A NEW CLASS OF SPECTRAL OPERATORS¹

BY H. H. SCHAEFER

Communicated by W. S. Massey, October 14, 1960

Let X be an ordered (=partially ordered) complex Banach space (cf. [3, §6]). The positive cone $K = \{x: x \ge 0\}$ in X is normal if there exists $\gamma > 0$ such that $||x+y|| \ge \gamma ||y||$ for all $x, y \in K$. We say that a complex B-algebra A (with unit e) is ordered if the underlying B-space is ordered with K closed and normal, and if K, in addition, has these properties: (i) $e \in K$; (ii) $a \in K$, $b \in K$ and ab = ba imply $ab \in K$ (cf. [3, §11]). We shall write, as usual, $x \le y$ (or $y \ge x$) for $y - x \in K$, and $[x, y] = \{z: x \le z \le y\}$. The term "semi-complete" stands for "sequentially complete." For any $a \in A$, $\sigma(a)$ denotes the spectrum of a. A function μ from the Borel sets of the real line R into A is a Borel measure if μ is countably additive, i.e., if $\mu(\bigcup_{1}^{\infty} \delta_{n}) = \sum_{1}^{\infty} \mu(\delta_{n})$ converges in A for an arbitrary sequence $\{\delta_{n}\}$ of mutually disjoint Borel sets.

THEOREM 1. Let A be an ordered B-algebra, such that [0, e] is weakly semi-complete. Let $c_1e \le a \le c_2e$ where c_1 , $c_2 \in R$. Then $\sigma(a) \subset [c_1, c_2]$, and there exists an A-valued Borel measure μ such that

$$a^n = \int_{\sigma(a)} t^n d\mu,$$
 $(n = 0, 1, 2, \cdots).$

Moreover, μ is a homomorphism of the Boolean σ -algebra of real Borel sets onto a Boolean σ -algebra of idempotents contained in [0, e], and

$$f \rightarrow \int_{\mathcal{I}(a)} f d\mu$$

is an order preserving homomorphism of the algebra of bounded Borel functions on $\sigma(a)$, into A.

If A is a (Banach) algebra of bounded operators on a B-space X, then an $a \in A$ satisfying the assertions of Theorem 1 is a (scalar type) spectral operator in the sense of Dunford [1]. We obtain from Theorem 1:

Theorem 2. Let A be an ordered B-algebra of operators on a weakly semi-complete B-space X. Then every operator a which is contained in the real linear hull of [0, e] is a scalar type spectral operator, $a = \int \lambda d\mu$, with real spectrum $\sigma(a)$, and μ is a spectral measure with values in [0, e].

¹ Research sponsored by the Office of Ordnance Research, U. S. Army.

COROLLARY. Let $a \in A$. If the convex cone (of vertex 0) spanned by the set $\{a^m(e-a)^n: m, n=0, 1, 2, \cdots\}$ is normal, then a is a scalar type spectral operator with real spectrum.

Let X be a complex Hilbert space of arbitrary dimension; the algebra A of bounded operators on X is ordered with respect to the familiar positivity notion for Hermitian elements of A; since every Hermitian operator is in the real linear hull of [0, e], the spectral theorem for bounded Hermitian operators is a special case of Theorem 2. Theorem 2 can be extended to elements a+bi where ab=ba and a, b are both in the real linear hull of [0, e]. Thus the spectral theorem for (bounded) normal operators in Hilbert space is a consequence of Theorem 2. If A is an algebra of operators on an arbitrary Banach space, the analog of the cone of positive Hermitian operators is the cone K_a spanned by finite sums of squares; if K_a is normal and weakly semi-complete, all $a \in A$ are scalar type spectral operators with real spectrum. K_a has been considered, e.g., in [2]. Another general example can be obtained as follows.

THEOREM 3. Let X be an ordered Banach space whose positive cone K is normal, weakly semi-complete, and generating.² Then the algebra A of bounded operators on X is an ordered B-algebra with positive cone $\{a \in A : aK \subset K\}$, and every element in the real linear hull of [0, e] is a scalar type spectral operator such that $\sigma(a) \subset [c_1, c_2]$ if $c_1e \leq a \leq c_2e$ $(c_1, c_2 \in R)$.

It follows from this theorem that there are nontrivial scalar type spectral operators on every weakly semi-complete Banach space. Proofs of the announced results and further results concerning compact operators and unbounded operators will be published elsewhere.

REFERENCES

- 1. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. vol. 64 (1958) pp. 217-274.
- 2. J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 44-55.
- 3. H. Schaefer, Halbgeordnete lokalkonvexe Vektorräume. II, Math. Ann. vol. 138 (1959) pp. 259-286.

THE UNIVERSITY OF MICHIGAN

² I.e., X = K - K.