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A natural question, of great generality, various special forms of 
which are often asked in differential topology, is the following: 

Let Mi, Mi be differentiable w-manifolds, <f>: M\—»M2 a continuous 
map which is a homotopy equivalence between M\ and M2. When is 
there a differentiable isomorphism 

<3>: Mi—> M2 

in the same homotopy class as 0? 
For example, there is the Poincaré Conjecture which poses the 

question when Mi is an w-sphere (see Smale [2], Stallings [3]). 
I should like to suggest a certain simpleminded "stabilization" 

of the above question. 
I shall say that 3> is a ^-equivalence between Mi and M2, denoted : 

$ 
M i - > M 2 

(*) 

for k a non-negative integer, if $ is a differentiable isomorphism be­
tween MiXRk and M2XRk, 

$ : M i X Rk-+M2 X Rk. 

Now our original question may be reformulated as follows: 
(Pt) If <t>: Mi—>M2 is a homotopy equivalence, when is there a 

^-equivalence 

Mi —» M2 

in the same homotopy class as <f>7 (I.e., such that 

M i X Rk -^ M a X R" 

* , I 
M i > M% 

is homotopy commutative.) 
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In the above terminology, a O-equivalence is simply a differentiable 
equivalence. It is easy to give examples of homotopically equivalent 
manifolds which are not O-equivalent, however are ^-equivalent for 
some fe^O. Thus, if Kz is the complement, in Rz of the Artin-Fox wild 
knot [ l ] , the imbedding <j>: KZ—*RZ provides a homotopy equivalence 
between the two manifolds. Nevertheless, they are not O-equivalent. 
After Stallings [3], Kz and Rz are 2-equivalent. In [8], a manifold 
W* is constructed which is a compact contractible 4-manifold whose 
boundary dW* is nonsimply connected, and such that int W4 is not 
differentiable isomorphic to RA. It is proved, however, that W*XI^P 
and, in particular, 

int IF4 « R\ 
(1) 

More generally, it is a consequence of J. H. C. Whitehead's theory 
of Simple Homotopy Type [6; 7] that if An is a compact contractible 
differentiable w-manifold, there is a k^O such that AnXlk is com-
binatorially isomorphic with In+k, 

In the negative direction, Whitehead proves that for the lens 
spaces 

Li = L(i, 7) = Sz/(Z7)iy i = 1, 2 

even though L\ is homotopically equivalent to L2, Lx XAk is not com-
binatorially equivalent to L2XA* for any fe^O. This follows from his 
more general theorem: 

Let Mi, M2 be differentiable w-manifolds. They are of the same 
simple homotopy type if and only if Mi X A* is combinatorially equiv­
alent to M2 XA*. 

DEFINITION 1. A homotopy equivalence <j>: M\-^M1 between two 
differentiable «-manifolds will be called a k-differential homotopy 
equivalence if 

(I) <t>*T(M2) + U = T{MX) + U 

where T(M) is the tangent bundle of the differentiable manifold M, 
I* is is the trivial &-plane bundle, © is the Whitney sum operation, 
and if ƒ: X—>F is a continuous map between X and F, E—>TF a 
bundle over F, ƒ*E refers to the "pull back" bundle via the map ƒ. 

Mi and M2 will be called differentially homotopically equivalent if 
they are fe-differentially homotopically equivalent for some fe^O. 
Clearly a necessary condition for any affirmative solution of (P^) is 
that the map </>: Mi—>M2 be a ^-differential homotopy equivalence. 
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This note is written as a partial statement of results to appear in 
a later paper. A sketch of the proof of one of the theorems is given. 
I am very thankful to John Milnor for discussions, for his sending me 
a copy of [5] which suggested the main theorem, and for his im­
provements of my presentation. 

THEOREM 1. Let Mu M2 be compact differentiable n-manifolds with-
out boundary. Then Mi and M2 are differentially homotopically equiv­
alent if and only if they are k-equivalentfor k^n + 2. 

Thus, to pass from questions involving O-equivalence to analogous 
questions involving ^-equivalence for large k, is to pass from differen­
tial topology to homotopy theory. The problem, given two (k + 1)-
equivalent manifolds Mi, M2, of determining whether or not they are 
fe-equivalent seems to have vague formal similarities with the prob­
lem of descent of the groundfield in algebraic geometry and also with 
the Witt Group in the theory of quadratic forms. (Let Vi, V2 be two 
algebraic varieties defined over a field k, which are birationally equiv­
alent when considered over an extension field K. When are they 
birationally equivalent over k?) 

There are also analogous notions of stable equivalence for other 
differentio-topological entities: 

DEFINITION 2. Two imbeddings ƒ, g: M—>W will be called k-isotopic 
if the imbeddings 

ƒ*: M XR*->WXRk, 

gk: MXRk-*WXRk 

defined by: 

fk(m,r) =f(m), 

gk{m, r) = g(m) 

are globally isotopic. 
DEFINITION 3. Let 

«i: G-> Aut(Afi), 

a2: G->Aut(M2) 

be differentiate actions of the group G on the manifolds Mi, M2. 
Then &i and a2 are called fe-equivalent if the "extended" actions 
af\ a(

2
k) of G on MiXRk, M2XRk obtained by letting G act trivially 

on Rk are differentially equivalent (in the sense that there is a 
differentiable isomorphism 
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4>:Mi X Rk->M2X Rk 

sending off* to 0$). 
I expect that there are theorems analogous to Theorem 1, for these 

notions of fe-equivalence, linking them to homotopy theoretic condi­
tions also (for large enough k). There is a generalization of Theorem 1 
to vector bundles: 

THEOREM 2. Let E, F be differentiable k-plane bundles over compact 
n-manifolds without boundary, for k^n+2. 

Then E is differentially homotopic to F if and only if E is isomorphic 
to F, as differentiable manifolds. 

COROLLARY 1. Let M\, Ml be compact n-manifolds without boundary 
such that <f>: M\—*M1 is a homotopy equivalence. If rf[, 77* are differenti­
able k-plane bundles over M?, Ml such that 

(II) T(M1) + 77! = <t>*T(M2) + 0*r/2 

and if Ei^E(rji) ( i = l , 2) are the total spaces of rji, considered as 
differentiable manifolds, then E\^E2. 

COROLLARY 2. If M\, M% are compact differentiable manifolds with 
boundaryf and of the same homotopy type, if U\, U2 are open tubular 
neighborhoods of their "canonical" imbedding in Rn+k (k^n + 2), then 
Ui~U*. 

Employing the ideas of Stallings for the proof of the Generalized 
Poincaré Conjecture, n^5, the following may be shown: 

THEOREM 3. Let W be a differentiable manifold without boundary, 
dim W^6. Let f: M—>W be an imbedding of M, a compact manifold 
without boundary, in W, which is a homotopy equivalence. Let E = E(£), 
the total space of the differentiable vector bundle £, where ^z=v{f)@\, 
v{f) being the normal bundle of the imbedding f: M—>W, and 1 is the 
trivial line bundle. 

Then E is combinatorially isomorphic with WXR. 

The conclusion of Theorem 2 concerns the differential structure of 
the unbounded total space of differentiable vector bundle. 

For any £, a differentiable vector bundle over M, E = E(£), the 
total space, let there be a Riemannian metric on £ in the sense of 
[4, p. 37], and call 

E(r) = {sG£||HI M > ' > 0 . 
Then E(r) is a differentiable manifold with boundary S(r) 
= { x £ E | ||#|| =r}. I t is easily seen that int E{r) « E . I t is a conse-
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quence of J. H. C. Whitehead's theory of Simple Homotopy Type 
that : 

THEOREM (WHITEHEAD [7]). Let E, F be k-plane bundles over com­
pact differentiable n-manifolds without boundary, such that k is suffi­
ciently large (k^k(Mi, M2) where k(Mi, M2) is a constant depending 
upon M\ and M2) such that E, F admit Riemannian metrics and E is of 
the same differential homotopy type as F. Then E{r) is combinatorially 
isomorphic with F{r) if and only if E(r) has the same simple homotopy 
type as F(r). 

The theorem of Whitehead stated above may be improved to fit 
this context as follows: 

THEOREM 4. Under the situation of the previous theorem, one has: 
E(r) is differentiably isomorphic with F{r) if and only if E(r) and F(r) 
have the same simple homotopy type. 

COROLLARY. If M\, Ml are differentiable manifolds {compact, with­
out boundary), of the same differential homotopy type, then M? is of the 
same simple homotopy type as Ml if and only if 

M X D « M2X D 

for large enough k. 

The theorems stated above have generalizations to arbitrary mani­
folds, not necessarily compact without boundary ; however the notion 
of differential homotopy type must be altered somewhat. 

SKETCH OF THE PROOF OF THEOREM 2. Let 2ft denote the set of 
m a p s / : Mi—>M2 satisfying these properties: 

(1) ƒ: My—>M2 is an imbedding, 
(2) / ( int Mi) is open in M2, 
(3) f(Mi)QintM2. 

Such maps will be called open interior imbeddings. 
INJECTIVE LIMITS. For any sequence of manifolds and maps, 

S: Mi -> M2 -» Mz -> • • • , fi G 9TC 
/ l f2 3̂ 

a natural differential structure may be placed on the injective limit, 
Inj Lim (S), in an obvious manner. 

If 

4>: E-+F, 

4f\ F->E 
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are maps, </>, (̂ESflZ, consider the sequence 

S (* ,* ) : £ _ > F - - > £ - > F - > . • • 
<Ê V' <Ê W 

obtained by iteration. Define 

X(4>, $) = Inj Lim 5(*, iW 

considered as a differentiate manifold. 
If/: E-+E is a map,/£9TC, consider the iterated sequence 

S(J): £ - > £ - > £ - > 
f f f 

Define X( / ) = Inj Lim S(f). 
It is tautological that 

(III) X(<t> o ^ ) « X(tf>, *) « X(^ o 0). 

DEFINITION 3. Let *>: £ - > £ , P G O T . 

Then E will be called v-movable if for all p: E—Œ, p £ M , which are 
homotopic to v> and a: E-^E an automorphism of E homotopic to 
the identity automorphism, there exists an automorphism fi:E—>E 
homotopic to the identity, such that 

v 
£ - > E 

«i Pi 
E^E 

is commutative. 
E is called movable if it is p-movable for some v homotopic to the 

identity. 

PROPOSITION 1. Let E be movable and let f: E—»£, fGM, be homo-
topic to the identity] then: 

X(f) « int E. 

PROPOSITION 2. Let E be a differentiable k-plane bundle over a com­
pact n-manifold without boundary, such that k^n+2. Let r>0. Then 
E(r) is movable. 

Proposition 2 comes essentially from the following technical 
lemma: 

LEMMA. Let E be a differential vector bundle over a compact manifold 
M. Let i: M-+E denote the zero cross-section, and W a manifold. Let 

f,g:E->W, Age™ 
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such that 

foi = go i. 

Then there is an automorphism 

a: W-+W, 

a real number r > 0 , 
and 

a linear bundle automorphism 

X: £ - > E 

M 

such that X: E(r) ^E(r) for which 

E(r) -> W 
ƒ 

J, X J, a 

E(r) -> W 
g 

is commutative. 

PROPOSITION 3. Let E, F be differentiate k-plane bundles over com­
pact n-manifolds without boundary, k^n+2. 

If E and F are differentiably homotopic, there exist maps 

<t>: E(r) -> F(r) $: F(r) -> E(r), 0, ^ G 9TC, r > 0 

such that (j> and \J/ are two-sided homotopy inverses. 

The proof of Theorem 2 follows from these three propositions. For 
the hypotheses of Theorem 2 are the hypotheses of Proposition 3. 
Therefore, we are guaranteed a <£, yf/ as in Proposition 3, and 

<l>0\l/~ lF(r), \pO<l>~ l^r(r). 

By Propositions 1 and 2, 

X(<f> o $) ~ int F{r) « F, 

X(^ o <t>) « int £ 0 ) « E. 

By (III) 

F « XfaotfO « X(^o4>) « E 

proving the theorem. 
T H E HAUPTVERMUTUNG. I t is a result of Whitehead that the lens 
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spaces Li, L2 are not of the same simple homotopy type. Thus 
LiXA* is combinatorially inequivalent to L2XA* for any k^O. 

However, L\ and L2 are of the same differential homotopy type. 
(They are of the same homotopy type [7], and all orientable 3-
manifolds are parallelizable, so they have the same differential 
homotopy type.) 

It is a consequence of Theorem 1 that LiXR2 is differentiably iso­
morphic with L2XRb. 

Using these results, Milnor has constructed finite complexes K\, 
K\ which are topologically isomorphic yet are combinatorially in-
equivalent, thus contradicting the Hauptvermutung. 

K\ = {Li X A5) \J C{d(Li X A6 ) } , i = 1, 2 

where C{X} denotes the cone over X. That K\ is topologically iso­
morphic to K% can be seen since K\ is (topologically) the one-point 
compactification of LiXR5 ( i = l , 2). 
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