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1. Terminology. Vn and Mm will be differentiable manifolds of 
dimension n and m respectively; differentiable meaning always of 
class C00. For simplicity, we assume V compact and without bound­
ary. 

We shall have to consider several categories of maps: 
(1) the category of continuous maps, 
(2) the category of topological imbeddings, 
(3) the category of topological immersions: a map ƒ: F—>M is a 

topological immersion of V in M if the restriction of ƒ to some neigh­
borhood of each point of V is an imbedding, 

(4) the category of differentiable immersions: a m a p / : F—»Af be­
longs to this category if ƒ is differentiable of rank n = dim V every­
where, 

(5) the category of differentiable imbeddings: a differentiable im­
bedding ƒ : V-+M is a topological imbedding which is also a differ­
entiable immersion. 

Two maps /o , / i : V-+M in one of the preceding categories are said 
to be homotopic in this category, if there exists a map F: VXR—+M 
(called a homotopy from ƒ<> to / i ) such that F | VX {O} =ƒ<,, ^ | VX {1} 
= / i and the associated map (x, t)-*(F(x, /), /) of VXR in MXR be­
longs to the given category. 

A homotopy in the category of differentiable imbeddings is also 
called a differentiable isotopy (cf. [4]). 

2. Existence theorem. Many results have been obtained recently 
in the combinatorial case (cf. [2; 3; 10; 12; 13]). 

The following theorem is in some sense a generalization of Whit­
ney's theorems (cf. [6; 8]) and Wu's theorem (cf. [ i l ] ) and the 
differentiable analogues of the above results. 

A space X is g-connected (q an integer) if its homotopy groups van­
ish in dimension less or equal to q (for q<0, the condition is empty; 
for q = 0, X is connected; for 2 = 1 , X is connected and simply con­
nected, and so on). 

THEOREM 1. Let Vn and Mm be two differentiable manifolds which are 
respectively (k — 1) -connected and k-connected. Then 

(a) Any continuous map of V in M is homotopic to a differentiable 
1 Supported by National Science Foundation contract G-10700. 
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imbedding if m^2n — k+l and 2k <n (and to a differentiable immer­
sion if m^2n — k and 2k<ny V and M k-connected). 

(b) Two differ entiable imbeddings of V in M which are homotopic as 
continuous maps are differentiably isotopic if m^2n — k+2 and 2k 
<» + l. 

COROLLARY. Any two differ entiable imbeddings of a differ entiable 
homotopy n-sphere in Rm are differentiably isotopic if m>3(n+l)/2. 

Any differ entiable imbedding of the standard sphere Sn in Rm can be 
extended to a differ entiable imbedding of the unit ball Bn+l if 
m>3(n + l)/2. 

3. Sketch of the proof. First approximate the continuous map of 
V in M by a "generic" differentiable map ƒ (cf. [5]). That means, if 
2m>3n, that (a) ƒ has no triple points, (b) at a double point y=f(xi) 
=/(x2), Xi5*X2, the images by df of the tangent spaces to V a t x\ and 
X2 span the tangent space to M a t y, (c) at a singular point x £ V (i.e., 
where rank ƒ<#)» there exist local coordinates (xi) around x and 
(y/) around y=f(x) such t h a t / i s given up to the second order by the 
equations: 

2 

y% = Xi, 1 ^ t â n, yn = xn, yn+j = xnxh 1 ^ j ^ m — n. 

Under these conditions, the double points of/form in ikf a (2n — m)-
submanifold D ; its boundary S is the image by ƒ of the singular 
points. 

Construct a differentiable function <f> on D, 0 ^ < £ ^ 1 , which is 
generic (i.e., with nondegenerate singular points), equal to zero on S. 

We want now to construct step by step a continuous deformation 
ft of ƒ which pushes away the double points along D : the double 
points of ft will be contained in the submanifold of D consisting of the 
points y where <t>(y) ^L The essential difficulty occurs when one has 
to cross a singular point y of <t> of index q. To describe the deformation 
at y, one constructs a model which is an analogous map /o of Rn in 
Rm, and a deformation of /o which is constant outside small neighbor­
hoods of a (# + l)-cell in Rn and a (q+2)-cell in Rm. Then one has to 
prove the existence of diffeomorphisms h and h! of these neighbor­
hoods into some neighborhoods of f~x(y) and y in V and M respec­
tively such that fh = hff0. This is the main technical difficulty; we 
have to suppose here that Tq(V)=0f irq+i(M) = 0 and 2q + 2<n and 
we use essentially results of Whitney on stability of singular points 
in this range (cf. [7]). 

The method is analogous in the case of isotopy. We use, moreover, 
the covering homotopy property for imbedding spaces (see Thorn 
[4, pp. 3-4]). 
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4. Approximation theorem. The preceding method leads directly 
to the following 

THEOREM 2. (a) Any topological imbedding (respectively topological 
immersion) of Vn in Mm can be approximated by a differentiable imbed­
ding if m^3(n + l)/2 (resp. a differentiable immersion ifm>3n/2). 

(b) Let fot fi be two differentiate imbeddings (resp. immersions) of 
V in M. Any homotopy in the category of topological imbeddings (resp. 
immersions) can be approximated by a differentiable isotopy if 
m>3(n + l)/2 (resp. a homotopy in the category of differentiable immer­
sions if m>(3n+l)/2). 

This means that, in some "stable range," the classification of 
differentiable imbeddings (or immersions) of Vin M does not depend 
on the differentiable structures of V and M. 

5. Obstruction theory. The preceding technique uses no fact in 
algebraic topology except that the lower dimensional homotopy 
groups of the Stiefel manifolds are trivial. In other words we have 
considered only cases where the obstructions trivially vanish. 

In the case of an imbedding of a complex in Rm
t A. Shapiro has built 

up an obstruction theory in the stable range (mainly unpublished, 
see [3] for the first obstruction and [lO]) ; on the other hand, W. T. 
Wu has initiated the study of isotopy (see [12]). 

Any imbedding ƒ of a space V in Rm gives a continuous map f2 of 
the space VXV—V (where V is identified with the diagonal of 
VXV) into the unit sphere Sm"1C.Rm: for two distinct points xi, x2 

of V, f2(xu x2) is the unit vector (f(x2)-f(x1))/\f(x2)-f(x1)\. I t is 
clear that f2 is equivariant with respect to the symmetry which ex­
changes the factor of VXV—V and the antipodal map of 57n~1. If 
/o and ƒ1 are two homotopic imbeddings, then fl and f\ are equivari-
antly homotopic. 

I t is well known that the equivariant maps of VX V— V in Sm~l 

are in 1-1 correspondence with the sections of the following sphere 
bundle E. Let V* be the reduced symmetric square of V (i.e., the 
space obtained from VX V— V by identification of (xi, x2) and 
(x2, Xi)); the orbit space of the cyclic group of order 2 acting on 
(VX V— V) XSm~l by symmetry on both factors is a bundle E with 
base V* and fiber Sm~l. 

If one combines the Shapiro-Wu theory valid in the combinatorial 
case with the preceding technique, one obtains the following formula­
tion: 

THEOREM 3. The differentiable isotopy classes of differentiable im­
beddings of a compact manifold Vn in Rm are in 1-1 correspondence 
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with the homotopy classes of continuous sections of the sphere bundle E 
over V*, provided m>3(n+l)/2. 

A similar statement for differentiate immersions of Vn into Mm 

can be proved by the same methods. A different proof using the 
Smale-Hirsch theory of immersions (cf. [l]) will appear in a joint 
paper of M. Hirsch and the author. 

Theorems 2 and 3 (including immersions) should also be true in 
the category of imbeddings of complexes in manifolds. 
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