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A complex algebraic group G is in this note a subgroup of GL(n, C), 
the elements of which are all invertible matrices whose coefficients 
annihilate some set of polynomials {PM[Xn, • • • , X n n ]} in n2 inde-
terminates. I t is said to be defined over a field KQC if the poly
nomials can be chosen so as to have coefficients in K. Given a subring 
B of C, we denote by GB the subgroup of elements of G which have 
coefficients in JB, and whose determinant is a unit of B. Assume in 
particular G to be defined over Q. Then Gz is an "arithmetically de
fined discrete subgroup" of GRl or, more briefly, an arithmetic sub
group of GR. A typical example is the group of units of a nondegener-
ate integral quadratic form, and as a matter of fact, the main results 
stated below generalize facts known in this case from reduction 
theory. The proofs will be published elsewhere. 

1. Reductive groups. A complex algebraic group G is an algebraic 
torus (a torus in the terminology of [l]) if it is connected and can be 
diagonalized or, equivalently, if it is birationally isomorphic to a 
product of groups C* [l , Chapter I I ] . The group G is reductive if its 
identity component G° may be written as G°=T-G', where T is a 
central algebraic torus, and G' is an invariant connected semi-simple 
group, or, equivalently, if all rational representations of G are fully 
reducible. 

LEMMA 1. Let G O • • • DGm be reductive algebraic subgroups of 
GL(n, C), defined over R. Then there exists aÇzSL(n, R) such that the 
groups a-GiR-a~l are stable under x-**x ( i = l , • • • , m). 

This lemma, formulated in a somewhat different terminology, is 
due to G. D. Mostow [4]. Lemma 1, for m = 1, implies easily tha t the 
usual properties of maximal compact subgroups and of the Iwasawa 
decompositions (see [7] for instance) are valid for real algebraic re
ductive groups. 

LEMMA 2. Let G be a connected reductive complex algebraic group, H 
an algebraic subgroup. Then G/H is an affine variety if and only if H 
is reductive. If G and H are defined over Q, and H is reductive, there 
exists a rational representation T: G—>GL(m, C), defined over Q, such 
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that there is a point VÇLZ™ whose orbit under G is closed and whose 
isotropy group is H. 

The fact that if G/H is an affine variety (or more generally a Stein 
manifold) then H is reductive, is due to Matsushima [3] (whose proof 
can be simplified using ordinary cohomology with complex coeffi
cients). The converse is stated in [3] (and attributed to Iwahori and 
Sigiura) ; it can be proved by realizing G/H as a closed orbit in a 
suitable linear representation. 

2. Siegel domains. Let GC.GL(n,C\) be an algebraic reductive 
group defined over R, GR = K*A-N an Iwasawa decomposition of 
GR, and g, Ï, a, n the Lie algebras of GRl K, A, N respectively. K is a 
maximal compact subgroup, A is real diagonalizable, connected, N is 
unipotent, a is orthogonal to Ï with respect to the Killing form. Let 
further ^ C a * be the set of roots of g with respect to a (the restricted 
roots) and, for a £ ^ , let g a = {#£8 , [h, x]=a(h)-x, & £ a } . Then, for 
a suitable ordering on a*, we have n = ]C«>o 8«. Let At 

= {a(EA, a(log a)^t, a £ ^ , a > 0 } , ( />0) . A Siegel domain of GR, 
with respect the given Iwasawa decomposition, is a subset ©«,«# 
= K'At'Ct), where w is a compact set in N. The ©*,w's, ordered by in
clusion, form a filtered set, and their union is GR. One would obtain 
equivalent families by letting a run only through the simple restricted 
roots in the definition of At, or by replacing At by a0-^4~(ao£^4), 
A~ being the exponential of the negative Weyl chamber. It is easily 
seen that if G is semi-simple, a Siegel domain has finite Haar measure. 

A standard Siegel domain © in GL(n, R) is a Siegel domain with 
respect to the usual Iwasawa decomposition (where K=0(n), A is 
the group of diagonal matrices with strictly positive entries, N the 
group of upper triangular unipotent matrices) such that GL(n, R) 
= @-SL(n, Z). The existence of such domains is classical. By a well 
known theorem of Siegel [8] ,givenxGGL(^, 0 ) , the set of y £ SL(n,Z) 
such that ©Pi©- y-x?*0 (resp. © n © - x - ^ ^ 0 ) is finite. ©HSL(« , J?) 
will be called a standard Siegel domain of SL(n> R). 

LEMMA 3. Let T: SL(n> C)-^GL(my C) be a right rational represen
tation, defined over Q, vÇzRm be a point whose orbit under SL(n, R) is 
closed and whose isotropy group in SL(n, R) is stable under x—>{x, and 
let © be a standard Siegel domain of SL(n, R). Then p-7r(©)f\Zm is 
finite. 

This lemma can be proved more generally for a rational represen
tation of a reductive group, a suitable Iwasawa decomposition and a 
Cartan involution compatible with it, but the above special case 
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suffices for the applications. Applied to the natural representation of 
SL(n, C) in the space of quadratic forms, it yields the finiteness of 
the number of reduced integral forms with a given nonzero deter
minant, stated first by Hermite [2], 

3. Fundamental sets for arithmetic subgroups. As is well known, 
Hermite has used the result just mentioned to construct a funda
mental set for the group of units of a nondegenerate quadratic form 
F in the space of majorizing forms of F [2]. The construction of the 
set U below is in a sense a generalization of his procedure. 

THEOREM 1. Let G be a connected complex algebraic group defined 
over Q. Then there exists an open set U in GR with the following proper
ties: (i) GR=U-GZ; (ii) K-U= U for a suitable maximal compact sub
group of G-; (in) For any XÇLGQ, U^-UC^ix-Gz^Gz-x) is finite; 
(iv) if G has no nontrivial rational character defined over Q, U has finite 
Haar measure. 

The group G is the semi-direct product of a reductive group and an 
invariant unipotent group N9 both defined over Q. Since NR/NZ is 
compact, the proof of Theorem 1 is easily reduced to the case where 
G is reductive. Assuming moreover, as we may, GCSL{n, C), we 
take a right rational representation T: SL(n, C)-*GL(mt C) such that 
7r(SL(«, Z)) (ZSL(m, Z), and that there exists VÇLZ™ whose orbit is 
closed and whose isotropy group is G. The existence of w follows 
mainly from Lemma 2. Let aÇ.SL(n, R) be such that a-GR*a~l is 
stable under x—>*x (Lemma 1) and © be an open neighborhood of a 
standard Siegel domain of SL(n, R) contained in a standard Siegel 
domain. By Lemma 3, there exists a finite number of elements 
6i, • • • , bmGSL(n, Z) such that 

(1) vw(SL(n, Z)) C\ vwia-1®) = {^(f tf1) , • • • , v-*(bm1)}. 

We have GR = a"1-H} where H is the set of elements in SL(n, R) 
which map V"ir(a~l) onto v. From this, (1) and the equality SL(n, R) 
= (&-SL(n, Z) it follows easily that ü7 = Ut- (GRC\a-1 • © • bt) satisfies 
(i), (ii). Property (iii) is then a consequence of the theorem of Siegel 
recalled in §2. When G is semi-simple, property (iv) follows from the 
following lemma: 

LEMMA 4. Let GiCG be algebraic semi-simple groups. Assume that 
there are Iwasawa decompositions G\R = K\-AI-NU GR = K*A*N of 
G\R and GR such that K\C.K, AiCZA, NiC.N, and that a positive root 
of the Lie algebra of GR with respect to the Lie algebra of A, for the order
ing defined by N, restricts to a positive root of the Lie algebra of GIR, for 
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the ordering defined by Ni, Let & be a Siegel domain of GR with respect 
to the Iwasawa decomposition K-A-N, and x(£GR. Then ©-xP\GiR is 
contained in a finite number of translates of a Siegel domain of G\R. 

By an elementary argument, property (iii) implies the 

COROLLARY. Let G be a complex algebraic group defined over Q. Then 
Gz is finitely generated. 

The result on reduced forms stated at the end of §2 implies the 
finiteness of the number of classes of integral forms with a given non
zero determinant. The latter has the following generalization. 

THEOREM 2. Let G be a connected reductive algebraic group defined 
over Q, and IT: G-^GL(m, C) a rational representation defined over Q, 
and H = Gzr\'n-1(GL(m, Z)). Then f or any closed orbit X of G in O , 
the integral points of X form a finite number of orbits of H. 

COROLLARY. Let G, G' be connected algebraic groups, defined over Qt 
and JU: G—»G' a rational surjective homomorphism with finite kerneh 
defined over Q {an isogeny). Then ix(Gz) and G'z are commensurable. 

4. Arithmetic subgroups with compact fundamental sets. The quo
tient GR/GZ is compact for instance when G is the orthogonal group 
of a form which does not represent zero. This fact has the following 
generalization, which had been conjectured by R. Godement: 

THEOREM 3. Let G be a complex algebraic group defined over Q. Then 
the following conditions are equivalent: (i) GR/Gz is compact: (ii) the 
identity component of G has no nontrivial rational character defined over 
Q, and every unipotent element of GQ (or, equivalently, of Gz) belongs to 
the radical of GQ.1 

REMARKS. (1) Theorem 1, its corollary and Theorem 3 were known 
essentially for the classical groups (see [6; 8; 9]). Theorem 3 for 
algebraic tori is proved in [5]. As is known, it is easy to derive from 
them similar results on groups of matrices with coefficients in the 
ring of integers of a number field K, which belong to an algebraic 
group defined over K. 

(2) Theorem 3 and known properties of semi-simple Lie algebras 
imply easily that a connected semi-simple Lie group G always has 
discrete subgroups H such that G/H is compact. 

1 We understand that another proof of Theorem 3 has since been given by G. D. 
Mostow and T. Tamagawa. 
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This note is a sequel to the previous one [l ], and is devoted to some 
applications of the results of the latter to adele groups. The results 
are valid for linear algebraic groups defined over number fields, but 
this case is easily reduced to that of groups defined over 0 [3, 
Chapter I ] , to which we shall limit ourselves for simplicity. 

The notation of [ l ] is freely used. For the unexplained notions 
concerning adeles, see [2; 3] . 

1. Adeles. Let G be a connected algebraic linear group defined over 
Q. The adele group attached to G is denoted by G A* The group GQ 
is identified with the subgroup of principal adeles of G A ; it is discrete. 
We put 

Gl =GR X H GZp (Zp: ring of ^-adic integers). 
p prime 

By definition, GA, endowed with the product topology, is an open 
subgroup of G A- The group G is said to be of type (F) if GA is the 
union of a finite number of double cosets G\-X-GQ{XÇ:GA) [2]. 


