EQUIVALENCE OF NEARBY DIFFERENTIABLE ACTIONS OF A COMPACT GROUP

BY RICHARD S. PALAIS¹

Communicated by Deane Montgomery, April 5, 1961

In this note we will be concerned with the proof and consequences of the following fact: if ϕ_0 is a differentiable action of a compact Lie group on a compact differentiable manifold M, then any differentiable action of G on M sufficiently close to ϕ_0 in the C^1 -topology is equivalent to ϕ_0 .

- 1. **Notation.** In what follows differentiable means class \mathbb{C}^{∞} . If M and V are differentiable manifolds, $\mathfrak{M}(M, V)$ is the space of differentiable maps of M into V in the C^{K} -topology where K is a positive integer or ∞ fixed throughout. We denote by Diff (M) the group of automorphisms of M topologized as a subspace of $\mathfrak{M}(M, M)$. As such it is a topological group. $\mathfrak{D}(M)$ is the subgroup of Diff (M) consisting of diffeomorphisms which are the identity outside of some compact set and $\mathfrak{D}_0(M)$ is the arc component of i_M , the identity map of M, in $\mathfrak{D}(M)$. If M is compact $\mathfrak{D}(M)$ is locally arcwise connected and $\mathfrak{D}_0(M)$ is open in $\mathfrak{D}(M)$ and in fact in $\mathfrak{M}(M, M)$. For a definition of the C^{K} -topology and a proof of the statements made above, see [6]. If G is a Lie group we denote by $\mathfrak{A}(G, M)$ the space of differentiable actions of G on M, i.e. continuous homomorphisms of G into Diff (M), topologized with the compact-open topology. If $\phi: g \to g^{\phi}$ is an element of $\mathfrak{A}(G, M)$ then by a theorem of D. Montgomery [2] $\tilde{\phi}: (g, m) \to g^{\phi}m$ is an element of $\mathfrak{M}(G \times M, M)$. Given $\phi \in \alpha(G, M)$ and $f \in \text{Diff}(M)$ then ϕ composed with the inner automorphism of Diff (M) defined by f is another element $f\phi$ of $\alpha(G, M)(g^{f\phi} = fg^{\phi}f^{-1})$. Clearly $(f, \phi) \rightarrow f\phi$ is jointly continuous² and defines an action of Diff (M) on $\alpha(G, M)$. We henceforth consider $\mathfrak{A}(G, M)$ as a Diff (M)-space and, a fortiori as a $\mathfrak{D}(M)$ and $\mathfrak{D}_0(M)$ space. Note that the orbit space $\alpha(G, M)/\text{Diff}(M)$ is just the set of equivalence classes of actions of G on M.
- 2. Statement of main theorem and consequences. The following theorem will be proved in §3.

THEOREM A. If M is a compact differentiable manifold and G is a compact Lie group then the $\mathfrak{D}_0(M)$ -space $\mathfrak{A}(G, M)$ admits local cross sections; i.e. given $\phi_0 \in \mathfrak{A}(G, M)$ there is a neighborhood U of ϕ_0 in

¹ Partially supported by NSF Grant No. G-14227.

² This follows from the proposition in [6, §1].

 $\mathfrak{A}(G, M)$ and a continuous map $\chi: U \to \mathfrak{D}_0(M)$ such that $\chi(\phi_0) = i_M$ and $\chi(\phi)\phi_0 = \phi$.

COROLLARY 1. If ϕ_t is a continuous arc in $\alpha(G, M)$ then there is a continuous arc f_t in $\mathfrak{D}_0(M)$ such that $f_0 = i_M$ and $\phi_t = f_t \phi_0$.

REMARKS. Corollary 1 was proved in [7] by the author and T. E. Stewart under the added hypothesis that $(g, m, t) \rightarrow \tilde{\phi}_t(g, m)$ was jointly differentiable in all three variables. It was shown there by counter-example that Corollary 1 is invalid if we consider continuous rather than differentiable actions or if we drop either of the conditions that G or M be compact. It follows that all these conditions are also necessary for the validity of Theorem A.

Using that $\mathfrak{D}_0(M)$ is locally arcwise connected:

COROLLARY 2. $\mathfrak{A}(G,M)$ is locally arcwise connected. If $\phi_0 \in \mathfrak{A}(G,M)$ then its orbit under $\mathfrak{D}_0(M)$ is its arc component in $\mathfrak{A}(G,M)$ hence an open set, and its orbit under $\mathfrak{D}(M)$ (i.e. the class of actions equivalent to ϕ_0) is also open and so a union of arc components. Moreover if $\Delta = \{f \in \mathfrak{D}(M) | f\phi_0 = \phi_0\}$ is the group of automorphisms of the differentiable G-space (M,ϕ_0) then $f\Delta \to f\phi_0$ is a homeomorphism of $\mathfrak{D}(M)/\Delta$ onto $\mathfrak{D}(M)\phi_0$.

Since $\alpha(G, M)$ is separable metric and each equivalence class is open:

COROLLARY 3. There are at most countably many inequivalent differentiable actions of G on M.

REMARKS. It seems likely that by modifying a construction of R. Bing [1] one could construct uncountably many continuous actions of Z_2 on S^3 with fixed point sets pairwise inequivalently embedded 2-spheres. These actions would of course all be inequivalent.

The following extension theorem generalizes Theorem A. On the other hand it is an easy consequence of Theorem A above and Theorem B of [6].

Theorem B. Let H be a Lie group, W a differentiable manifold (neither necessarily compact), G a compact subgroup of H, and M a compact submanifold of W. Let $\psi_0 \in \mathfrak{A}(H, W)$ such that M is invariant under $\psi_0 | G$ and let $\phi_0 \in \mathfrak{A}(G, M)$ be the induced action of G on M. Then given any neighborhood $\mathfrak O$ of M in W there exists a neighborhood U of ϕ_0 in $\mathfrak{A}(G, M)$ and a map $\psi: U \to \mathfrak{A}(H, W)$ such that $\psi(\phi_0) = \psi_0$, $\psi(\phi) | G$ leaves M invariant and induces ϕ on M, and $\psi(\phi)$ agrees with ψ_0 outside $\mathfrak O$. In fact there is a continuous map $\chi: U \to \mathfrak{D}_0(W)$ such that $\chi(\phi)$ is the identity outside $\mathfrak O$ and such that $\psi(\phi) = \chi(\phi)\psi_0$ satisfies the above conditions.

- 3. **Proof of Theorem A.** By a theorem proved independently by the author [5] and G. D. Mostow [4] there exists an orthogonal representation $g \rightarrow g^{\psi}$ of G in a Euclidean vector space V and a differentiable ϕ_0 -equivariant embedding $f_0: M \rightarrow V$. Let \emptyset be a tubular neighborhood of $f_0(M)$ in V with respect to the Euclidean metric. Then \emptyset is invariant under the representation ψ and the map $\pi : \mathfrak{O} \rightarrow f_0(M)$ carrying a point of \mathfrak{O} into the unique nearest point of $f_0(M)$ is a differentiable equivariant retraction of \mathfrak{O} onto $f_0(M)$. Given $\phi \in \mathfrak{A}(G, M)$ define $f_{\phi} : M \to V$ by $f_{\phi}(m) = \int g^{-1\psi} f_0(g^{\phi}m) dg$ where the integral is with respect to Haar measure on G. Then (cf. [4, p. 434]) f_{ϕ} is ϕ -equivariant and clearly $f_{\phi_0} = f_0$. The map $F_{\phi} \in \mathfrak{M}(G \times M, V)$ defined by $F_{\phi}(g, m) = \tilde{\psi}(g^{-1}, f_0 \circ \tilde{\phi}(g, m))$ is easily seen² to depend continuously on $\phi \in \alpha(G, M)$ and since $f_{\phi} = \int F_{\phi}(g, m) dg$ it follows that $\phi \rightarrow f_{\phi}$ is a continuous map of $\alpha(G, M)$ into $\mathfrak{M}(M, V)$. Then for ϕ in a neighborhood U' of ϕ_0 in $\mathfrak{A}(G,M)f_{\phi}(M)\subseteq\mathfrak{O}$ so $\sigma(\phi)=f_{\phi_0}^{-1}\circ\pi\circ f_{\phi}$ $\in \mathfrak{M}(M, M)$. Now $\sigma: U' \rightarrow \mathfrak{M}(M, M)$ is continuous² and clearly $\sigma(\phi_0) = i_M$. Since $\mathfrak{D}_0(M)$ is open in $\mathfrak{M}(M, M)$, for some smaller neighborhood U of ϕ_0 in $\alpha(G, M)$ $\sigma: U \rightarrow \mathfrak{D}_0(M)$. Since f_{ϕ} , π , at f_{ϕ_0} are respectively ϕ -, π - and ϕ_0 -equivariant maps into (V, ψ) it follows that $\sigma(\phi)g^{\phi} = g^{\phi_0}\sigma(\phi)$ or putting $\chi(\phi) = \sigma(\phi)^{-1}$, $\chi(\phi)\phi_0 = \phi$. Q.E.D.
- 4. Conjugacy of neighboring compact subgroups of Diff(M). It is suggested by Theorem A that an analogue of the Montgomery and Zippin conjugacy theorem for neighboring compact subgroups of a Lie group [3] might hold for Diff(M), i.e. that given a compact subgroup G of Diff(M) every compact subgroup of Diff(M) sufficiently close to G is conjugate in Diff(M) to a subgroup of G. This in fact is the case and was the basis of an earlier more complicated proof of Theorem A. A proof will appear elsewhere.

REFERENCES

- 1. R. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. vol. 56 (1952) pp. 354-362.
- 2. D. Montgomery, Topological groups of differentiable transformations, Ann. of Math. vol. 46 (1945) pp. 382-387.
- 3. D. Montgomery and L. Zippin, A theorem on Lie groups, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 448-452.
- 4. G. D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. vol. 65 (1957) pp. 432-446.
- 5. R. S. Palais, Imbedding of compact, differentiable, transformation groups in orthogonal representations, J. Math. Mech. vol. 6 (1957) pp. 673-678.
- 6. _____, Local triviality of the restriction map for embeddings, Comment. Math. Helv. vol. 34 (1960) pp. 305-312.
- 7. R. S. Palais and T. E. Stewart, Deformations of compact differentiable transformation groups, Amer. J. Math. vol. 82 (1960) pp. 935-937.