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In this note we will be concerned with the proof and consequences
of the following fact: if ¢, is a differentiable action of a compact Lie
group on a compact differentiable manifold M, then any differenti-
able action of G on M sufficiently close to ¢, in the C'-topology is
equivalent to ¢,.

1. Notation. In what follows differentiable means class C». If M
and V are differentiable manifolds, (M, V) is the space of differ-
entiable maps of M into V in the CX-topology where K is a positive
integer or « fixed throughout. We denote by Diff (M) the group of
automorphisms of M topologized as a subspace of (M, M). As
such it is a topological group. D(M) is the subgroup of Diff (M) con-
sisting of diffeomorphisms which are the identity outside of some
compact set and Do(M) is the arc component of 7, the identity
map of M, in D(M). If M is compact D(M) is locally arcwise con-
nected and Do(M) is open in D(M) and in fact in M(M, M). For a
definition of the CX-topology and a proof of the statements made
above, see [6]. If G is a Lie group we denote by @(G, M) the space
of differentiable actions of G on M, i.e. continuous homomorphisms
of G into Diff (M), topologized with the compact-open topology. If
¢: g—g? is an element of @(G, M) then by a theorem of D. Mont-
gomery [2] &: (g, m)—g*m is an element of M(G XM, M). Given
¢ € Q(G, M) and f&Diff (M) then ¢ composed with the inner auto-
morphism of Diff (M) defined by f is another element f¢ of
(G, M)(g'*=fg*f~'). Clearly (f, ¢)—f¢ is jointly continuous? and
defines an action of Diff (M) on @(G, M). We henceforth consider
a(G, M) as a Diff (M)-space and, a fortiori as a D(M) and Do(M)-
space. Note that the orbit space @(G, M)/Diff (M) is just the set of
equivalence classes of actions of G on M.

2. Statement of main theorem and consequences. The following
theorem will be proved in §3.

THEOREM A. If M is a compact differentiable manifold and G is a
compact Lie group then the Do(M)-space (G, M) admits local cross
sections; t.e. given ¢o< Q(G, M) there is a neighborhood U of ¢o in
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¢ This follows from the proposition in [6, §1].
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Q(G, M) and a continuous map x: U—Do(M) such that x(do) =1 and
x(P)po=9.

COROLLARY 1. If ¢, is a continuous arc in Q(G, M) then there is a
continuous arc f; in Do(M) such that fo=1y and ¢,=fdo.

REMARKS. Corollary 1 was proved in [7] by the author and T. E.
Stewart under the added hypothesis that (g, m, t)—é.(g, m) was
jointly differentiable in all three variables. It was shown there by
counter-example that Corollary 1 is invalid if we consider continuous
rather than differentiable actions or if we drop either of the conditions
that G or M be compact. It follows that all these conditions are also
necessary for the validity of Theorem A.

Using that D¢(M) is locally arcwise connected:

COROLLARY 2. G(G, M) is locally arcwise connected. If po<E Q(G, M)
then its orbit under Do(M) is its arc component in Q(G, M) hence an
open set, and its orbit under D(M) (i.e. the class of actions equivalent
to ¢o) s also open and so a union of arc components. Moreover if
A= {fE:D(M)!fd)o:q&o} is the group of automorphisms of the differ-
entiable G-space (M, ¢o) then fA—fp, is a homeomorphism of D(M)/A
onto D(M)e,.

Since @(G, M) is separable metric and each equivalence class is
open:

COROLLARY 3. There are at most countably many inequivalent differ-
entiable actions of G on M.

REMARKS. It seems likely that by modifying a construction of
R. Bing [1] one could construct uncountably many continuous ac-
tions of Z, on S? with fixed point sets pairwise inequivalently em-
bedded 2-spheres. These actions would of course all be inequivalent.

The following extension theorem generalizes Theorem A. On the
other hand it is an easy consequence of Theorem A above and Theo-
rem B of [6].

THEOREM B. Let H be a Lie group, W a differentiable manifold
(neither necessarily compact), G a compact subgroup of H, and M a
compact submanifold of W. Let Yo & Q(H, W) such that M 1is invariant
under \bol G and let $oE Q(G, M) be the induced action of G on M. Then
given any neighborhood © of M in W there exists a neighborhood U of
¢o in Q(G, M) and a map : U->Q(H, W) such that ¢(¢o) =¥,
¥(o) ] G leaves M invariant and induces ¢ on M, and Y (p) agrees with Y,
outside ©. In fact there is a continuous map x: U—-Do(W) such that
x(p) is the identity outside © and such that Y(¢p) =x(d)Yo satisfies the
above conditions.
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3. Proof of Theorem A. By a theorem proved independently by
the author [5] and G. D. Mostow [4] there exists an orthogonal
representation g—g¥ of G in a Euclidean vector space V and a
differentiable ¢o-equivariant embedding fo: M— V. Let © be a tubular
neighborhood of fo(M) in V with respect to the Euclidean metric.
Then © is invariant under the representation ¥ and the map
w: O—fo(M) carrying a point of O into the unique nearest point of
fo(M) is a differentiable equivariant retraction of © onto fo(M). Given
€ G(G, M) define fs: M—V by fs(m)=[g~¥fo(g*m)dg where the
integral is with respect to Haar measure on G. Then (cf. [4, p. 434])
fs is ¢-equivariant and clearly fs,=fo. The map F,€M(GX M, V)
defined by Fy(g, m)=v¢(g7, foo &(g, m)) is easily seen? to depend
continuously on ¢ & @(G, M) and since f,= [F4(g, m)dg it follows
that ¢—f; is a continuous map of @(G, M) into (M, V). Then for
¢ in a neighborhood U’ of ¢o in Q(G, M) f4(M) S0 so () =[5 om0 fs
em(M, M). Now o: U—-M(M, M) is continuous? and clearly
(¢o) =1im. Since Do(M) is open in M(M, M), for some smaller
neighborhood U of ¢ in @(G, M) o: U—D(M). Since fy4, m, at f4, are
respectively ¢-, m- and ¢e-equivariant maps into (V, ¢) it follows
that o(¢)g* =g%w(¢) or putting x(¢) =0 (#)™", x(@)po=¢. Q.E.D.

4. Conjugacy of neighboring compact subgroups of Diff(2). It is
suggested by Theorem A that an analogue of the Montgomery and
Zippin conjugacy theorem for neighboring compact subgroups of a
Lie group [3] might hold for Diff (M), i.e. that given a compact sub-
group G of Diff (M) every compact subgroup of Diff (M) sufficiently
close to G is conjugate in Diff (M) to a subgroup of G. This in fact is
the case and was the basis of an earlier more complicated proof of
Theorem A. A proof will appear elsewhere.
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