THE MANIFOLD SMOOTHING PROBLEM¹

BY STEWART S. CAIRNS

Communicated by A. M. Gleason, January 11, 1961

The Schoenflies Theorem in n dimensions has been proved by both Marston Morse [4] and Morton Brown [1] subject to the shell hypothesis [4]. Morse's proof leads to C^m -diffeomorphisms. We now prove the following Schoenflies Theorem for polyhedra without the shell hypothesis.

Theorem 1.2 Let P^{n-1} be a combinatorial (n-1)-sphere in a euclidean n-space E^n , and let N be an arbitrary neighborhood of P^{n-1} . Then E^n can be mapped onto itself by a homeomorphism n which is a C^{∞} -diffeomorphism on E^n-N and which maps P^{n-1} onto a euclidean (n-1)-sphere S^{n-1} .

The proof commences with a modification of a procedure due to H. Noguchi [5] yielding an ϵ -isotopy of E^n carrying P^{n-1} , on D^n , into a polyhedron Q^{n-1} , admitting a transverse vector field. A neighborhood of Q^{n-1} is fibred by C^{∞} —(n-1)-spheres, which permits a completion of the proof with the aid of Morse's methods [4]. His exceptional interior point can be relegated to N. The proof is inductive, requiring a partial assumption of Theorem 1 in the next lower dimension.

COROLLARY. Given a $\delta > 0$, E^n admits a δ -isotopy h_t $(0 \le t \le 1)$ such that (1) h_t is the identity on the unbounded component of $E^n - N$, (2) $h_t(P^{n-1}) \subset D^n$ (t > 0) and (3) $h_t(P^{n-1})$ is a C^{∞} -(n-1)-sphere $(t > \delta)$.

We will call a combinatorial n-manifold smoothable or nonsmoothable according as it is or is not compatible with a differentiable structure. The known nonsmoothable manifolds include a K^8 due to Milnor [3] and a K^{10} due to Kervaire [2]. The latter is strongly nonsmoothable, in the sense that the topological manifold it covers, $M^{10} = |K^{10}|$, can not carry a differentiable structure, either compatible or incompatible with K^{10} .

A piecewise differentiable imbedding of a K^m in a differentiable n-manifold M^n means a homeomorphism $h: K^m \to M^n$, where h is differentiable of maximal rank on each closed simplex of K^m .

¹ This work was supported by National Science Foundation Grant No. G14431.

² A sharpening of this theorem appears in Proc. Nat. Acad. Sci. U.S.A. vol. 47, (1961) pp. 328-330.

THEOREM 2. A combinatorial n-manifold K^n without boundary is smoothable if and only if K^n admits a piecewise differentiable imbedding h into a differentiable M^{n+1} .

The necessity of the condition is easy to prove. The sufficiency proof commences with an $h: K^n \rightarrow M^{n+1}$ restricted, as in the proof of Theorem 1, so that $h(K^n)$ admits a transverse vector field on M^{n+1} . Let M^{n+1} be represented as a differentiable submanifold of an E^{n+r} . With the aid of a potential function, equipotential (n+r-1)-manifolds surrounding $h(K^n)$ in E^{n+r} can be defined [6]. If $h(K^n)$ is two-sided in M^{n+1} , the intersection $V^{n+r-1} \cap M^{n+1}$ with M^{n+1} of an equipotential sufficiently near $h(K^n)$ falls into two components, V_1^n and V_2^n , each of which is differentiable and homeomorphic to K^n . If $h(K^n)$ is one-sided in M^{n+1} , points can be so identified in pairs on $V^{n+r-1} \cap M^{n+1}$ as to obtain a differentiable homeomorph of $h(K^n)$.

COROLLARY. The K^8 of Milnor and K^{10} of Kervaire do not admit piecewise differentiable imbeddings in differentiable 9-manifolds and 11-manifolds respectively.

THEOREM 3. If there exists a nonsmoothable K^m without boundary, then there is a nonsmoothable K^n without boundary for each n > m.

In particular, $K^m \times S^1$ where S^1 is a circle, is nonsmoothable, for its smoothability would imply that of K^m , by Theorem 2. Thus, all the manifolds $K^8 \times S^1 \times \cdots \times S^1$ and $K^{10} \times S^1 \times \cdots \times S^1$ are nonsmoothable, for Milnor's K^8 and Kervaire's K^{10} .

The invariants used by Milnor and Kervaire are thus freed from the dimensions for which they were defined. They are imbeddability as well as smoothability criteria.

REFERENCES

- 1. Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 74-76.
- 2. M. A. Kervaire, A manifold which does not admit any differentiable structure, Comment. Math. Helv., vol. 34 (1960) pp. 257-270.
- 3. J. Milnor, On the relationship between differentiable manifolds and combinatorial manifolds, Princeton University, Mimeographed, 1956.
- 4. Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 113-115.
- 5. Hiroshi Noguchi, The smoothing of combinatorial n-manifolds in (n+1)-space. Ann. of Math. vol. 72 (1960) pp. 201-215.
- 6. René Thom, Les structures différentiables des boules et des sphères, Colloque de Géométrie Différentielle Globale, Centre Belge de Recherches Mathématiques, Brussels. 1959.

University of Illinois