on the contrary that for each 4, H¥ contains a point
gi such that d(gi, F) Z¢/4. Let us suppose that {¢;} converges to g
(for certainly some subsequence converges). Since d(q, F) = ¢/4, ¢ be-
longs to U and there is an arc pq from p to ¢ lying in U. Now let 7(g)
be a value of 7 large enough so that if g1, 2.EG;, g1-pg5%0 and g+ F0,

1 Work done under NSF G-9418.

2 I wish to thank Professor A. H. Stone for calling my attention to the fact that
the problem was still unsolved.

117



118 F. B. JONES [March

then g-g.=0. Obviously the interior of the sum of the closures of
elements of G, whose closures intersect pq does not intersect H}
for 1=14(g). But since this interior is a connected open set containing
p+4q, it contains ¢; for infinitely many values of 4. This is a contra-
diction.

Furthermore, letting K; denote G;— H;, there exists a value of 4
such that every point of F is within e/4 of int(K}). Let 4, be the larger
of these two values of < and let V; denote int(f}f).

Clearly V. is a connected open subset of U containing p and M;=7,
is a subcontinuum of U having property S. Let Ci, Cy, « + +, Cy,
denote the components of M — M;. Since the partitioning is a brick
partitioning, these components cover F and their closures are non-
intersecting. Since p does not separate M, there exists an arc ab in
M —p irreducible from C; to C;+Cs+ - - - +C,,. Let Q denote the
component of V;—p containing ab— (a+b); Q has property S. Since
p does not separate Q and no point of Q —p is a local separating point
of @, no pair of points of Q separates (. By Theorem 17 of [2] there
exists an arc 7" from a to b lying in Q —p which does not separate Q.
Let Tidenote a subarc of 7" irreducible from Cito Co+Cs+ - - + +Ca,.

The arc T does not separate Q and lies (except for its endpoints)
in Q. In fact p4+(Q—T3) is connected. To see that this is true, let x
denote a point of Q— T". In Q — T” there exists an arc xp. There exists
an integer j>1; such that (1) if g1, £2E€G;, Z1-xp 0 and g.- T’ 0,
then g,-g.=0, and (2) if g1, 22EG;, g1+ (x+p) %0 and g, (M — V1) #0,
then 2;-g2=0. The interior I of the sum of the closures of the elements
of G;lying in V; whose closures intersect xp is a connected open subset
of V; containing no point of 7" and no point of the boundary of V..
But I contains p+x. In I there is an arc px. But px is obviously a sub-
set of p+(Q—T7"). So p+(Q—1T") is connected. Since no point of
M,—pisalocal separating point of M, every point of an arc in M; is
a boundary point of the arc relative to M;. Hence p+(Q—1TH) is
connected.

Clearly U;=V;—T: is connected and M;=T, Let F; be the
boundary of Uh.

Now the entire process may be repeated using Ui, M, and F, for
U, M, and F respectively but being sure that 7, is a value of 7 such
that each point of H; is within e/4#; of F; (n; was the number of the
components C;). The fact that p does not separate M need not be
inherited by M;. By taking T, to join the boundaries of different
components of M — M,, the number of these components is again re-
duced by at least one. Hence in n; (or less) steps V,, is the V called
for in the lemma.
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THEOREM. Suppose that S is a connected, locally connected, locally
compact metric space which contains no local separating point. Then if p
is a point of an open subset R of S, there exists a connected open set D
such that p&D CR and the boundary of D is connected.

Proor. By Theorem 2.4 of [3] there exists a connected, uniformly
locally connected open proper subset U of R such that U contains p
and U is compact. Let F denote the boundary of U and M= U+F.
Hence by the lemma there exists a connected open set Vi such that
(1) p&ViCTV1CU, (2) M—7V.is a connected open (rel M) subset of
M containing F and (3) if x is a point of M — V; then d(x, Vy) <1.
Consider the decomposition space My of M in which the only non-
degenerate element P; is Vi. Now P; does not separate My and no
other point of M, is a local separating point of M; relative to M;. We
can now reapply the lemma to get V, with the properties of V of the
lemma so that if x is a point of M,— Vo(=M—TV3), then d(x, Vy)
<1/2 (here Vy is a subset of .S and d is the distance function for ).
This process may be continued so that pE ViCViCVFCV#C - -
where if x is a point of M — V¥, then d(x, V,*) <1/xn. Since M —7V ¥ is
connected, II(M — V.*) is a continuum containing F. Furthermore it
is the boundary of ZV k. So ZV,* is the required connected open sub-
set D of R containing p.
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