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In recent years the ultraproduct construction has been applied, 
e.g. in [4] and [2], to obtain a series of results in the theory of models 
for the ordinary two-valued first-order predicate logic. Most of the 
results in [4] and [2] have been generalized in [ l ] to predicate logic 
with truth values in the closed real unit interval. In this note we 
shall see that many of the methods and results of [4] and [2] and 
[ l ] can actually be extended to a very wide class of many-valued 
predicate logics, with truth values in any reasonably well-behaved 
compact Hausdorff uniform space. 

We shall give a detailed statement of the definitions and two repre­
sentative theorems. A complete account of the theory, including a 
number of generalizations of theorems from [2] and [ l ] , as well as 
proofs, will appear in a future publication. 

Let L be a formal system with the following symbols: a denumera-
ble set V of individual variables, a set P of finitary predicates, a set 
C of finitary sentential connectives, a set Q of quantifier symbols, and 
distinguished symbols e G P , &GC, 3 £ Q , where e and & are binary. 
Let the set F of formulas be the least set H such that 

(i) {p(vi, • • • , vn)\pÇ:P, P is w-ary, vu • • • , vnG.V} QH\ 
(ii) {c(<£i, • • • , <frfc)|c(EC, c is fe-ary, <£i, • • • , <j>kE.H) QH; 
(iii) {qy(4>)\qeQ9veV,4>eH}çH. 

Free variables are defined as usual. <f> is a sentence if (fr&F and <j> has 
no free variables. 

Given sets X, F, and Z, S(X) shall denote the set of all subsets of 
X and ƒ : Y—*Z shall mean ƒ is a function on Y into Z. 

If X is a uniform space with uniformity % (see [3]), a set function 
g: S(X)-^X is uniformly continuous if for each t/G'U, there exists 
E/'G'U, such that whenever YQXfMJ'[Z] and Z Ç X f W ' [ F ] , then 
(g(Y), g(Z))GzU. X = (X, ƒ, t, c, q)cec,qeQ is a model theory if 

(i) X is a compact Hausdorff uniform space; 
(ii) f,teX and ƒ 9*t; 
(iii) for each fe-ary c £ C , c: Xk—*X and t is continuous; 
(iv) for each g GO, q: S(X)-*X and q is uniformly continuous. 

21= (A, pn)pep is a structure over X if 
(i) A^O; 
(ii) for each ^-ary pÇiP, pu: An—>X; 
(iii) for aj &G-4, £«(#, 6) ==/ if a = 6, and e%{a, b) =ƒ if aT* b. 
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Two structures SI and S3 are isomorphic, in symbols 3l==33, if there is a 
1-1 function h on A onto B such that for every w-ary pQP and all 
elements ai, • • • , anÇzA, pn(a\, • • • , an)~ps&(hai, • • • , ten). 

For each 0 £ F and a: V-+A, the value Val(0, 31, a)ÇzX is denned 
inductively in the following manner: 

(i) for each w-ary p(~P, 

Val(p(vh • • • v»), 3Ï, a) = £a(a(»i), • • • , a(vn)); 

(ii) for each fe-ary c £ C , and each <j>i, • • • , (jtaG.F, 

Val(c(0i, • • , **), 31, a) = *(Val(*i, 3T, a), • • • , Val(^, 31, a)); 

(iii) for each qÇzQ, <l>ÇzF, and v £ F, Val(gz>(<£), 3t, a) = #(F) where 

F = {Val(<£, 3Ï, 6) | b: V —> A and £(w) = a(w) whenever u 5* v}. 

Two structures 31 and S3 are equivalent, in symbols 31̂ = S3, if for every 
sentence <£, Val(tf>, 31) = Val(0, S3). 

Given structures 3t;=04t, pi)pep, with i £ 7 , and an ultrafilter D 
on / , the set A = H**€i Ai/D is defined as usual. Namely, for each 
function ƒ £ H*e/ ^*» w e write 

ƒ/£ = {ie n^4.1 {* e / | ƒ« - «(*•)} e z?|, 
and we define 

IlAi/D= lf/D\feIlA\. 

The ultraproduct 31= I L e r 3Ï»/P of the structures 31*-, with i £ I , is 
denned as follows: for each w-ary p(EP and elements hi/D, • • • , 
hn/Dy p%(h\/D, • • • , hn/D) is the unique x £ X such that for each 
neighborhood iV of *, {i\pi(h(i), • • • , *»(*) )£#} € # • We let W/D 
denote the ultrapower of A. The following generalizes a theorem in 
[4] and [ l ] . 

COMPACTNESS THEOREM. Let Hbe a model theory. For each iÇHI, let 
Xi(~i:X and <j>i be a sentence. Let J = {j\jQI and j is finite}. Suppose 
that whenever iÇzjÇîJ, Val(<^, %)—Xi. Then there exists an ultrafilter 
D on J such that, for each i £ I , Val(<£»-, YLjej %-/D) =#». 

A model theory 36 is good if 
(i) 8c(x, y) ~t if and only if x~y = t; 
(ii) / 6 3 ( F ) if and only if t is in the closure of F ; 
(iii) if X9^y and <££^, then there exists ^ G J 7 such that 

{(3t, a) | Valfo, » , a) = *} C {(31, a) | Val(^, 31, a) = /} 
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and 

{(21, a) | Valfo, 2Ï, a) = y) C\ {(21, a) \ Valty, 21, a) = /} = 0. 

Examples of good model theories: (1) The two element Boolean alge­
bra with the sup operator, ({O, l } , + , -, "", 0, 1, Sup), with the dis­
crete topology. (2) The ikf F-algebra on the closed real unit interval 
with the sup operator, ([0, 1 ] , + , - , " " , 0, 1, Sup), with the usual 
topology. 

We now generalize a theorem in [2; l ] . 
Assume the generalized continuum hypothesis. 

FUNDAMENTAL THEOREM. Let H be a good model theory, and 21, 93 
be structures over 36. Then 21^93 if and only if %I/D=.W/D for some 
set I and ultrafilter D on I. 
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