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With a function of the form

©

#(0) + g(@) = X ae”® + g(a), 0<x=1,

y=—00

we associate for each n=0, 1, 2, - - - , a Toeplitz matrix

1260 + 8 = fous+ bug (—— jrl)} =01, ,m,

where 8;;=1if 1=7, §,;;=0 if ¢5%j.
Furthermore we define

Da(0(0) + g(#)) = det Ta(s(0) + g(&)),
C60) + g(x)) = exp{ f f log (4) + g()dads} ,

Da(3(8) + g(x))
" 6@ + g@)

whenever these definitions make sense.

We shall prove that under the conditions

(i) g(x) is real and differentiable for 0 <x <1 with g’(x) satisfying
the Lipschitz condition

|g@) — g@)| <K|m—ml|s, K>0a>0,

L(¢(6) + g(x)) =

(ii) ¢(8) is a trigonometric polynomial of the type

k
¢(0) = Z a,e"’",
Vua—k

a =0, a, = a_,, a, real, v=1,2,---,k,
k
(i) 2 el <o, for0<z =1,
Ve

the limit L(¢(f) +g(x)) exists and has the value
L(¢(8) + (=)

W _ (G(¢(0) + (0)

G(#(6) + g(1))
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L) + g(0) L(#(6) + g(1>>)
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(For the existence and the value of L(¢(0) +g(0)) and L(¢(0) +g(1)),
see [1, Theorem 5.5, p. 76] or [2].)
Without loss of generality we may assume that

> e g <, 0szx=s1.

r=—k

Let
k
@ = 5 el

y=—F
We then have
0<—9@B +1—gkx <B<1,
0< |o|@O+1-g@)<8<1,

for —r<6=m, 0=x=1.
Let us introduce

1
2,60 + 5@ = exp {5 [ Siog(s0 + ¢ (=2) )}
By use of (i) it is easy to prove that
H,(¢(6) + g(»)) (G(¢(0) + 3(0)))”2
im = .
e [G(6(0) + g(@)]*H \G(6(6) + g(1))

Now we have

2

0

1 ,
log Du(¢(8) + g(x)) = — 25 — Tr{Ta(—¢(®) + 1 — g(x))},
log Ha(6(0) + g(x) ™

= ',,E_, ;“_0 2,[_,( ¢(0)+1_g< +1>>de

Duo(®) + () & 1
@) o8 GO e@) =7 ‘g‘E(" ?),

o= (- (2 )

— {TU—0(0) + 1 — g(®))} -
Put ¥y =maxog.51 (1 —g(x)). Then

and hence

where
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1 x
@ | B <6+ [ (6] @ +vrars 2,
2rd —»

for n=0,1,2,---;p=1,2,---;u=0,1,2,-.-, n For nZ2pk
and pk=Su=<n—pk we have

E,(n, p) = Z II (- a)
[I(r-

ayt oo ctap=0 a;=0
from which we get

() - IO - o ()

E H|a"‘:‘| H'Y’

art - ctapy=0 a;0 a;=0

%k
| Eu(n, )| < constant ?
n
where the constant only depends on g(x) and g’(x). Hence

I E,(n, P)I < constant

+1 - f (| ¢] 6 + v)»de

bk

n+

®)

=< constant

4
lﬂ,

for n=2pk and pk =y =<n—pk. By combining (4) and (5) we see that
(3) is dominated by a convergent series of the form

constant Z 6%

p=1
To get a better estimate of E,(n, p) for n=2pk and pkSuSn—pk
we let _* denote summation over all (a1, a, * - -, ap) (0,0, - - -, 0)
satisfying
a;=0,4+1, 42, -+, +k j=1,2,--,p,
artart+ -+ a,=0,
first a; ¥ O is positive.
Then

B9 = 2 a2 11 (1 - (27))
I (- st

-I(-Cm )
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From (i) it follows that
g(x + Ax) = g(x) + g (®)Ax + R(x, Ax)Axlte,
where R(x, Ax) is bounded. Using this we get
1 14a
+ 1) ’

where the constant does not depend on #. Hence

| E,(n, p) l constant(
n

n—pk
lim 2 E.(n, p) =0,
B ® pepk
and therefore
n pk—1 pk—1
(6) lim X Eu(n,p) = 2 u(u, p) + 2 o(u, 9),
T p=0 p==0

where

1 [ 4
Wy ) = = f_ (—(6) + 1= g(0))? d0 — { Tou(— () + 1 — g(0))} s

1 r ?
6, 9) = = [ (=60 + 1= g(1)28 = {Ti(=60) + 1 = gD)}
From (6) we conclude that

lim E Z E,(n, p)

N0 pal e
0 pk—1 pk—1

1 1
= —2-log L(o(6) + £(0)) + Py log L(¢(0) + g(1))

(the last equality being the result of a straightforward computation).
The formula (1) now follows by combining (2), (3), and (7).
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