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1. Introduction. In view of the fact that a relatively small per­
centage of the membership of the American Mathematical Society 
have an opportunity to become acquainted with or follow the ever 
increasing activity in the fields of applied and immediately applicable 
mathematics, it is perhaps useful to at tempt an assessment of recent 
trends in the areas with which I have some familiarity, namely in the 
field of diffraction and scattering theory and that part of transport 
theory where similar techniques are employed. While one would need 
the prescience of a Hubert to adequately carry out even this limited 
program, it is possible to pick out a few concepts and techniques 
which underlie many of the recent developments. 

The areas under consideration received a tremendous impetus as a 
result of the radar development of the last war and more recently as a 
result of reactor theory and the attempts to achieve controlled fusion. 
In many instances, it was the physicists and not the mathematicians 
who led the way to new methods which in some cases are only for­
mally understood mathematically to this day even though they may 
have been widely applied with frequent success. This area is also char­
acterized by the fact that the tools necessary to establish recent re­
sults have frequently been available for many years. This does not 
detract from the achievement of the authors who found this kind of 
result but once again illustrates the healthy influence physical prob­
lems can have on the development of mathematics and the dangers 
inherent when the two get too widely divorced. Finally, there are 
instances where mathematicians have labored arduously to establish 
a rigorous theory only to find a physicist with more insight into the 
problem rendering their work unnecessary by being less tradition 
minded and redoing the problem in a more appropriate space. 

By way of illustration of the first point of the last paragraph, one 
has the work of Booker [4] and Furry [IX] on normal mode propaga­
tion through an inhomogeneous atmosphere, the work of Peierls and 
Kapur [82], Siegert [91 ] and Wigner [107] on compound nuclei, 
the work of Schwinger on variational principles [65], the formalism 
of scattering theory by Gell-Mann and Goldberger [32], after the 
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introduction of the S-matrix concept by Heisenberg [38], the work 
of MacFarlane [71 ] on the Rayleigh-Ritz principle in normal mode 
theory, the work of Kohn [48; 49] on variational principles, the work 
of Heitler [VI ] in complex atomic reactions, the work of Weisskopf, 
Feshbach, and Porter [lOO] on the optical model of the nucleus, the 
work of Wightman [104], Bogoliubov [ i l l ] , Khuri [47], and Mandel-
stam [72] on dispersion relations and the analytic continuation of 
functions of several complex variables, the work of Van Kampen 
[98; 99] and Case [lO; 11 ] on transport phenomena to name only a 
few of the inputs from physicists. 

To illustrate the second point, is it not surprising that after the 
beautiful theory developed by Fredholm circa 1900 for the existence 
and uniqueness of the various potential problems by the integral 
equation method, it was not until 1952 that Weyl [102] first proved 
and then Muller1 [76] simplified the corresponding results by the 
same method for the exterior problems of the scalar wave equation. 
The elegant results of Sims [92 ] on the Sturm-Liouville problem with 
complex q(x) and complex boundary conditions is another instance in 
that the basic limit point, limit circle geometry of Weyl's [lOl] 1910 
treatment is readily carried over to this new situation. As a final il­
lustration consider the Plemelj formula, [85] discovered in 1908 as a 
result of Hubert 's work on his transforms. It was not until the appear­
ance of Muskhelishvili's book [XII] in English in 1953 that the beau­
tiful theory of singular integral equations was widely known here and 
to the best of my knowledge, we do not often teach these formulas 
even in intermediate complex variable theory to this day, although 
as we shall see they underlie much of the modern developments in the 
fields under discussion. This in spite of the fact that the basic ideas 
are already contained in the monographs by Carleman [9] dating 
from 1922. 

Our first example will illustrate the disadvantages of a traditionally 
minded approach to a simple problem. A second example is furnished 
by the recent work of Case on hydrodynamical problems of stability. 
By abandoning the classical steady state approach and treating the 
initial value problem directly by means of Laplace transforms, Case 
was able to obtain distribution solutions in the inviscid limit which 
were limits of viscous solutions and thus justify the classical normal-
mode approach with the aid of the continuous spectra associated with 
his new class of solutions. A final example and one that has influenced 

1 Somewhat more accurately, Weyl's work of 1952 was the first known to the 
Western world although Kupradse seems to have developed the theory in 1943. See 
[56] and [X]. 
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all subsequent developments in scattering theory to this day is the 
S-matrix introduced by Heisenberg [38] in 1943. As Friedrichs2 has 
remarked, it is incredible that this natural notion did not appear in 
the mathematical literature prior to this time. 

Most of the post-war developments in the area in question have 
much in common. In the first place they are singular in the sense that 
they involve noncompact regions of one, two or three dimensional 
space although they may involve compact regions as well. More ex­
plicitly their solution involves consideration of exterior problems and 
the asymptotic behavior at infinity in contrast to mathematical 
physics prior to quantum theory which concentrated on interior prob­
lems for which a large mathematical discipline had been developed in 
such areas as potential theory, integral equation theory where a com­
pletely continuous iterated operator existed, and related fields. The 
new developments are also closely related to what has come to be 
called dissipative operators; namely operators whose associated her-
mitian quadratic form has the property that its imaginary part is at 
least semi-definite. 

This class of operators arises naturally from the consideration of 
the free space Green function for the scalar wave equation which is 
fundamental to acoustic, electro-magnetic and quantum scattering 
theory and the dissipative property is a direct consequence of the 
radiation condition of Sommerfeld. (It is interesting to note that the 
use of the dissipative concept enabled Muller [76] to eliminate the 
possibility of nonsimple elementary divisors from Weyl's existence 
proof [l02] somewhat to the latter's disappointment for at last he 
felt here was a place in applied mathematics where the elementary 
divisors were surely not simple.)3 The dissipative concept is also in­
timately related to the so-called optical theorem or cross-section theo­
rem (cf. Morse and Feshbach [XI, Part I I ] which states that the total 
cross-section of a scattering process is proportional to the imaginary 
part of the forward scattering amplitude, a measurable quantity. 
Now dissipative operators are closely related to analytic functions 
regular in a half-plane with, say, positive-definite imaginary part 
and thus perhaps it is not too surprising that many of the quantities 
of physical interest turn out to be boundary values of an analytic 
function of one or more complex variables which are analytic in a 
suitably cut complex space. Moreover, since by Hubert transform 

* Cf. The theory of wave propagation, New York University Notes, 1951-1952, 
p. 1-81. 

8 Nonsimple elementary divisors of course occur in the theory of systems of ordinary 
differential equations. 
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theory, under suitable conditions, the real part of an analytic func­
tion can be determined from a knowledge of its imaginary part on the 
real line, the total cross-section is in principle determined from a 
knowledge of the forward amplitude. The detailed analysis of this 
relationship lies behind all existing dispersion theories both for po­
tential scattering and for quantum field theory. In this connection, 
in the actual problems it is also necessary in many instances to per­
form an analytic continuation through an unphysical region to obtain 
a meaningful result. The successful application of a similar set of 
ideas to, for example, filter design is well known in network theory 
and has associated with it the names of Bode [ l l ] , Wiener and Lee 
[59]. 

Now dispersion relations are intimately connected with Cauchy's 
integral formula as well as its extension by Plemelj and in turn 
Cauchy's integral formula forms the basis on which one treats the 
resolvent of a non-self-ad joint problem since in a neighborhood of iso­
lated singularity the resolvent operator may be under suitable condi­
tions interpreted as a projection into the subspace characterized by 
the singularity. This is also intimately related to the integral form 
of the inverse Laplace transform, or more generally, to the resolvent 
of a semi-group, and thus to the initial value problem. This same 
set of ideas also forms the basis for the treatment of singular integral 
equations of Cauchy type and these in turn are essentially equivalent 
to those of Wiener-Hopf as we shall see. Here it will be our purpose 
to explore some of these interconnections and where possible give the 
currently best results known to us. Our emphasis will, however, be 
less on generality, then on the interconnections. 

2. Examples of classical self-adjoint problems exhibiting non-self-
adjoint behavior. Our first two examples will illustrate the occurrence 
of complex singularities, characteristic for non-self-adjoint operators, 
in well-set self-adjoint problems involving continuous spectra. In 
each case the use of the complex singularities leads to a useful and 
physically meaningful representation. In the first example the repre­
sentation involves functions, which, while not readily interprétable 
in the Hilbert space of the original well-set self-adjoint problem, are 
readily interprétable if the corresponding initial value problem is con­
sidered. Both examples will clearly demonstrate the price paid for 
strict adherence to the concepts of self-adjointness. 

Subsequently we will sketch the method of Ritt and Kazarinoff 
[87; 88] based on the results of Sims [92] which deliberately and 
systematically converts a class of self-adjoint problems into a class 
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of non-self-adjoint problems with resulting advantages of ease of 
interpretation and rigorous discussion. Thus in the area under dis­
cussion here the distinction between what really should or should 
not be considered a self-ad joint problem will be seen to be highly 
nebulous and that while the use of self-adjoint theory may be mathe­
matically more convenient and elegant, the more general non-self-
adjoint approach is often more powerful and rewarding. For want of 
a better term we will henceforth refer to problems of the above type 
as classically self-ad joint. 

As a first example of a classical self-ad joint problem, let us consider 
a semi-infinite string, of one density between zero and one and a 
greater density from one to infinity, such that the end zero is held 
fixed. Although this example was discussed by B. Friedman in his 
Society talk of April, 1957, it illustrates in a simple manner, many of 
the salient points, and is simple enough so that a student with only a 
knowledge of elementary Laplace transform theory can verify the 
properties stated. The usual attack by the method of separation of 
variables will produce a self-adjoint equation in x, regular at the 
origin and of the limit-point type at infinity so that the problem is 
self-adjoint on [L2(0, <»)] and a solution similar to a Fourier sine 
transform is possible in an L2 theory if initially the string has a dis­
placement and a velocity in the interval (0, 1). In this solution only 
continuous spectra occur. On the other hand, any physicist would 
argue that since we would have standing waves or an eigenfunction 
solution if the density from one to infinity were infinite and therefore 
for any density sufficiently large in this region, we would expect some­
thing like standing waves between zero and one, leaking out or spill­
ing over and representing an outgoing wave in the region from one to 
infinity. This type of solution can be readily found if the initial value 
problem is first subjected to a Laplace transformation with respect 
to time and a Green's function for the resulting equation in x con­
structed, before the inversion integral for the Laplace transform is 
applied. This integral can be closed by a path in the left-half plane 
and the singularities of the Green's function, namely the zeros of its 
Wronskian, investigated as a function of the Laplace parameter in 
which it is analytic. These are readily shown to be simple, denumer-
able and to lie in the left-half plane on a line parallel to the imaginary 
axis. At such a zero of the Wronskian, the two solutions of the differ­
ential equation from which the Green's function was constructed be­
come linearly dependent and one has apparently found a complex 
eigenvalue and an associated function in contradiction to the fact 
tha t the differential equation for the Green's function, being self-
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adjoint, can have only real spectra. While the complex pole s» enters 
into the differential equation as if it were an eigenvalue, the associ­
ated functions do not satisfy the boundary condition at infinity; in 
fact they grow exponentially in x as x goes to infinity so they are not 
quadratically integrable and do not fall into a Hubert space theory.4 

In the physical literature these functions are often called non-modal 
solutions, in contrast to eigenfunction solutions which are called 
modal. No paradox is involved because associated with each non-
modal solution there is an exponential time factor which overrides 
the x dependence at any point and the solution can be written with 
the aid of the displacement rule for the Laplace transform so that it 
is clear that the disturbance is zero at any point until sufficient time 
has elapsed for the effect of the initial disturbance in the (0, 1) region 
to arrive at the x point under observation. That is, each function in x 
vanishes outside some compact set and this supporting set grows with 
time. The intuitive physical picture of the physicist is therefore borne 
out and in addition the attenuation of the non-modal solutions is so 
great that only one of two of them are necessary for an excellent ap­
proximation to the phenomena involved in contrast to the representa­
tion in the right-half plane as an integral over the usual continuous 
spectra. 

The behavior of this example is typical of many problems of mathe­
matical physics such as the theory of a-decay due to G#mov [28; 29], 
Condon and Gurney [17]. It always occurs when there is a quasi-
stationary or metastable state which is unstable in the long run. I t 
therefore is an ever present part of any theory of the formation of 
compound nuclei and it is closely connected with so-called virtual 
levels.6 

This type of behavior is also typical of problems involving wave 
propagation through inhomogeneous media as may be seen, for exam­
ple, by reference to the book by Kerr [IX]. To be sure many of these 

4 This phenomenon when encountered in "solutions" obtained by steady-state 
methods which do not introduce appropriate cut-off factors is often called the "ex­
ponential catastrophe. " 

6 For a historical sketch of the development of the method of "complex eigen­
values * as it relates to the theory of transients in continuous systems, see G. Beck 
and H. Nussenzveig, On the physical interpretation of complex poles of the S-matrix, I, 
Nuovo Cimento vol. 16 no. 3 (1960) pp. 416-449. This paper also contains an elegant 
discussion of the details of the phenomena sketched above for: (a) the problem of a 
simple harmonic oscillator attached to the extremity of a semi-infinite string; (b) the 
problem of electromagnetic radiation exterior to a perfectly conducting sphere and : 
(c) the problem of a wave packet exterior to a hard sphere in nonrelativistic quantum 
mechanics. 
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problems involve essentially non-self-adjoint differential equations 
since often complex indexes of refraction occur. However, even with 
extra complexity, the physical phenomena do not differ significantly 
from that of our example which appears exceptional from this more 
general point of view only if self-adjointness is insisted upon. Some 
idea of the extra practical difficulties of computation that arise, how­
ever, can be gleaned from the article by Hartree, Michel, and Nichol­
son [37]. 

Our second example concerns the perturbation of the continuous 
spectrum of a real differential operator of second order considered by 
Titchmarsh [96]. The differential equation 

y" + (X + ex)y = 0 

is considered on the interval 0 S oc < 00 as a perturbation of the equa­
tion 

y" + \y = 0 

with the boundary condition 

y(0, X) cos a + / ( 0 , X) sin a = 0 

for c o t a > 0 . (Titchmarsh notes that his previous treatment in §4.1 
of [XV, Part I] is an error.) 

Classically both the perturbed and unperturbed differential equa­
tion are of the limit-point type in the sense of Weyl and thus each has 
just one quadratically integrable solution at infinity. The problems are 
then classically self-adjoint. The spectrum of the unperturbed equa­
tion is continuous over 0 ^ X < 00 and there is one isolated negative 
eigenvalue. The spectrum of the perturbed operator is continuous 
over 00 <X < 00. The physical problem can be interpreted as the inter­
action of a photon with an atom having one bound state. The resol­
vent of the perturbed problem exists in the upper half of the complex 
X-plane but if it is analytically continued to the lower half-plane, it 
has a complex pole near to the real pole of the resolvent of the un­
perturbed operator but just below the real X-axis. The effect of this 
pole may be interpreted by saying the perturbed continuous spectrum 
has a resonance or is highly concentrated on the real axis in a neigh­
borhood above this point. This example, like the first, has the advan­
tage of being completely calculable and still typical of a large class of 
problems, namely resonance calculations associated with compound 
nuclei. In fact, one of the fundamental methods used by Heitler [VI], 
consists of approximating to a resonance in the continuous spectrum 
by a function which can be analytically continued into the lower 
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half-plane. While this can be justified in special examples like the 
above, there is no operator theory for the general problem. 

The type of behavior exhibited by our two examples is perhaps best 
understood by examining in somewhat more detail the relationship 
that exists between the usual limit-point theory and the Sommerfeld 
radiation condition. Limiting consideration to the perturbed problem 
considered by Titchmarsh, the general theory tells us that there is a 
uniquely defined resolvent operator R\ = R$ for Im X>0 for which no 
boundary condition need be specified at infinity. Since the general 
theory also implies that the problem is self-adjoint, the relation 
(R\)* = Rx can be used to define an operator R^ for ImX<0 (cf. 
Achieser-Glasmann [i]). The operators R£, RÏ are not the same nor 
are they analytic continuations of each other. The expansion theory 
and spectral representation can be obtained by consideration of the 
integral 

— f RxdX 
2TTIJ C 

where the curve C encloses the real spectrum and where R\ = R£ 
along its upper branch and R\ = R^ along its lower branch. From this 
one can obtain an expansion which is similar to that of the Fourier 
integral theorem. Instead of doing this, however, here the operator 
R* can be continued to the lower half-plane where it will represent 
an operator different from R^ and its complex singularities used to give 
a useful representation of the continuous spectrum. This situation is 
in marked contrast to that for a limit circle situation where to obtain 
a self-adjoint problem suitable contractions in the form of boundary 
conditions must be imposed to allow the given operator to be suitably 
extended. Once this has been done, the resulting resolvent is a com­
pact operator possessing only discrete real spectrum, thus its re­
solvent exists everywhere except for a definite set on the real axis 
and consideration of its contour integral can be restricted to small 
circles enclosing the real discrete spectra. 

The distinction between Rj[ and Rx is important for there is an 
important class of non-self-ad joint operators, that of so-called dissipa-
tive operators, which admit a representation of the form (cf. [24; 33]), 
and §7, 

«r* • ,_ / • •**£ 

for ImX>0. 
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Since little if any information is known about the equivalent of R\ 
for these problems in general, it becomes highly desirable to have a 
theory permitting the analytic continuation of the above representa­
tion to the lower half-plane. Since the function 

/(X) = (RU, <t>) 

has the properties that ƒ(X) is analytic in X for Im X>0 

Imjf(X) > 0, for ImX > 0, 

and 

sup | iyfiiy) | < °°, f or Im X > 0, 
y—>oo 

in common with the corresponding expressions for self-adjoint oper­
ators it is first necessary to solve the continuation problem for this 
class of analytic functions. This has been done by D. S. Greenstein 
[35] who proved the following: 

THEOREM. If f(z) is analytic such that 

(a) sup I iyf(iy)\ < oo, 
y—»«o 

and 

(b) / ( X ) = / _ 
dy(t) 

i 

t - X 
then /(X) can be continued across the interval {a, b) if and only if the 
function y(t) is real analytic in (a,b). When this is true the continuation 
is given by 

f(X) = /*(X*) + 2TT*V(X), Im X < 0. 

It should be noted that the continuation obtained agrees with the 
formulas of Plemelj (cf. [XII ]). As a concrete illustration of the point 
involved, consider the function w= — l/Çk+i) which is analytic in the 
upper half-plane with positive imaginary part and which is its own 
analytic continuation to the lower half-plane with a singularity at 
X= —i. It is easy to verify that this function admits the representa­
tion 

- 1 r00 àt 1 
= I 1 Im X > 0, 

X + i J - * w(l + t2) t - \ 
so that the singularity in the function is seen to be contained in the 
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weight function l /7r ( l+/ 2 ) . In this case it is also trivial to verify 
that Greenstein's continuation formula reproduces w in the lower 
half-plane. 

The corresponding problem for operators is open even in the self-
adjoint case where the representation corresponding to the above may 
be written in terms of the resolution of the identity as 

There is an intimate relation between the operators R£ and R\f 

the Sommerfeld radiation condition and the Plemelj formulas. The 
Sommerfeld radiation condition for the problem under consideration 
would read, for real X = fe2, limXH>30 (dy/dx)—iky = Q and it in effect 
singles out, in this case R£, the appropriate resolvent operator. More 
explicitly, the Green function which can be constructed through its 
use is the kernel of the operator R+ in the limit as I m X—>0+. Thus 
approaching the axis from above corresponds to an outgoing wave, 
from below, to an incoming wave. Furthermore, no contradiction is 
involved in the use of this non-self-ad joint boundary condition for a 
self-adjoint problem since the resolvent of self-adjoint problem is not 
self-adjoint for I m X ^ O but in fact satisfies the relation (R\)* = R^f 

where the bar denotes the complex conjugate.6 

The rigorous theory of perturbation problems involving continuous 
spectrum such as the example of Titchmarsh is far from complete. 
From the point of view of operator theory there is the general paper 
of Friedrichs [27] who considers a simplified model involving the 
energy of an atom in the presence of an electro-magnetic field. For 
this case he derives the Wigner-Weisskoff [108; 109] formula for the 
natural width of the spectral lines as an approximation to the correct 
asymptotic behavior. For ordinary differential equations Titchmarsh 
[XV, Part I I ] has elaborated on the type of behavior exhibited by 
the above example and sketched the beginnings of a similar theory 
for a class of partial differential equations. 

While from an overall point of view, many of the problems we are 
discussing can be viewed as problems of perturbation theory, in 
many instances there appears to be no reasonable parameter, such 
as the fine-structure constant of quantum electrodynamics, on which 
to base a perturbation theory so that a fresh look at these problems as 
non-self-ad joint ab initio rather than as bounded or unbounded per-

6 For a similar discussion in more complicated situations, compare E. Gerjuoy, 
Outgoing boundary condition in rearrangement collisions, Phys. Rev. vol. 109 (1958) 
pp. 1806-1814. 
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turbations of self-adjoint problems can lead to interesting new mathe­
matics and also to useful results.7* We will give specific illustrations in 
the sequel. These problems are more complicated than our example 
even for quantum mechanics since in many the complex-energy plane 
must be treated as at least a two-sheeted Riemann surface for k2 = E 
and the singularities on the second sheet interpreted, for example as 
virtual or semi-stable states, although the interpretation is not uni­
form (cf. Humblet [42] and Ma [70]) and a general theory is lacking 
though results are known in special cases (cf. Flugge and Marshall 
[V, Aufgabe 13]; also Peierls [8l]). 

3. Examples of non-self-adjoint physical problems. While it is gen­
erally claimed that all quantum mechanical problems are self-adjoint, 
the time scale involved, or the difficulties of calculation often make it 
convenient to sub-divide the problem into pieces which may not be 
self-ad joint. A simple physical illustration of this is furnished by 
Bohr's idea of the compound nucleus. Here he showed that in a colli­
sion between two nuclei, at least one of which is heavy, an unstable 
compound nucleus will be formed and that the life-time of such a com­
pound nucleus on a nuclear scale will be very large. Further such 
nuclei have fairly well-defined energy levels (usually referred to as 
"virtual" or "resonance" levels) and the positions of these levels and 
the properties of the associated metastable states determine the cross-
sections of the nuclear reactions which may occur. By using a pertur­
bation theory in which certain interaction terms in the Hamiltonian 
describing the system were neglected, Breit and Wigner derived in 
1936 a formula for the probability of a nuclear reaction in the presence 
of one virtual state and their work was generalized by Bethe [ l ] , 
to whom we refer the reader for the historical development, to take 
into account all possible virtual states. In these theories the perturba­
tion theory was carried out only to the second order of approximation. 
In an at tempt to overcome this last limitation, Peierls and Kapur 
[82] developed a formalism involving complex eigenvalues and com­
plex states. In particular, they argued that if the resonance levels in 
the compound nucleus are narrow so that the escape of a particle is a 
rare event, the states of the compound nucleus will undergo very 
little change if the particle is prevented from escaping altogether by 
the imposition of a suitable restriction on the wave function outside 
the nucleus. They then perturbed this "boundary condition" in order 

7a Several recent examples are to be found in K. O. Friedrichs, Perturbation of 
spectra in Hubert space, Lecture Notes, Boulder Seminar in Applied Mathematics, 
Summer, 1960. 
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to obtain an approximate solution to the problem. We will now de­
scribe their procedure for the simplest case which involves zero angu­
lar momentum and refer the interested reader to their paper, and 
those of Humblet [41 ] and Brown [8] for the subsequent develop­
ments and the general case. Under the assumption that only one 
particle scattering is involved in a central force field of finite extent, 
the partial wave (/ = 0) satisfies the wave equation (in appropriate 
units) 

(3.1) — + [E - V(r)]</> = 0, 4>{r = 0) = 0, 
dr2 

in which V(r) is the potential energy, E the energy of the particle. 
For r ^ r o , V vanishes, and the above equation reduces to 

, N d2<t>E 
(3.2) — + * l * i a - 0 

dr2 

where the wave vector k is defined by k2 = E. The solution of (3.2) 
can be written for r â fo as 

4>E = — sin kr + Se**, 
k 

where I is the amplitude of the incident wave and S that of the scat­
tered wave. Since 

d<f>E 
= ƒ cos kr + ikSeihr, 

dr 
it is evident that 

d<l>E I 
(3.3) le-*'9 = - ik<t>E(ro), 

dr lro 

and 
1 /d4 E\ 

S = cos kro<l>E(ro) sin kr01 ) . 
k \dr / r o 

Thus it is evident that when there is no incident wave, one should 
have 

(3.4) ik<t> = 0, at r = r0. 
dr 

While this condition is obviously incompatible with the original 
one can consider the auxiliary problem 



I 9 6 I ] NON-SELF-ADJOINT PROBLEMS IN MATHEMATICAL PHYSICS 13 

d2<t>n r , 
— - + [Wn - V]4>n = 0, Wn * £ , 
dr2 

with the boundary conditions (3.3) and (3.4) where k is a fixed con­
stant. Now the usual arguments show that the functions defined by 
this problem are real orthogonal (although they are complex valued) 
and the corresponding eigenvalues are complex because of (3.4). Once 
these functions have been determined, one can see formally that any 
solution of (3.1) satisfying (3.3), the true boundary condition, can 
be expanded in the form 

4>E = Z-f an<t>n + X 

where <f)n satisfy the homogeneous condition (3.4) and X the inhomo-
geneous condition (3.3). 

A variant of this procedure has been proposed by Siegert [91 ] and 
investigated extensively by Humblet [41 ]. From the ratio S/I given 
above, 

S/I = (<t>s(ro) coskr0 - <t>'E(rQ) — — - j r * r o / [ 0 i ( f o ) - iHE{rQ)] 

one seeks the singularities which arise from the zeros of the denomi­
nator. These singularities can be defined by the eigenvalue problem 

—-7 + (Xn - V)4,n = 0, 

dr2 

with the boundary conditions 

fn = 0 at r = 0, 

and 

ikn&n = 0 at r = r0. 
dr 

This last boundary condition in contrast to (3.4) makes the com­
pound states independent of the energy of the incoming particle and 
makes the result of the calculation of the scattering independent of 
the scale ro beyond which the potential is assumed to vanish. The 
resulting expansion may be interpreted in terms of "radio-active 
states," but it possesses the disadvantage that the expansion is not in 
terms of orthogonal functions in either a real or hermitian sense. 

The third way of describing this physical process is by the method 
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of Wigner-Eisenbud [llO] where only real eigenvalues occur but 
this in turn leads to a knotty problem in analytic continuation (cf. 
Wigner [lOó], Wigner and von Neumann [ i l l ] and the review arti­
cle by Lane and Thomas [58] for a more thorough investigation of 
the relations between these methods). From a physical point of view 
the method of Wigner-Eisenbud seems preferable to the case where 
few levels contribute to the scattering process while the method of 
Kapur and Peierls is still preferable even today as evidenced by the 
review article by G. E. Brown [8] for the many level case since the 
sum over levels enters linearly in the scattering amplitude. While, to 
paraphrase Lane and Thomas, the method of Siegert seems to be 
the best of all possible worlds, the occurrence of complex eigenvalues 
and non-orthogonality makes the application of the method to the 
general situation difficult. 

The mathematical justification of each of these methods is problem­
atical and probably only the method of Wigner-Eisenbud has a real 
mathematical basis as a result of Wigner's collaboration with von 
Neumann. The justification of the Kapur-Peierls method usually 
given is a subsequent intuitive paper by Peierls [80 ] in which a rigor­
ous derivation due to Skyrme is promised. To the best of our knowl­
edge this derivation has never appeared. In the mathematical litera­
ture only the work of J . Schwartz [90], M. Naimark [77] and Sims 
[92] has direct bearing. The first two of these are highly restrictive 
in that Schwartz treats only bounded perturbations while Naimark 
has severe differentiability and integrability conditions imposed on 
the potential. While the work of Sims is not limited to bounded 
perturbations, the Hubert space approach employed by him leaves 
open the question of the type of behavior illustrated in our example of 
the semi-infinite string (cf., however, §5). 

The conventional formal scattering theory provides yet another 
example of classical self-ad joint problems. In this formalism one seeks 
to relate the solution of the interaction free Schrödinger equations at 
time equal to plus or minus infinity with those of an interaction free 
Schrödinger equation. This is accomplished by noting that any solu­
tion of the free Schrödinger equation can be written in the form 

#(/) = f e~iEi<t>{E)dE 
J 0 

where <t> is determined by the Fourier inversion integral. The scatter­
ing state is then given by (cf. Lippmann and Schwinger [65], Gell-
Mann and Goldberger [32] 
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*(*) = f e-iBV{E)dE, 
J o 

where ^(E) is the solution of 

(3.5) HE) = 0(E) + G(E)V*(E), 

with the Green's operator representing an outgoing wave. The weak 
point in this argument is that the integral defining <f>(E) does not 
have a meaning in a Hilbert space theory for it has no limit in either 
a weak or a strong sense. In fact 4>{E) would be an eigenvector of the 
unperturbed Hamiltonian belonging to the value E of the continuous 
spectrum of H0. Several methods are used to overcome this difficulty 
but all are objectional on some grounds. The most customary method 
is the use of the "adiabatic hypothesis" which is tantamount to the 
introduction of a convergent factor exp( —e|/ |) (cf. Lippman and 
Schwinger [65]). Friedrichs [27] in another section of his basic paper 
has made an ingenious use of the Riemann-Lebesgue lemma and the 
Plemelj formulas, which incidentally are also used by Lippman and 
Schwinger, to eliminate the necessity for the "adiabatic hypothesis" 
and his approach has been developed by Moses [74]. Recently Jauch 
[43] has given an alternate approach to the entire theory from a 
rigorous Hilbert space point of view but while both the approaches 
by Friedrichs and Jauch are conceptually satisfying, they do not con­
sider the problem of the solution of equation (3.5) or its equivalent. 
In order to have a practical theory for even potential scattering, it is 
necessary to solve an equation of this form, which, explicitly, in this 
case is: 

V{r')$(r')dh\ where A = h\ R = | r - r ' |. 
4wR 

The kernel of this equation is the free space Green's function of Helm-
holtz's equation which satisfies the outgoing radiation condition, or 
alternately in view of our remarks of §2, it is the limit of the kernel of 
the resolvent operator Rf = (V2+X)~1 as Im X—»0+. Explicitly, 

e** l r 0 0 / sin tRdt 
= l im I 

ATR •-(>+ 4TR J « t2 - (k2 + ie) 
I t is clear that this kernel is real symmetric although complex-valued 
and is thus certainly not the kernel of a self-adjoint operator. Alter­
nately, since R\ = (V 2+X) - 1 does not exist in general for X real and 
positive, and for I m X ^ O , it has the property that R* = R^, the 
operator R is also not self-adjoint for Im XF^O and the "inversion in 
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the continuous spectrum" can only be interpreted in terms of the 
above limiting process. The resolvent kernel can also be constructed 
by the usual procedures for Green's function for k real and positive 
in a unique fashion only if the Sommerfeld radiation condition is 
imposed and the limiting operation 

lim RÎ 
Im-K)+ 

is therefore seen to be equivalent to this procedure. To reiterate, al­
though the original problem as defined by the Schrödinger equation is 
self-ad joint, the treatment of a general potential case which cannot be 
solved explicitly involves consideration of the above non-self-adjoint 
operator. 

Until recently no general theory existed for the solution to the 
above non-self-ad joint integral equation which was not formal in the 
sense that non-quadratically integral functions occurred. To be sure 
this equation has frequently been treated by methods of successive 
approximation which lead to Liouville-Neumann or Born series and 
it has also been discussed with the aid of Fredholm theory by Jost 
and Pais [44]. Their discussion was concerned, however, with the 
uniform and absolute convergence of the Fredholm series for the first 
iterate of the above equation and as such is still open to the above 
objection, and their results were too unwieldly to yield calculable 
results in general. Subsequently, Khuri [47] used this same method 
to rigorously deduce the dispersion relations for potential scattering. 
In order to give a rigorous L2 theory, Dolph and Ritt [21 ] and Dolph 
and Penzlin [24] symmetrized the above integral equation for posi­
tive or negative definite potential and replaced it by an equivalent 
integral equation in a larger Hilbert space where it was amenable to 
treatment by the developing theory of non-self-ad joint dissipative 
operators which will be discussed in §7.7b The resulting quantities of 
physical interest are unaffected by this procedure which is however 
not general because of the assumption of definiteness of the potential. 
It seems reasonable to conjecture that the theory of indefinite Hilbert 
spaces touched upon briefly in §10 will eventually permit the removal 
of this restriction. 

An alternate rigorous and more complete treatment which uses the 
Riesz theory of completely continuous operators in a Banach space 
has just been published by Ikebe [llS] who in turn leans heavily on 

7b Note added in proof. Cf. the treatment by H. Rollnik, Streumaxima und gebun-
dene zustânde, Z. Physik vol. 145 (1956) p. 639, where a physical interpretation of the 
complex eigenvalues of this theory is given. 
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some earlier work of Povzner [116]. In this theory it is assumed that 
the potential V(x) is a real-valued function which is locally Holder 
continuous except for a finite number of singularities that V(x) is in 
L2(E3) and of order 0( |^ |" 2 _ / l ) a t infinity for h>0. I t is known that 
these conditions are sufficient to guarantee the unique self-adjoint 
extensions H and Ho of the operators — V 2 + V(x) and — V2, respec­
tively, such that the domains of H and H0 will be equal (cf. Kato 
[117]). The first step consists in establishing that the resolvent 
(H—X/)-1 is an integral operator of the Carleman type after which 
the Banach space B of all continuous functions u(x) defined on E3 

which tend to zero uniformly as x tends to infinity is introduced with 
the norm ||«||fi = maxxetf8 | # (# ) | . In terms of the functions 

J /» e%kB 

p(r,k) = - - I — 7(rO«*-'W 
4wJ ATR 

and 

*(r,A) = * « - « * " 

the scattering integral equation can be written as 

J * e%kR 

*(r, ft) = p{r, k) - — I — F ( r W , k)d*r' 
ATJ R 

and readily discussed in B since it can be shown that p is in B. In 
particular the integral operator which occurs in the above expression 
is of the Hilbert-Schmidt type and therefore defines a completely 
continuous operator which is an extension of (iïo—X)_1F. In par­
ticular for Im ft^O, this operator takes B into B and the Fredholm 
alternative applies. The connection with the L2 theory which is of 
final interest is obtained by observing that for any ƒ in B, Vf is in 
Li(Ez). Thus, for example, if for Im XT^O, Im ft>0, 

ƒ - - ( * , - \)-Wf 
fo r / i n Bj then ƒ is in the domain of i7o, and application of (HQ— X) to 
both sides yields 

( Z 7 o - X ) / = - 7 / 

or 

Hf=\f 
which shows that / = 0 since H is self-adjoint and X is not real. In 
addition, Ikebe proves tha t there is no continuous spectrum of H 
on the negative real axis, that there are no positive eigenvalues, that 
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the negative eigenvalues if they exist are discrete, of finite multiplicity 
and have no limit point other than zero, and that the spectrum on 
the positive real axis is absolutely continuous. Furthermore he de­
velops a generalized Fourier transform theory which utilizes the 
continuous set of distorted plane wave functions obtained from the 
solution to the scattering integral equation in conjunction with the 
eigenfunctions corresponding to negative real eigenvalues should they 
exist. Finally he gives an alternate proof of the theorem of Kuroda 
[118] which states that the S matrix is unitary if the potential V 
as defined above has the additional property of being in Li(Ez) 
C\L*(E*). 

To return to the initial remark of this section, the situation in re­
gard to the scattering integral equation is quite typical of the pro­
cedure used in many similar problems whenever it is reasonable to 
decompose the Hubert space of quantum mechanics into two orthog­
onal subspaces 3Ci and 3C2 with associated projection operators P i 
and P2 . Under these circumstances there will be an associated decom­
position of the Hamiltonian H of the total problem into the form 

Hi = Eu + Hu + H21 + H22 

where 

Hik = PiHPu (ik = 1, 2). 

Under this decomposition, the Schrödinger equation will take the 
form 

i = #11^1 + #12^2, 
dt 

i = H21^1 + #22^2. 
dt 

Now if one can solve the problem 

(i j - Hn\ Uit) = 0, U(0) = P, 

the first of these equations can be written as 

fa = U(t - to)Mto) -if U(t- t')HMOdt' 

and if this is introduced into the second in the presence of an initial 
condition, one obtains the integro-differential equation 
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# 2 C% 

i = #22^2 - i I HnU(t - OHufcdt'. 
dt J t0 

After a Fourier transform this becomes 

Efc(E) = {#22 ~ #21 * G(E) * #i2}^2(£) 

where G(E) is the formal Fourier transform of U(t) and in general it 
will involve the non-self-ad joint operator 

# 2 2 — # 2 1 * G\E) * #12» 

Specific instances of the use of this decomposition can be found 
implicitly in Bethe [ l ] and in Dolph and Penzlin [24]. 

In contrast to the above, problems of mathematical physics involv­
ing transport phenomena are often essentially non-self-ad joint. 

One of the best known example of this is furnished by the Orr-
Sommerfeld equation for the perturbation of linearized flows involv­
ing a viscous fluid. In the case of plane Poiseuille flow it takes the 
form 

v(f™ - a*}" + af) = ia[(l - y«) - c] [ƒ" - a*f + 2f] 

with the boundary conditions 

/(±1)=/'(±1) = 0. 
This equation arises from the linearized time dependent partial differ­
ential equations when the assumption 

$(x, y, t) = eia(x-ct)f(y) 

is made for the perturbed stream function. The curve of neutral 
stability is described as the locus where Re a =» 0 as a function of 
viscosity v or, more usually, Reynolds number. The question as to 
whether unstable modes exist has had a long history and was not 
settled affirmatively in this case before the work of Lin [VIII ] because 
of the mathematical complexity of the asymptotic theory involved. 
In this connection in order to further support our contention that 
there are no firm criteria dictating the use of self-adjoint theory or 
non-self-ad joint theory, it should be noted that Hopf [39] used self-
adjoint methods to establish the existence of a weak solution to the 
Navier-Stokes equation valid for all time and that Dolph and Lewis 
[22 ] made an application of his ideas to discuss the same phenomena 
governed by the Orr-Sommerfeld equation. In this method, the Orr-
Sommerfeld equation was treated with the aid of a self-adjoint equa­
tion which possessed a known expansion theorem and the problem 
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was thereby reduced to the consideration of an infinite set of coupled 
ordinary differential equations for the unknown expansion coeffi­
cients as functions of time. A 20X20 truncation of the resulting sys­
tem reproduced the nose of the stability curve to a high order of 
approximation. Recent developments in this theory include proof of 
the completeness theorem for the non-self-ad joint expansions of the 
Orr-Sommerfeld equation due to Schensted [89] and the demonstra­
tion by Case [12; 14] of the existence of a class of distribution solu­
tions in the case of the inviscid limit which are limits of viscous solu­
tions. As a result of this work, it is now possible to make the transi­
tion from the Navier-Stokes equations to the Euler equations in a 
manner reminiscent of the passage from quantum to classical me­
chanics. 

For the problem of neutron diffusion, Lehner and Wing [60; 61 ] 
considered a non-self-ad joint spatial operator defined by the time-
independent equation; namely, the operator 

df 1 r l 

ox 2 J _i 

This operator is densely defined in a subset of the Hubert space of 
measurable function such that the integral 

f d x f [/(*>M)]2^ 

exists. The point spectrum of it consists of a finite nonempty set of 
real numbers and it has an empty residual spectrum. On the other 
hand, they also showed that the continuous spectrum consisted of an 
entire half-plane, thus in (61) their expansion theorem involved con­
sideration of a contour integral at infinity which could, practically, 
be evaluated only approximately. The above operator is particularly 
interesting in that the nature of its spectrum is highly sensitive to 
the domain of definition considered. Thus some as yet unpublished 
work of K. Friedrichs and J. Lehner demonstrates that replacing —a 
by — oo in the above double integral is sufficient to confine the con­
tinuous spectra to an axis as in the self-adjoint case. For infinite or 
semi-infinite regions Case [ l l ] was able to replace the above L2 

theory by an L\ theory in which he was able to determine the class of 
elementary time-independent solutions and obtain both half- and 
full-range completeness theorems in terms of distributions. The ap­
proach of Case's was inspired by earlier work of Van Kampen [98; 99] 
and depends heavily upon the use of techniques from the theory of 
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singular integral equations. A brief description of some of the ideas 
will be given in §8. 

4. Singular non-self-adjoint Sturm-Liouville problems. Chapter 
12 of Levinson and Coddington [IV ] furnishes an introduction to 
regular non-self-ad joint problems on a finite interval. A related result 
is that due to Friedman and Mishoe [26] which explicitly is: 

THEOREM 4.1. Let F(x) be a function of bounded variation O ^ x ^ l 
and let un(x) be the eigenfunctions of the system (A+\B)=0, u(0) 
= u(l) = 0 where A is the operator 

d* 

and B is the operator 

d 

dx 

Furthermore let vn(x) be the eigenfunctions of the system adjoint to 
( 4 + X £ ) = 0 , w(0)=tt(l) = 0 and let C(X)ex* be the Wronskian of the 
equation (A +\B) = 0. If P(£, x) =flp(t)dt and 

(4.1) F (0+) + exp [ -P(0 , 1)]F(1-) = 0, 

then the series 

co Jo I C'(\n) ) 

converges to F(x) at every point where F(x) is continuous in 0 < # < 1 . 
At all other points it converges to F(x+0)/2+F(x — 0)/2. If F(x) does 
not satisfy the boundary conditions (4.1) then the series converges to: 

— F(x + 0)+ — F(x-0) 

- - i exp P(0, x {F(0+) + exp [ -P (0 , l ) ] F ( l - ) } . 

While the singular self-adjoint Sturm-Liouville problem has been 
extensively treated by Weyl [lOl], Stone [XIV], Titchmarsh [XV, 
Parts I - I I ) , and Kodaira [46], Phillips [83] appears to be the first 
to treat the corresponding problem for complex boundary conditions. 
Later Sims [92] was able to generalize the treatment by Phillips, but 
in the interim J. Schwartz [90] treated the special case of a bounded 
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perturbation on a finite interval by the use of Dunford's theory of 
spectral operators.8 His result of interest to us here is: 

THEOREM 4.2. Let T be the unbounded differential operator defined 
by the formal differential operator 

d* 

and the boundary conditions 

/(o) - V(o) = o, 
/(l) - * , / ( l ) = 0, 

where ko and ki are arbitrary, possibly infinite, complex numbers. Then 
if B is an arbitrary bounded operator T+B is a spectral operator and 
every f unction f in L2(0, 1) can be expanded in a series of eigenf unctions 
(including possibly, a finite number of solutions of equations of the type 
(T+B — \)kf = 0) of T+B which converges unconditionally in the topol­
ogy of L.2 (cf. also Lidskiï [63]). 

Sims allowed the interval to be infinite and generalized the limit-
circle, limit point approach of Weyl [101] to complex q(x) (cf. Chapter 
9 of [IV]). One begins as in the self-adjoint singular theory by con­
sidering a fundamental set of solutions of the equation 

(4.1) - y " + [q(x) - \]y = 0 for Im q(x) g 0 and I m X ^ O 

which are normalized by 

<£(#o, X) = sin ao, 6(xo} X) = cos ao, 

<£'(#o, X) = — cos ao, 0'(XQ, X) = sin ao for Im ao ^ 0. 

The boundary condition 
<*l>(<l>, X) + ffl(b, X) = 0, a, j8 complex 

is imposed on the combination 

f(x, X) = 6(x, X) + m(\ b)4>(x, X). 

Then, as in Weyl's theory, if 2 = a/j3 

6(b, \)z + B'(b, X) 
m = 

<t>(b, X)z + *'(*, X) 
is a nonsingular linear fractional transformation which maps the 

8 The results of Schwartz have been generalized to higher order differential equa­
tions by H. Kramer, Perturbations of differential operators, Pacific J. Math. vol. 7 
no. 3 (1957) p. 1405. 
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lower z-plane into a circle C&(X) in the m-plane and if b is allowed to 
approach infinity (or any singular point of the differential problem) 
a limit circle or limit point is shown to exist. The radius of the circles 
C&(X) is given by 

(4.2) r6(X) = j - s i n h 2 Im (a„) + 2 f [imX - Imq(x)] \ </>\2dA 

and furthermore in all cases the integral 

(4.3) ƒ °° | *„(*, X) |*[lm (X) - Im q]dx 

exists and hence a fortiori the integral 

(4.4) f'lfc.foX)!'** 
•J x 

exists. There are now three possible cases at each singular point; 
namely, (1) (4.4) is the only square integrable solution of (4.1). This 
is a limit point case since the radius defined by (4.2) will tend to zero; 
(2) there are two linearly independent solutions to (4.1) which are 
square integrable in (xo, °°) but only one solution which is square 
integrable with respect to the weight function Im(X) - Img(x ) . This 
again is a limit point case; (3) There exist two linearly independent 
solutions square integrable on (x0, <*>) with respect to the weight 
function Im(X) — Im q(x), hence, a fortiori, square integrable with 
respect to the unit weight function. This is a limit circle case. For the 
doubly infinite interval there are six distinct cases in all, but for all of 
them we have the following: 

THEOREM 4.3. The resolvent R(X) exists as a linear bounded operator 
defined for all of L2(a, b) for Im(X) > 0 and the resolvent set contains the 
upper half of the X-plane. Furthermore, 

\\R(\)\\ ^ 1/ImX, 
and 

f | R(\)f |2[lm X - Im q{x)]dx < oo. 

The range of the resolvent is the domain defined by all functions in 
L2(a, b) such that f, f are absolutely continuous, —f"+qf is in L2(a, b), 
and Wb frAi, ƒ ] — Wafyo, ƒ) = 0 for the limiting functions \pQ, \{/u defined by 
the limiting process. This same set is also the domain of the operator 
— d2/dx2+ [q(x) —X] and the range of this operator is L2(a, b). 

In addition, one has the 
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THEOREM 4.4. In cases (2, 2), (2, 3) and (3, 3) /fo spectrum of the 
differential operator defined in the above domain is a pure point spectrum 
consisting of discrete points in the lower-half plane. The corresponding 
resolvent is a completely continuous operator. 

Sims proceeds to investigate the analytic behavior and the possible 
contractions associated with the domain of this operator. In particu­
lar, he determines a well-set problem in which the behavior of the 
functions depends on a continuous boundary condition but for the 
details we shall have to refer the interested reader to his paper.9 

5. From the self-adjoint to the non-self-adjoint. Even before the 
theory of Sims was developed, Marcuvitz [73] discussed, somewhat 
formally to be sure, several interesting special spectral representations 
of singular Sturm-Liouville problems which were often non-self-
adjoint. In particular for the differential equation 

d2y 
77 + (*f + Vr*)y = 0 
dr2 

subject to the boundary conditions dy/dr = 0 at r = r\ and lim,..^ dy/dr 
—iky = 0 he noted that a unique Green's function G could be con­
structed for k real and Im X>0 and that under these conditions the 
problem was like a "limit circle " self-ad joint problem in that two 
linearly independent square integrable solutions existed from r\ to 
infinity. He also noted that if k were taken complex with Im k>0, 
the problem became of the limit point type and the radiation condi­
tion could be replaced by the simpler requirement that G must tend 
to zero as r tends to infinity. 

While a precise meaning can now be assigned to these statements 
as a result of the theory of Phillips and Sims which Marcuvitz in part 
stimulated, the above observation of his has been used systematically 
by Ritt and Kazarinoff [87; 88] to develop a theory of scattering for 
the scalar wave equation which depends upon the theory of Sims for 
the separated ordinary non-self-ad joint differential equations which 
occur. This approach has the advantage of requiring only considera­
tion of a limit point situation and in addition the Sommerfeld radia­
tion condition is replaced by the more natural requirement of quad­
ratic integrability. I t is also interesting in that through use of a 

9 Recent related results have been announced by V. A. Marcenko and F. S. Rofe-
Beketov in Dokl. Akad Nauk. SSSR, vol. 130 (1958) pp. 963-966, in a paper entitled 
Expansion in characteristic functions of non-self-adjoint singular differential operators, 
MR 2092, vol. 21 no. 4 (1960) p. 400. 
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Tauberian and an Abelian theorem, the relationship between the 
steady state method and the associated initial value problem is made 
clear. 

More specifically, the steady state exterior problem for the Helm-
holtz equation involves finding a solution of the equation 

(V2 + w2)$ = p(x) 

in which p(x) represents a spatial source distribution vanishing out­
side a compact set. In this equation w is the frequency of radiation 
and the problem becomes well set if \f/ is subject to a boundary condi­
tion appropriate to the first, second, or third boundary value prob­
lems of potential theory on the surface of the scattering body and to 
the Sommerfeld radiation condition 

R 
iwip 

\dr 
dS = 0. 

This problem arises from the corresponding time dependent wave 
equation 

V2« = utt = p(x)eiwt 

when the hypothesis is made that solutions can be represented in the 
form 

u(x, t) = rp(x)eiwt. 

This problem is however not well set until initial value for u(x, t) 
and ut{x, t) are prescribed and once this has been done the above 
representation may no longer be justified. 

To resolve this difficulty and to determine in what sense the 
steady-state approach is valid, Ritt and Kazarinoff start with the 
initial value problem and prove the following two theorems. (The 
symbol x will stand for the point (x} y, z) in E3.) 

THEOREM 5.1. If u is a solution for t>0 to 

V2u - Utt = p(x)eiwt 

subject to du/dn = 0 on the boundary of a region B and 

u(x,0) = ƒ(*), 

Mt(x, 0) = g(x), 

then u is unique and if ƒ, g, and p are zero for \x\ >R, then u(x, t)=0 
for \x\ >R+t. 
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THEOREM 5.2. Let V denote the closure of the region exterior to B and 
let v(x, t)=e~iwtu(x, /), where u(x, t) is the solution of Theorem (5.1). 
Then: 

(a) The Tauberian limit 

1 rT 

v*(x, t) = lim — I v(x, 
r-*« TJQ 

t)dt 

exists and 
(b) v*(x, t) satisfies the Helmholtz equation 

(V2 + w2)v* = p(x), 

the boundary condition dv*/du = 0 on B and the Sommerfeld radiation 
condition. 

(c) The Laplace transform $(xy s) of v(x> t) exists in L2(V) for s>0. 
(d) The Abelian limit (lim,^o+ s$(x, s) exists and 

lim si)(x, s) = v*(x). 
S-+Q+ 

(e) If (j>(xt s) =s$(x, s) then <j)(x, s) satisfies the equation 

[V2 + (w - isY\<t>{x, s) = p(x) 

and the conditions that d<t>/du = 0 on B and <t> is in L2(V). 

Thus the steady-state method can be properly applied to the prob­
lem given in (e) above and when this is done for a separable problem 
the resulting ordinary differential equations will be non-self-ad joint 
and precisely of the form treated by the Sims theory. By working 
with the resolvents of the separated equations one is then able to 
obtain a solution to the original scattering problem and completely 
justify procedures used by Marcuvitz [73] and Sommerfeld [XIII]. 

The replacement of the Sommerfeld radiation condition by that of 
quadratic integrability is not mysterious when one recalls that Wilcox 
[ l l 2 ] has shown that the Sommerfeld radiation condition in the form 

/

\d<t> 
h i(w — is)<t> 

\dr 

implies the existence of 

<f>(x7 s) \2dx 

2 

dS = 0 

J R 

for s>0. Recently in a letter to Ritt, he has demonstrated the con­
verse so that for s>0, these two are completely equivalent. Recently 
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Wilcox [113] has also examined the relationship between the steady-
state problem and the initial value problem from a somewhat different 
point of view and given an excellent account of the equivalence rela­
tions existing between the different forms of the radiation condition. 

The work of Ritt and Kazarinoff is then a specific instance where 
the theory of non-self-ad joint operators has materially helped our 
understanding and placed a large part of existing scattering theory on 
a firm foundation. 

It is interesting to observe that Titchmarsh [97; XV, Part I I ] en­
countered non-self-adjoint ordinary differential operators in his treat­
ment of the hydrogen atom in an electric field. Specifically this occurs 
for the problem 

VV + U + — - 2bz)f = 0, b > 0 

which, after the transformation of Schrödinger, separates into the 
differential equations 

(5.1) *"(*) + \T + \U2 - bu* - (n2 J w"2l x(u) = 0, 

(5.2) w"(v) + | T + 2a + \v2 + bv* - in2 Jzr 2 1 w(u) = 0, 

where r becomes the eigenvalue parameter and X is complex. After 
observing that the method of Weyl guarantees the existence of 
Green's functions g(u, s, r , X) and y(v, t, r, X) of (5.1) and (5.2) respec­
tively for real X only, he directly constructs these functions which are 
meromorphic with, for example, the poles of g(u, s, r, X) at rOT==rw(X) 
and residues — Xm(u, \)Xm(s, X). These "eigenfunctions" and "eigen­
values " are not real for nonreal X as can be seen from (5.1) and its 
conjugate; namely: 

(5.4) Im(rm) f \ Xm(u) \2du + Im(X) f u2\ Xm(u) \2du - 0. 

By analogy with the self-adjoint case, he then speculates that the 
Green's function of the original problem would take the form 

00 

G(u, v, s, t, X) = X Xm(u, \)Xm(s, \)y(u9 t, — rm, X) 
0 

and that this is not an expansion which falls within the ordinary 
theory because of the complex values which appear. To avoid this he 
introduces the function 
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(5.5) H(u, 5, /, X) = lim I lm G(u, v, s} t, n + iv)dfi 
v—H) J 0 

which involves real value of X only and shows that H is of bounded 
variation in any finite X-interval and furthermore that it is the 
integral over (0, X) of the function 

00 

h(u, v, s} t, X) = X) Xm(u, \)Xm(s, X)Im7(z/, t, - T W , X) 
o 

where this last series is absolutely convergent for V9^t. From this he 
deduces that the spectrum of the original problem is continuous from 
— oo <X < oo and proves an expansion theory for an arbitrary func­
tion of the original problem. 

While the connection of his procedure to that of the theory of dis-
sipative operators will be commented upon in the next section, it is 
clear that it furnishes further evidence of our main point that non-
self-ad joint problems arise naturally and that it is often a matter of 
choice whether to circumvent them or not. 

Finally, in view of the problem involving the optical model of the 
nucleus (complex potential) and wave propagation problem through 
non-isotropic media, it would be highly desirable to have a general­
ization of the theory of Titchmarsh's second volume (XV, Part II) . 
A start in this direction has been made by the Russian school begin­
ning with Gelfand [3l] who established the following: 

THEOREM 5.3. Let the operator L(u) = —V2u+pu for a real-valued 
function p be self-adjoint in L2 and let q be a complex valued function 
vanishing outside a set of compact support, then : (a) the discrete complex 
spectrum of L(u)-\-qu is denumerable and possesses only real limit 
points and; (b) the continuous spectrum of L{u) and L(u)-\-qu on the 
real axis are the same. 

According to Naimark [78], these results have been generalized by 
R. Martirosjin in a Moscow dissertation (1954) to whom he attributes 
the following generalization of a theorem of his (cf. [77]) for ordinary 
differential equations. 

THEOREM 5.4. Consider the operator —V2u+qu with a complex f unc­
tion q and let r denote the distance in En. Then if for €>0 , qe+€r is 
bounded and integrable in En, the discrete spectrum for n — 2 has zero 
as its only limit point and for n = 3 the discrete spectrum consists of a 
finite number of points. 

Clearly our knowledge of this type of operator is as yet very 
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meager and its systematic discussion remains an open problem.10 

6. The theory of the non-self-adjoint operators of Livsïc. In an 
at tempt to generalize Schur's theorem on the triangularization of 
finite matrices to a class of non-self-ad joint operators, Livsïc [67 ] 
introduced the operators of class (ifl) with the properties 

(1) The region of definition of an operator A of class (ifl) is dense 
in a Hubert space. Hence the adjoint operator A* exists. 

(2) An operator A of class (iQ>) is closed. Therefore A** exists and 
is equal to A. 

(3) The "imaginary part" of A, S=(A—A*)/(2i) is a completely 
continuous operator with a finite absolute trace. 

(4) The "real part" of A, R=(A+A*)/2 is bounded. 
Unfortunately, we will not be able to comment constructively on 

all of his results since his methods of proof were based on the use of 
infinite matrices and remain obscure to us and to all other American 
mathematicians known to us who have attempted to follow them.11 

On the other hand, certain of his results have been obtained by oper­
ator methods and some even without the use of his assumption (4). 
These in particular can be found in Dolph and Penzlin [24] and they 
are as follows: 

THEOREM 6.1. Every point outside the real \-axis is either a regular 
point or an eigenvalue of finite multiplicity. 

THEOREM 6.2. Let <ri^(S\p, ty/ty, rp) ^<r2. 

Then the points Im X>(r2>0 and I m X<<ri^0 are regular points of the 
operator A of class (iQ). 

10 A review of R. Martirosjin'is paper entitled, On the spectrum of the non-self-
adjoint operator —V2u-\-cu in three dimensional space, has just appeared, (MR 2106, 
vol. 21 no. 4 (1960) pp. 403-404). His results were published in Izv. Akad. Nauk 
Armyan SSR Sen Fiz. Mat. Nauk vol. 10 no. 1 (1957) pp. 85-111 (Russian) and 
in addition to the result stated above, he has also proved: (1) The entire positive 
real axis belongs to the spectrum of the operator T of the title; (2) Any other points 
of the spectrum of this operator are eigenvalues; (3) The resolvent of the operator 
T is an integral operator with a kernel H(P, Q, X) which has the property that, con­
sidered as a function of either P or Q separately, u 11 H\ | 2 is bounded uniformly in 
the other variable by a bound depending on X only; (4) If X = %-\-iii and if a = 11 c\ | 2/8x 
then the entire spectrum of T lies inside the parabola 772=a2(£-f-a2)"; (5) "If c is 
summable (as well as square-summable and bounded), the nonpositive point spectrum 
is bounded." 

11 For an earlier summary of the work of Livsïc which gives some indication of 
his Volterra spectral operator, see Naimark (77). A more readable account of a 
special case of the general theory can be found in M. Brodskii and M. Livsïc, Spectral 
analysis of non-self-adjoint operators and intermediate systems. Trans. Amer. Math. 
Soc. vol. 13 (1960) pp. 265-346. 

file:///-axis
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THEOREM 6.3. The eigenvalues {X„} of A satisfy the inequality 

L|x»| S E W . 
n m 

Here <rm are the eigenvalues of the "imaginary part" of A, S and both 
X» and <rm are to be taken according to their multiplicity. 

THEOREM 6.4. The number of eigenvalues \p of A with I m Xp5^0 is 
at most denumerable. Zero is the only possible limit point of I m Xp. 

7. Non-self-adjoint dissipative operators. For the physically more 
interesting sub-class of "dissipative operators," a term first intro­
duced by Mukminov, [75] many more properties have been estab­
lished by operator methods. Depending upon the use to which this 
concept is intended, we have the definition as follows: 

DEFINITION. Let 3C be a Hubert space with an inner product (y, z). 
A linear operator A with domain D(A) is said to be dissipative if 
either 

Tm(Ay, z) = — {{Ay, y) - <y, Ay)} £ 0 ( £ 0 ) , 

or 

Re(Ay,y) = j {(Ay, y) + (yy Ay)} < 0 ( £ 0 ) . 

The operator A is said to be maximal dissipative if it is not the 
proper restriction of any other dissipative operator. 

The physical interpretation of this concept differs in detail depend­
ing upon the physical application. For example, in scattering prob­
lems it is the requirement that harmonic wave forms do not grow in 
time in a lossless medium. In reality all media are somewhat lossy 
and it is customary to allow the wave number to have a small 
imaginary part so that some attenuation will result. For this type 
of problem, examples of dissipative operators are furnished by the 
free-space Green functions for the one and three-dimensional Helm-
holtz equation. Thus for functions <t> vanishing outside sets of compact 
support we have from Dolph and Ritt [21 ], for one dimension, the 
relation 

(7.1) 
i (\ r°° I2 I r00 n 

4*1 J - . J - , ƒ 
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and from Dolph [19] for three dimensions the relation 

r r e<*i*-*'i k r I c I2 

I m I I <t>(r)—j -:<!>*(r')dhdh' = — I dû I ^ « ' ^ ( r ' ) 1 ^ 0. 

While these are stated for real k, they may be extended to Im k>0. 
The fact that these operators are dissipative can be given a direct 
physical interpretation with the aid of the cross-section or optical 
theorem which states that the imaginary part of the forward scatter­
ing amplitude is proportional to the total cross-section of the scatter­
ing process. In particular for the quantum mechanical case, it is not 
difficult to establish that 
ST r r emr-T>\ 4 T 

-Im I I V(r)+(r) — yr V {/)&{/) ffirâh> = a = - lm /(O, *) 
k J J 4TT j r — r ' j k 

for all potential such tha t the indicated integrals exist. Here /(O, yp) 
denotes the forward scattering amplitude, a the total cross-section. 
(For details see Dolph and Penzlin [24].) 

In his work on the abstract theory of hyperbolic systems of partial 
differential equations, Phillips [84], notes that the condition that the 
spatial part of the system be dissipative is equivalent to the fact that 
the energy of the system is nonincreasing in time. Interpretations 
similar to these are possible in all other cases known to the author.12 

Mathematically, as we shall see, the dissipative condition, seems to 
be the natural extension of the notion of positive-definiteness for self-
adjoint operators and in particular it is sufficient to guarantee the 
existence of a resolvent operator in a half-plane in many instances. 

The first result on dissipative operators obtained by Hubert space 
methods is the theorem of Livsïc-Mukminov [67; 75] which is as 
follows: 

THEOREM 7.1. Let A be bounded and dissipative and of class (iQ). 
Let 8 = the range of S, and let 9 be the largest subspace of 8X invariant 
under A. Then if g is the null space, the principal f unctions of A are 
complete in the range of A if and only if 

Im ]T) X* = X cru = Trace 5. 

Since there are several obscure points in the proof by Mukminov,13 

12 Compare, for example, H. König and J. Meixner, Lineare Système una lineare 
Transjrormationen, Math. Nachr. vol. 19 (1958) pp. 265-322, for a recent account of 
the role of dissipative operators in passive network theory and in linear thermo-
dynamical systems. 

13 The author is indebted to R. S. Phillips for his help in clarifying Mukminov's 
proof. 
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we will elaborate here. The proof proceeds as the proof of theorem 
(6.3) until the inequality is established for |<Tfc| =<rk>0. Let us next 
suppose that the orthonormal set of principal vectors of A, the set 
{<t>p\, is complete in the range of A. We observe that the range of A 
contains the range of S for if ƒ were an element orthogonal to the 
range of A, we would have (Af, ƒ) = (Rf> ƒ) — i(Sf, ƒ) = 0 which in turn 
implies (5/, / ) = 0 which is impossible unless ƒ = 0 because of the dis-
sipative nature of S. Now the inequality of Theorem 6.1 can in this 
case be written as 

(7.2) ^Im\p = I > * Z |<0p,o>3>|2^I>* 
q p 

since all the a* are positive. Here So)q=<rqo)q. Parseval's quality 

(7.3) EK*«««> , | s lk l l , - i 
p 

now implies that the equality holds in (5.1). Conversely, if the quality 
sign holds in (7.2), hence in (7.3), we see that the set {coq} lies in the 
space spanned by {<t>P}f hence in the space spanned by the non-
orthogonalized principal functions say { ^ } . Thus any function 
orthogonal to all the {$%} is also orthogonal to the set {œq}. Now let 
9* consist of all the functions in the range of A orthogonal to the set 
of principal functions {$?}. Then for g£S*> we have 0 = (g, œq) 
== (g> (S/<rq)o)q) = ( l /OO^g, <*q) so that g is also in the space 81 . Thus 
we have 

(Ag, fp) = (A*g, fp) = (g, Afp) = (g, \prfp + £_x> = 0. 

Since A is self-adjoint in S 1 thus the set g* is invariant under A. How­
ever since 9* is also contained in 8X, it must be contained in g, the 
largest invariant set in 8X, and this was assumed to be the null set. 
Mukminov [75] also announced the following theorem: 

THEOREM 7.2. If A is dissipative, bounded and of class (iti) and if 

* Im \j Im X* 
2_j - j r— < °°, i 7e L 

Jjk~l J Xy — X& 12 

then for any element ƒ in 5C of the form 

n 

f = 2 Ckfa 

the following inequality 
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m E M ' S Ml» S M f M» 

holds where M and m are positive constants that do not depend upon ƒ. 

A generalization of this theorem has recently been announced and 
a proof sketched by Glasmann [34] under the weaker hypothesis that 
A is merely a bounded, dissipative operator with an infinite system of 
orthonormalized eigenfunctions.14 For these operators there is also 
the useful theorem of Dolph and Ritt [21 ] : 

THEOREM 7.3. Let A=R—iS be dissipative and of class iî2, and let rj 
be the intersection of the null spaces of the operators I—R and S. Then 
r\ is the null space of T=I—A and the space 5Ci=ryL remains invariant 
under A. t]is also the null space of T* = I—A* and 5Ci remains invariant 
under A*. Further (!T<£, \p) = (T<j>u ^1) where <£, \[/ are arbitrary elements 
in the Hilbert space 3C and where 0i, fa, are their respective orthogonal 
projections on 3Ci. 

Two independent approaches to the problem of unbounded dissipa­
tive operators have been taken by Glasmann [33] and Dolph and 
Penzlin [24]. Glasmann defined a nonlinear operator J o n the entire 
Hilbert space with the properties that 

(/ƒ,/£) = (ƒ,£), 

and called an operator /-symmetric if 

Uf, H) = if, JAg), 

for / , g in the domain of A. If the closure of the domain of A is the 
entire Hilbert space, then the adjoint operator A* exists and 

JAJ C A*. 

An operator is then called /-self-adjoint if JAJ = A*. His main result 
was the theorem : 

THEOREM 7.4. A J-symmetric dissipative operator A with a dense 
domain can be extended to A, which is J-self-adjoint. 

Both Glasmann and Dolph and Penzlin obtained the existence of 
{A —\I)~l in a half plane and the estimate 

14 Further results on dissipative operators obtained without the use of infinite 
matrices have been announced by M. Krein, A contribution to the theory of linear 
non-self-adjoint operators, Soviet Math. Amer. Math. Soc. vol. 1 no. 1 (1960) pp. 
38-40. 
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|| (il ~ A / ) i l ^ r ^ T , I m X > 0 , 
ImX 

for dissipative operators and Glasmann introduced the notion of de­
ficiency numbers which are defined as the dimension m of the orthog­
onal complement of the space (A —\I)DA where DA is the domain of 
A. He demonstrated that m was a constant for ImX^O, and that 
an operator was /-self-adjoint if and only if m = 0. 

While Glasmann utilized the methods of Krein [51 ] and an ap­
propriately defined Cayley transform to obtain his results, Dolph 
and Penzlin [24] approached the problem from the view-point of the 
Riesz approach to the spectral theorem as it is found in Achieser and 
Glasmann [i] and noted that 

{{A - X/)~V, *> 

was an analytic function with positive imaginary part in the half 
plane I m X > 0 with enough additional properties to enable it to be 
represented as 

oo t — A 

where co(/, <£) is a uniquely determined monotonie function normalized 
by the conditions co(— oo, 0 )=O, co(+<*>, 0) = ||<^||2. For this repre­
sentation they assumed explicitly that 

(1) A =R — iS, where R and 5 are Hermitian operators; 
(2) The operator S is positive semi-definite Im X>0 ; 
(3) The range of the operator (A —XI) is the entire Hubert space 

for I m X > 0 . 
Under these hypotheses it follows then that 

THEOREM 7.5. Under (1), (2), and (3), the resolvent operator (A —X/)"1 

exists in the complex half-plane I m X > 0 as a bounded operator and has a 
weak representation in the form 

J'00 {F{t)<j>,^) W ^ / ; I m X > 0 , 
oo / — X 

where FÇK) is a uniquely determined self-adjoint operator with the prop­
erties 

(a) FÇK) is positive-definite and bounded O^FÇK) ^ 1 ; 
(b) The family FQs) is nondecreasingfor FQ^-^FCk'), X<X'. 

It should be noted that the second hypothesis is automatically ful­
filled if S = 0 while the third will hold if R is a maximal Hermitian 
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(not necessarily self-adjoint) operator or if R and S are self-adjoint 
and S is bounded. Also the author is indebted to E. A. Coddington 
for the observation that the representation given above is unique in 
spite of the statement to the contrary in [24]. The uniqueness follows 
from the fact that the above representation implies that 

J
00 dF( 

— -
-00 t 

dF{f) 
- f o r I m X < 0 
X 

so that any non-uniqueness in F would imply a non-uniqueness in A * 
in contradiction to its known uniqueness.15 Now the family FÇK) is a 
generalized resolution of the identity in the sense of Naimark and thus 
by his theorem (Cf. Appendix I of [i]), there exists a larger Hilbert 
space 3C+ containing the given Hilbert space 3C as a subspace and a 
corresponding orthogonal resolution of the identity EÇK) in 3C+ such 
that for each element <f> in 5C one has FÇK)cj> = P+EÇK)(j> where P + is 
the orthogonal projection operator of 3C+ into 3C. It is also easy to 
see that the self-ad joint operator A+ in 5C+ associated with £(X) has 
the property that P+(A+ —XI)"1 = (A —XJ)-1 for if 0, ^ are any two 
elements of 3C, then 

(P+U+ - X/)-V, *) = ((A+ - X/)-V, P+t) = \ 
J —oo / — A 

-s: — — - — = ( ( i l - \i) V , * ) . 
, t — A 

Questions concerning the detailed structure of A+ are still open al­
though in the case where it arises from symmetric ordinary differen­
tial equations many properties of its resolvent have been deter­
mined.15 

Since the original write-up did not adequately discuss the self-
ad jointness of F(\), I would like to take this opportunity to amplify 
this point. It follows from a known form of the Stieltjes inversion 
theorem (cf. Greenstein [35]) that (5.3) can be inverted to yield 

1 rH 

(7.5) «(/2,<t>) - w(/i,*) = l im— I Im ((A - X/)-ty, 4>)dx. 
V-+Q+ T J t\ 

Letting \px= (A - X / ) - 1 ^ so that <£= (A ~X7)^X for Im X>0, \ = x+iy 
this can be written as 

15 Cf. E. A. Coddington, Generalized resolutions of the identity for symmetric or­
dinary differential equations, Ann. of Math. vol. 68 (1958) pp. 378-392 and E. A. 
Coddington and R. C. Gilbert, Generalized resolvents of ordinary differential equations, 
Trans. Amer. Math. Soc. vol. 93 (1939) pp. 216-241. 
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<*(h, 0) ~ <»(th <t>) = lim f Im(^x, (A — \I)yp})dx 

Im<^x, (S + y)fx)dx 

= lim I (Rx<t>, (S + y)R*t>)dx. 
V-+Q+ J ti 

Now if h is allowed to approach — oo (there is no difficulty here since 
the integrand is positive) from the normalization we obtain 

o>(/2, <*>) = Hm f (Rrf, (S + y)Rx<t>)dx. 
V-*Q+ J —oo 

This may now be polarized by means of the definition 

co(/, <£, *) = o>(/,ƒ + g) - œ(t, ƒ - g) + iü>(tj + tg) - iœ(t,f - ig) 

and the new functional is readily seen to be bilinear and it is easily 
proven bounded as in Achieser-Glasmann [ l ] so that one can apply 
the Riesz representation theorem to it to deduce the existence of an 
operator FÇK) such that 

co(/, 0, *) = (F(t)<l>, *>. 

However 0^co(/, <£, <l>) = (F(t)<l>, <t>) so that it follows from a known 
theorem that FÇK) must be positive and self-adjoint. From this repre­
sentation theorem one can deduce expansion theorems as in the self-
adjoint case by integrating the left-hand side around a suitably chosen 
contour in the complex X-plane when one possesses sufficiently de­
tailed knowledge of the singularities of the integrand. In view of the 
similarity between (5.5) and (7.5), it is apparent that Titchmarsh's 
formula (5.5) can now be subsumed as part of the general theory of 
dissipative operators. 

Dissipative operators occur in many applications and even natu­
rally in mathematical theory as we have observed in the case of 
Titchmarsh's treatment. Since the resolvent exists in half of the 
complex plane, it naturally follows that all, if any, complex eigen­
values must exist in the other half. While the existence of a relation 
of the form (5.4) which confines the eigenvalue to a half-plane does 
not logically imply that the associated operator is dissipative, experi­
ence seems to indicate that in practice it does. In particular, the 
operators considered by Sims [92 ] for which such a relation is easily 
demonstrated (cf. Dolph [18]) are dissipative and we have, more 
generally, the following theorem by Glasmann [33]. 



I 9 6 I ] NON-SELF-ADJOINT PROBLEMS IN MATHEMATICAL PHYSICS 37 

THEOREM 7.6. Let L (y )= £ » {-l)*(d*/dtf)[Pu^(x)](dfy/dxk) be 
the formal differential operator acting in £2(0, oo) on functions y=<j>(x) 
which, together with their first (2^ — 1) derivatives are absolutely continu­
ous and zero at the origin and such that ImPjb(x)^0. Then (1) the 
number of linearly independent solutions of L(y)=\y, I m X > 0 , does 
not depend upon X, and is always greater than or equal to n. (2) The 
operator L(y) with minimal domain of definition can be extended to a 
J-self-adjoint dissipative differential operator. (3) The resolvent can be 
written in the form 

Rxy = [L - Xlj-'y = f G(x, s, \)y(s)ds, 
J o 

where the kernel is real symmetric G(x, s, X) = G(s, x, X) and if the de­
ficiency index m<2n, then the integral 

I G(x,s,\)\*ds < oo, 
0 

while if the deficiency index m = 2n, the double integral 

ƒ
» oo /• » 

I | G(x,s,\)\*dxds < oo 
o Jo 

and the resolvent is a compact operator. 

The concept of a dissipative operator has been used by Phillips 
[84] to develop a general theory of Cauchy problem for a system of 
hyperbolic partial differential equations, from the point of view of 
semi-groups. In particular, he considers the initial value problem 
yt = Ly = E-i{(Aiy)+By} 

(7.6) y ( * , 0 ) = / ( * ) 

for functions {y} of x, t with values in a fe-dimensional complex 
euclidean space when a domain A is given in a w-dimensional real 
euclidean space with points X X\f , Xm» 

Tensor notation is used 
for summation and the index i denotes differentiation with respect 
to Xi. E, A* and B represent kXk matrix-valued functions of x alone, 
E is positive-definite, A* is hermitian and the dissipative condition 

(7.7) B + B*+A\^0 for* G A 

holds where B* is the adjoint of B relative to the usual hermitian 
inner product. I t is further assumed tha t in each compact subset of 
A the elements of E are continuous, the elements of Ai are absolutely 
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continuous with respect to Xu and that the elements of A\, B are 
square integrable. Letting D = E~l[B + £ * +A\\ and noting that if 
y(x, t) is a solution of the system (7.5), the energy of the associated 
physical model is given by 

— ƒ (Ey, y)dx. 

In terms of a Hilbert space 3C0 with inner product defined by 

(y> z) = J (Ey, z)dx 

the rate of change of energy from (7.6) is given by 

(7.8) (y, y)t = (Liy, y) + (y, L&) = f (EDy, y)dx + f (A*y, y)rj\ 

where n — nit • • • , nm is the outward normal to the boundary V of 
assuming that n exists. Since the condition (y, y)t=>0 is imposed 
for all smooth functions vanishing outside compact subsets of 0, the 
condition (7.7) follows and has the physical significance that there 
are not internal energy sources. Solutions to the system (7.6) whose 
boundary values satisfy 

(7.9) {Aly, y)n{ ^ 0 

will be clearly dissipative. (When the boundary integral is not well 
defined the last two equalities in (7.8) can be used as a definition). 
If one now defines the operator L\ to be the operator of largest do­
main of the type (7.6) for which the boundary integral is meaningful 
in the above extended sense and if Lo is the largest restriction of L\ 
and has for its domain only those functions which are essentially zero 
on the boundary, then the domain of an operator L such that 
LQ<L<Li will be determined entirely by the boundary values as­
sumed by its member functions. Phillips proceeds to characterize 
all solutions between L0 and L\ whose boundary values satisfy (7.9). 
These he calls properly dissipative and there is an equivalence be­
tween the class of generators of properly dissipative solutions and 
maximal dissipative operators between L0 and L\. In particular, he 
proves the following: 

THEOREM 7.7. An operator L is the infinitesimal generator of a 
strongly continuous semi-group of contraction operators of 3Co if and 
only if L is a maximal dissipative operator with dense domain. 
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As in Glasmann the theory depends upon the use of an appropriate 
Neumann-Cayley transform and contains many results similar to the 
usual operator theory such as the following example: 

THEOREM 7.8. (a) If L is maximal dissipative and closed, then it has 
a dense domain, (b) If L is a maximal dissipative operator with dense 
domain then so is L*. 

In determining the maximal dissipative generators for this problem 
there are dual procedures available in that one can begin with a 
minimal operator L0 or a maximal operator L\ each of which repre­
sents the spatial part of the hyperbolic operator and then seek maxi­
mal dissipative extensions of L0 and restrictions of L\. The first pro­
cedure can lead to operators which are no longer merely differential 
operators whereas the second can result in differential operators whose 
domains need not be restricted by simple boundary conditions but by 
"global" lateral conditions. A similar phenomenon occurs in the con­
tractions considered by Sims [92] and in Feller's [25] treatment of 
parabolic differential equations. The maximal dissipative operators 
which are differential operators and whose domains are delimited by 
ordinary boundary conditions are those which are simultaneously 
extensions of LQ and restrictions of L\. 

The concept of a dissipative operator is useful in still other situa­
tions. Thus, as noted earlier, it enabled Muller to eliminate non-
elementary divisors from Weyl's diffraction theory. I t has been used 
by Dolph and Ritt [2l] and Dolph [19] to show that the critical 
points of the Schwinger variational principles of scattering theory are 
saddle points which, since they are unknown a priori, make the con­
struction of a systematic approximation theory difficult if not im­
possible. Because of the known equivalence of these principles to 
those of Hulthén-Kohn (cf. Hulthén [40], Kohn [48; 49], Kato[4S]) a 
similar situation exists for all of the widely used variational principles. 
The concept has also been used by Krein and Gohberg [54] in their 
review article on root spaces where they consider perturbations of self-
adjoint operators in Hubert space in particular and obtain results 
similar to those of Theorem (6.3). Finally, it should be noted that 
Lidskiï [64] has treated non-self-adjoint operators possessing discrete 
spectra in root spaces. 

In view of the rapid progress to date and the intimate relationship 
between physical theory and dissipative operators it seems safe to 
conjecture that the time is not far distant when the theory will be 
considered a standard part of an advanced mathematical education. 
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8. Initial value problems and singular integral equation techniques. 
I t is well known that many problems when formulated as singular 
integral equations with a Cauchy kernel have led to closed form solu­
tions (cf. Muskhelishvili [XII ] and Tricomi [XVI ]. What perhaps is 
not so well known or appreciated is the fact that these techniques lie 
behind much of the recent work on dispersion relations in transport 
phenomena, quantum potential scattering, and quantum field theory 
scattering. 

A unified approach to these problems has been developed by Case 
in a series of papers and lectures in which he has expanded upon the 
ideas initiated by Van Kampen [98; 99]. The approach has been two 
fold: on the one hand, it involves the systematic use of Laplace and 
Fourier transform theory; and on the other, it involves the construc­
tion of a theory of elementary solutions which in general are dis­
tributions and not functions but which nevertheless with the aid 
of singular integral equation theory are shown to satisfy complete­
ness relations in an L\ type of theory reminiscent of the more usual 
L2 theory. Furthermore the complete equivalence of the two ap­
proaches can be demonstrated. Specifically the achievements to date 
of this theory are as follows: 

(1) In [ l l ] , Case treats the one-dimensional neutron transport 
equation with the aid of this distribution theory and demonstrates 
that it is sufficient to consider that part of the continuous spectrum 
which is confined to the real axis. 

(2) In [lO], Case treats the plasma oscillation problem associated 
with the name of Landau [57], and demonstrates the complete equiv­
alence of Landau's original approach to the initial value problem 
via the Laplace transform with that of Van Kampen's [97], 

(3) In [12; 13; 14; 15], he applies this theory to a series of linear­
ized flow problems. In particular in [12] he determines distribution 
solutions to the inviscid linearized Navier-Stokes equations which are 
limits of the linearized viscous equations as the viscosity goes to zero 
even though there are no such solutions in terms of ordinary functions 
thus completing the analogy that exists between quantum and classi­
cal mechanics in the limit as Planck constant goes to zero. 

(4) In his lectures [16] he has approached quantum scattering 
theory for a class of problems in which the kernel of the relevant 
Fredholm integral equation can be approximated in L2 by degenerate 
kernels composed of a finite sum of products of orthonormal func­
tions. For any finite approximation, the scattering problem can be 
solved in closed form by the methods of the Landau theory and the 
asymptotic relations of scattering theory derived explicitly. Further-
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more, double dispersion relations of the type conjectured by Mandel-
stam [72 ] for the quantum field case can be rigorously established. 

Throughout this entire theory, little more than the Piemelj for­
mulas are used in connection with the observation that the relevant 
physical quantities are boundary values of functions analytic in a 
suitably cut complex plane. As such this approach seems closest to 
that now being attempted in the discussion of dispersion relations 
for quantum field theory where deep theorems on the nature and 
continuability of functions of several complex variables are needed 
as can be seen by reference to the works of Wightman [104], Wight-
man, Hall [105], and to the book by Bogoliubov and Shirkov [ i l l ] . 
Finally, this same approach can be used to describe Wiener-Hopf 
integral equation theory in terms of singular integral equations so 
that, pedagogically at least, unity is achieved for the problems treated 
by this method. Of course this equivalence which Case and the author 
have shown by three different methods makes it immediately clear 
that a common line of analyticity is sufficient for the Wiener-Hopf 
method but this is a result first obtained by Sparenberg [93; 94] 
by a somewhat different chain of reasoning. 

In view of this and the impact these methods will undoubtedly 
have on future developments, a brief sketch of some of the underlying 
ideas will be attempted in what is perhaps the simplest case, that of 
longitudinal plasma oscillations. While the word plasma denotes any 
jelly-like substances, the plasmas of physics are usually gases which 
contain a suitably high density of free positive and negative electri­
cally-charged particles and a plasma is regarded as a medium which 
tends to remain near its free field state and neutral equilibrium state 
because of the long range Coulomb forces which are present in it. In 
many ways a plasma is similar in behavior to a liquid which tends to 
remain near its equilibrium state of a definite volume and which 
resists efforts to produce a change in this volume. However, in this 
process of resisting change, there is built in a oscillatory process in 
that when a given volume contains an excess of molecules, the result­
ing pressure gradient will create a net flux out of the region which will 
continue on beyond the state of uniform density until the momentum 
can be reversed. The resulting process produces sound waves which the 
liquid can transmit. In plasmas similar phenomena take place be­
cause of the presence of the electro-magnetic forces and as a result 
they have often been termed the fourth state of matter. An excellent 
introduction to their behavior can be found in the papers by Bohm 
and Gross [3]. Here for simplicity we shall restrict ourselves to the 
case where the positive ions are to be thought of as uniformly spread 
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over the region under consideration (because of their greater mass, 
they are much less able to move when subjected to small forces) and 
further we shall limit consideration to one Fourier space component 
of the system. In this case, the phenomena of small (i.e. linearized) 
longitudinal oscillation can be reduced to consideration of the differ­
ential-integral equation 

(8.1) — + iky(v) = - ikn(v) ( y(v')dv' 

for the unknown distribution function of longitudinal velocity. In this 
equation rj(v) is a known function of logitudinal velocity and k is the 
magnitude of the transform parameter. (For a detailed derivation, 
see Van Kampen [98] or Case [l0].) An equation adjoint to (8.1) is 
defined by 

dz r» 
(8.2) h ikz = - ik I n(v')z(v')dv' 

dt J —» 
and the problem of elementary solutions proportional to exp( — icot) 
is considered for each of these. Labelling the solutions with jji=co/k 
and using the same notation for the time independent part the equa­
tions to be considered are 

(8.3) (* - ùyAv) = - n(v) f yM(»')*', 
«/ —oo 

and 

(8.4) (v - M K W = - f z*W)W. 
J —oo 

The solutions of (8.3) can be normalized because of homogeneity so 
that 

/ : 
yn(.v')dv' = 1, 

while those of (8.4) are normalized according to 

f n(v')zn(v')dv' - 1. 

The usual argument shows that 

0* - n') f zAv')yÀ*')dv = 0, 

for all /x^)u'. Several cases can now occur. Letting 8 be the Dirac 
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delta function and using P to signify that the principal value is to 
be taken when an expression is integrated with respect to velocity, 
these are: 

I. ii real and rj(fx) 5*0. 
The solutions to (8.3) are 

(8.5) yM = - P^— + \fa)a(v - v) 
v - \i 

where 

-co V - \X 

while the solutions to (8.4) are 

P 
*#»(*0 = h r(/i)B(v - M) 

V — fJL 

where 

w(̂ )rfz? 

M 

The normalization condition is 

/•* X2(M) + T V ( M ) 
I V W ^ M W * = (̂M ~ M') 7T = Cjfiill — /*')• 

« / -oo n(fjL) 

II. /z real and TI(JJ) = 0 . 
The solutions to (8.3) are the same as I but principal values are 

unnecessary. 
The solutions to (8.4) are 

The normalization condition is 

/
Zp>(v)yp(v)dv = XG*)«G* - M'). 

-00 

III. JU real, rj(jx) = 0 and XGu) =0 . There are only a finite number of 
such points determined by the respective normalization conditions 
and for simplicity they are assumed to be simple. The solutions to (8.3) 
are 

n(v) 
(8 6) yi(v) = yH(v) = ; i = 1, 2, • • • , m, 

v — m 
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while the solutions to (8.4) are 

1 
(8.7) Zi(v) =*„,(!>) = 

V — At» 

The normalization condition is 

/

°° ( f °° n(v)dv \ 

Zi(v)yi(v)dv = dull ———™-> = ÖijCi. 
IV. fi complex, rjdj) = 0 and X(jit) = 0 . Again only a finite number of 

such points are determined by the respective normalizations and 
again are assumed simple. 

The solutions to (8.3) are 

VnW = ' 
V — fJLi 

while the solutions to (8.4) are 

1 

V — Hi 

The normalization condition is an identity. 
The above are all easily verified except care must be used for case 

I, since it requires the Poincaré-Bertrand transformation formula as 
it is, for example, found in Muskhelishvili [XII]. We now have the 
following theorem 

THEOREM 8.1. The distributions {y^ yi} are complete on — oo <x< oo 
for functions satisfying a Holder condition. 

It suffices, for an arbitrary f(v) satisfying a Holder condition, to 
consider the solution of the integral equation 

(8.8) Kv) = f(v) - £ aiyi{v) = ƒ A b)y,(v)dv, 

for the coefficients a» can be found by the orthogonality relations. In­
serting the values of y„{v) from (8.5) this integral equation is ex­
plicitly 

r M») 
(8.9) fx(v) - Hv)A(v) + n{v)P — 

J u — 

A(n)dfjL 
— y 

V 

where 
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00 n{vf)dv' 

/

,0° n(v)dv' 

oo V — V 

Assuming that fA(jj)dfi, fn(y)dv, ffi(v)dv all exist, define the three 
functions of a complex variable 

1 r A(JL) 

2iriJ fj, — z 

«* " S ƒ TT 
W / N ' f y ^ ) * ' 
# to = -T-: I ~7 

2irw v — z 

— > 
z 

and note that these are all analytic with branch cuts along the real 
axis and that they vanish at infinity like 1/z. Letting the superscripts 
+ and — denote the values of these functions as z approaches the real 
axis from above and below respectively, we have from the Plemelj 
relations 

N+(v) - N~(v) = A(p), 

C A(v)dv 
i[N+(v) + N-(v)] = P I —^—, 

J fi — V 

Q*(v) - Qrip) = «(»), 

i[Q+(v) + Q-(v)] = PC ^ ^ • 
J fJL — V 

Tt\ 

Tt\ 

These imply 

and 

\(v) = 1 + *i[Q+ + Q-] 

M+(v) - M~(v) =fi(v). 

Insertion into the integral equation yields 

{N+(v)[l + 2iQ+(v)]-M+(v)} 

- {N~(V)[1 + 2iQ~(v)] - M-(v)} = 0. 

To solve (8.10) we must find a function analytic in the complex plane 
with cuts along the real axis, which vanishes at infinity, and whose 
jumps along the real axis satisfy (8.10). If such a function exists the 
function 

J(z) = N(z)[\ + 2iQ{z)] = M(z) 
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has the properties of being analytic in the cut plane, no discontinuities 
along the cuts, vanishing at infinity and therefore by Liouville's 
theorem it must be identically zero so that 

N(z) = 
1 + 2mQ(z) 

To establish that this function has the requisite properties note that 
its only singularities occur from the zeros of the denominator. These 
are just the points fa of case III . Thus a sufficient condition for the 
solution is that 

Mfa) = 0. 

But this is from (8.7) and (8.3, 8.4) explicitly 

MQlù_f fjw^r j ^ _ _ Z a c *w* 
J v' — m J v' — m j J v — in 

/

fdv' _ r 

-, 1- 2*, ai I *i(?)yj(v)dv = 0 
v — m J 

so that these conditions are satisfied. 
The solution of the initial value problem for (8.1) when initially 

y(v, 0)=yo(v) is now given by 

(8.11) y(v91) = E OiTWyiiv) + ƒ AQx)e-^%(v)dn 

where 

I yo(v)dv/(v - M») 
1 C J 

di = — I Zi(v)yo(v)dv = 
Ci J r 

I n(v)dv/(v — fii)2 

and 

A(ji) = — I z^{p)y^v)dv 
CpJ 

X2(M) + TTV(M) L ^ W J V - M J 

The above expansion reduces for t = 0 to the expansion in terms of the 
discrete and continuous eigenfunction distributions determined 
above. The intimate connection of this procedure with that of the 
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Laplace transform method can be seen by using the two-sided La­
place transform to solve (8.1) directly. For this purpose let 

y+(v, t) = y(v, t), t > 0, y_(i, t) = 0, t > 0, 

lim y(v, t) = y(v, 0), lim y-(v, t) = y(v, 0), 

y+(p, 0 = 0, / < 0, y-(v, t) = y(v, t), t < 0. 

Now y+(v, t) satisfies (8.11) except near £ = 0 and since 

ƒ> 0+€ Qy± 

— dt = y±(v, e) - y±(v, - e ) = ± y(v, 0) 
0—« àt 

we can replace (8.1) by 

dy± r00 

(8.12) — + **»y± = ± y(v, 0)o(t) - i*n(tO I y±(v', t)dv'. 
dt J —00 

If the Laplace transforms h± of y± are defined by 

(8.13) h±(v,z) = f ;y±(fl, 0«<"* 

so that (8.12) becomes 

(8.14) (kv - z)h± = + i;yo(z>, 0) - kn(v) f h±(v', z)dv' 

from which it follows that 

kn(v) /•" 
*±(*, 1) - T <y(*, 0) - — — I A±(z>', *)<**' 

and that 

f y{v, 0)dv/(kv - 2) 

(8.15) A±(i>',s)dz/ = ± 

M + * f n(v)dv/(kv - z)l 

Using the complex inversion formulas 

Z7Tt/ C± 
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where C± run parallel to the real axis above and below all the singu­
larities of h±(v, z) respectively, one finds 

y(v, t) = y+(v, t) - y-(v, t). 

If these contour integrals are now evaluated taking into account the 
zeros of the denominators of the integrands and the form of z on the 
paths, it is readily verified that the result is identical to that given by 
(8.11) from the normal mode approach. 

While a detailed discussion of the application of these ideas to 
quantum scattering and field theory is not possible here, their rele­
vance can be seen from consideration of Schrödinger's equation for a 
simple nonlocal interaction. Specifically, consider 

= - - ! • + V(r) I 7 ( r W ) « * V 
2m J 

i — 
dt 

and restrict attention to / > 0 . Let SF be the Laplace transform of \f/ as 
defined by (8.13), let ^o denote the value of yp at t = 0, and define >P 
as the Fourier transform of ^f with respect to r, letting ^ 0 be the trans­
formed initial value of ^o, by means of 

i r 
KF' J (2TT)3'2 J V ' J 

If one sets E(p)=p2/2m, the application of the double transform 
yields the integral equation 

(8.16) [E(p) - *]§ - V(p) fv(p')*(p',z)d*p' = - i*o. 

This is readily solved to yield 

•=. , . [*«(#) + C(z)T(p)] 
ty(p, z) = — t 

E(p) - z 
with 

{z) J E(p') - z / L J E(p') - z\ ' 

Application of the inverse Laplace transform then gives 

The similarity of (8.14) with (8.16) and (8.15) with (8.17) is appar­
ent. To continue the discussion, one displaces the contour C+ down 
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as far as possible taking into account the pole at z = E(p), the singu­
larities of the denominator of the coefficient of Tip) in (8.17) (these 
are readily seen to be the bound states), the existence of a branch cut 
along the positive real axis which occurs, and one considers, in addi­
tion, the final value problem. The interested reader is referred to the 
lectures [16] of Case where the limiting processes necessary to ap­
proximate a wide class of potentials by kernels of the type considered 
are carried through. 

9. Wiener-Hopf and Cauchy singular integral equations. Next, we 
will note how these same ideas can be used to include the theory of the 
Wiener-Hopf integral equation under the theory of singular integral 
equations. The observations below are unpublished and due to con­
versations between K. M. Case and the author. For simplicity we 
will limit consideration to the equation 

(9.1) <t>(x) = f K{x - y)4>{y)dy 
J o 

but the extensions to the general situation are immediate. 
METHOD I. Introduce the Heaviside unit function and write (9.1) 

as 

4>{x) = ƒ K(x - y)<f>(y)h(y)dy. 

Assuming that Fourier transforms exist and are denoted by the cor­
responding barred functions, this can be written as 

$(k) = 'Eik) f $(k')h(k - V)dV. 

However, from the theory of generalized functions, (see for example 
page 43 of Ligh thill [VII ]), the Fourier transform h(k) of h(t) exists 
as a distribution and is given by 

1 1 
— Ô(k)+—r- • 
2 2wik 

Insertion then yields the singular integral equation 

_ M r 0 0 W)iV <?(£)) 

(9.2) W ,_ I W{_j^JJF +-L2}. 
METHOD II . Introduce the function 
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yp(x) = <£(*), 0 g x < oo, 
= 0, - oo < x < O, 

so that (9.1) becomes 

(9.3) *(*) = f £ ( * - y)iKy)<*y. 

Defining the functions 
1 r±co 

$±(k) = ± — I <t>(x)e-ikxdx 
2wJo 

equation (9.3) transforms into 

(9.4) $(*) = $+(*) + £_(*) = (2Tyt*Km±(k). 

Let iV+te) be the analytic continuation of #+ to the upper half plane 
and N~(z) be that of — $_ to the lower half plane so that 

N+(k) - N-(k) = $+(*) + £_(*) = $(*). 

Now consider the analytic function 

• * * ( * ' ) < » ' 

z 

According to the Plemelj formulas we have 

1 /•* $(k')dk' 1 
(9.5) N±(h) = fe(») = — P - ^ — ± - * ( * ) . 

Insertion of (9.5) into (9.4) yields (9.2) 
METHOD III. Introducing a convergent factor (9.1) becomes 

$(k) = lim f K(x - y)<r**4>(y)dy 
«-K) J 0 

with a Fourier transform given by 

N(z) = —; 1 — — 
2TTÎ J _M k — 

"K(k) r » <j>{k')dk' 

2wi J _ /&' - (jfe + w) 

Allowing €—»0 one obtains 

which again is the same as (9.2). 
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While the above has been done formally, it is not a difficult task to 
state sufficient conditions for the validity of the three methods. We 
will not enter into this explicitly but shall refer the reader to the 
papers by Sparenberg [93; 94], Widom [103] and Krein [52] Krein 
and Gohberg [54] for the rigorous theory of these equations and to 
the report by Bremmerman and Durand [5] who discuss a generaliza­
tion of the problem of analytic continuation for distributions (cf. 
also Köthe [50] and Tillmann [95]). 

The examples we have briefly sketched serve to illustrate how a 
unified approach to many apparently unrelated problems of mathe­
matical physics can be achieved by the use of distributions and the 
methods due to Plemelj in which the concept of self- or non-self-
adjointness does not enter explicitly. 

10. Variational principles for non-self-adjoint problems. It is well 
known that variational principles such as those associated with the 
names of Rayleigh-Ritz, Dirichlet, Glerkin, Treftz, and Schwinger 
have proved valuable both theoretically and practically for many 
self-adjoint problems of both applied and appliable mathematics 
involving compact domains. On occasion they have even been used 
with moderate success for non-self-ad joint compact problems but 
often here if the natural bilinear form of the problem is used, the 
stationary points obtained are not minima and a convergence theory 
of successive improvement is often lacking. For noncompact self-
or non-self-ad joint problems the situation is much more complicated 
and a general theory is lacking. I t is, of course, true that variational 
principles such as those of Schwinger, Hulthén and Kohn,and Mac-
Farlane have been used for such problems but the absence of a firm 
theoretical basis does not make it surprising that they have often 
yielded unsatisfactory results. In fact, at this time, only the principle 
due to Garabedian [30 ] which we will describe shortly, seems to rest 
on firm mathematical grounds. 

While we do not intend to enter into a detailed discussion of each 
of the principles that have been used for noncompact problems, we 
will at tempt to summarize their current status. 

Perhaps the most widely used of these is that attributed to Schwing­
er which in its usual form yields a value of a transmitted or reflected 
scattering amplitude at its stationary points and which depends upon 
the real symmetry of the free space Green's function of the Helm-
holtz equation governing the scattering problem in scalar theory or 
the interactionless state in quantum theory. 

From an abstract point of view, one obtains the Schwinger varia­
tional principle for the equations 
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Ax=f, 
A*y = g, 

whose solutions are, say, xo, yo when, with respect to some inner 
product, {Ax, y) = (x, A*y), by considering the expression 

/ = (A(x- xo), y - yo) = (Ax, y) - (ƒ, y) - (*, g) - (Ax0, y0), 

which is clearly stationary with respect to independent variations of 
x, y. Now if in the equivalent expression 

H = (Ax, y) - (ƒ, y) - (*, g), 

one requires that H at its stationary points be independent of the 
scale of x and y; i.e. invariant under x—>rx' and y—^fJiy', one readily 
finds that alternately 

n = (f,y)(*,g) 
(Ax, y) 

will be stationary if the equations A(rxi)=f} A*(ixyó)=g hold, pro­
vided that (xo, g)9*0, (ƒ, yo)^0. In this form the value of H at a 
stationary point admits a physical interpretation in scattering prob­
lems. The form of H above suggests that consideration of its recipro­
cal plus an appropriate normalization and rotation of coordinates 
should yield a stationary expression similar to (x')2— (y')2 so that 
the saddle nature would be apparent. Actually while this is in prin­
ciple true the situation is more complicated in that H is usually com­
plex valued. None the less, the process can be carried through by 
working with the cartesian product of two Hubert spaces and as 
Dolph and Ritt [2l] have shown, the property that makes this dem­
onstration possible is the dissipative nature of the operators A for 
scattering processes. 

In particular for the case of one-dimensional quantum scattering 
one can consider for a positive (or negative definite potential) V(x) 
the symmetrized operator on L2(— <», 00) defined by 

K<t> = — : f U(z)e*i'-'iU(y)4>(y)dy 
2kiJ », 

where C72(x) = V(x)^0. 

THEOREM 10.2. (a) K is a bounded compact linear operator whose 
norm satisfies 

iwi<èm* 
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(b) If 0o is defined by <f>o(x) = U(x)eikx, then 

(#0 , f) - (0, K1>) = — : {(0, 0o)(0o, *) + (0, *o)(*o, *)} 

/or aK 0, ^ in L2(~ °°, °°)• 
(c) The operators A=I—K, A*=I—K* have bounded inverses in 

the Hilbert space H consisting of the orthogonal complement of the null 
space of I—K. 

(d) The Fredholm equations 

A<t> = 0o, A*$ = 0O, 

have a unique solution 0i and \p\ in H such that 

(0i, 0o) = (0o, #i). 

(e) If || V(x)\\2<2k then (0i, 0O) ^ 0 . 

In the above, property (b) for ^ = 0o is identical to the relation 
(7.1) and is the dissipative property while (c) and (e) are special 
instances of Theorem (7.3). 

In these terms the Schwinger variational principle for the transmis­
sion coefficient consists of the problem of rendering 

J = (A*, « 
stationary subject to the normalizing constraint 

(10.1) (0i0o)(0o,#) = 1 

or, in terms of the Lagrange multiplier rule, the expression 

/x = / - X ( 0 , 0 o ) ( 0 o , # ) . 

For this we have the precise statement: 

THEOREM 10.2. There exists one value of X, Xi such J\ can be made 
stationary. Xi is equal to the value of J when J is made stationary subject 
to the constraint (10.2). Simultaneously Xi = l / (0i , 0o). The pair 0i, 
\p make J stationary subject to (10.2) if and only if there exists an a 5*0 
such that 0=aXi0i, = (l/a)Xi^i. 

The above principle can be reformulated as a quadratic problem by 
introducing the space H=H®H whose elements <j> are of the form 
[0, i//], where 0, \p are in H, and the inner product is given by 

Now if C is the mapping of If into H defined by C<J» = C [</>, \f/ ] = [#, $ ] 
then C2 = J, <C<j>, C<t)«<t, <f>), C(X<j>)=XC<J>. If 
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$0 = [00, 0o], ifco = [00, — 0oJ 

then 

Qj)o = 4>0, 

Cifco = — ifco. 

If L is the mapping of H into ü defined by 

14 = L[0, *] = U«, ^ ] 
then L is a linear operator; L* the conjugate of L is given by L*$ 
= [4*0, i l V ] and L*C= CL. Finally, if we now define / = 2(L<i>, C<>) 
and consider the problem of making this stationary subject to the con­
straint 

(10.2) «>, *o>2 - «>, tto>2 = ^ 

or, equivalently, consider the free problem of making 

/x = /-X{(<>,<>o)2-«>,i to)2 

stationary, we have the results: 

THEOREM 10.3. There is a unique value of X, Xi such that J\ can be 
made stationary. Xi is the stationary value of J subject to the constraint 
(10.2). Xi is the same as in Theorem (10.1). <j>i= [Xi0i, Xi^i] is a station­
ary point, and all other stationary points are of the form <[>(a) 
[aXi^i, (l/a)Xifc], aj*0. 

From the equivalence of Theorems (10.2) and (10.1) we have the 
following characterization : 

THEOREM 10.4. Let 4>8 = a\i<t>i, ^ , = (1/Û:)XI^I be a pair of f unctions 
which make J= {A<j>, $) stationary subject to the constraint (0, 0o)(0o, 0) 
= 1. Then if 0 and \p are varied about <j>8, \[/8 subject to the constraint then 

(a) If \a\ ?*1, and if 0 + # is held constant, then Im / will have a 
local maximum at 0„ yf/8. /ƒ 0 — # is held constant, Im / will have a local 
minimum at 0„ xj/,. 

(b) If \a\ = 1, and if 0 + # is held constant, then Im J will have a 
global maximum. 

Similar characterizations can be obtained for the reflection ampli­
tude in this case and the theory can be generalized to three dimen­
sions. While Dolph [19] has shown that similar behavior can be ex­
pected from other than quantum mechanical scattering problems, 
the occurrence of Fredholm integral equations of the first kind makes 
it difficult to establish similar results rigorously there. In addition 



i96i] NON-SELF-ADJOINT PROBLEMS IN MATHEMATICAL PHYSICS 55 

the above suffers from the requirement of definiteness of the given 
potential and it may be conjectured that this limitation can be re­
moved only by consideration of the theory of Hubert spaces with an 
indefinite metric whose theory we shall comment on shortly. 

The real symmetry of a class of dissipative differential operators 
can be used to provide a formal extension of the Rayleigh-Ritz prin­
ciple. Thus for the differential equation with q(x) real but subject to 
a radiation condition at infinity such as for the problem treated by 
Phillips [83]; namely, 

(10.3) " " " + [«<*> " Xh » ° ' 

y(a) = 0, lim ay(x) + Py'(x) = 0, a, ft complex, 
a—* to 

the expression 

R(y) = ƒ y[-y" + g(x)y]<ix/ ƒ y*dx 

is stationary as first observed and used by MacFarlane [71 ]. For 
this case the eigenfunctions are orthogonal with respect to a real 
inner product (cf. also Sommerfeld [XIII, Appendix II , Chapter V] 
in spite of their complex values and it is a consequence of the theory 
of Phillips that all the complex eigenvalues will be confined to a half-
plane. (Alternately, in terms of a hermitian inner product, the adjoint 
eigenfunction corresponding to the complex conjugate of a given 
eigenfunction is easily seen to have the property that its complex 
conjugate is identical to the eigenfunction corresponding to (10.3).) 
The confinement to a half-plane suggests the possibility of obtaining 
a characterization of the imaginary parts of the eigenvalues in this 
case for if an expansion theory existed in terms of the real orthonor­
mal eigenfunctions, say y== 2 " Ziyi{x)> R(y) would reduce to 

00 

R(y) = R(zh 02, • • • ) = 2 *<*</]C z* • 
l 

While the absence of precise expansion theorems for even the second 
order case are missing on the infinite interval, it is reasonable to con­
jecture that a sequential min-max characterization of the imaginary 
part of the eigenvalues of a dissipative differential operator does in 
fact exist, under suitable if as yet unspecified conditions. In particular 
for the finite dimensional analogue, that of finding the stationary 
points of a quadratic form 
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with complex coefficients possessing real symmetry aij = aji subject to 
the "real" normalization condition 

H(z) = £ s? = 1 

such a principle does in fact exist if the form is assumed diagonalizable 
and if its spectrum is confined to a half-plane as it would be if it is 
to be considered a reasonable approximation to a dissipative operator. 
In particular, we have the following theorem (Dolph, Marx, and 
McLaughlin [20]). 

THEOREM. Let Q(z) =R(x, y) +il(x, y) be a complex symmetric quad­
ratic form having a spectral theorem, and let the imaginary parts of the 
characteristic values of Q be positive. The lowest imaginary part is the 
smallest value attained by the maximum of I(x, y) for vectors x, y 
satisfying the conditions 0 ^ I(x, y)^T (where T is the imaginary part 
of the trace of Q), H(z) = l and (n — 1) arbitrary, linear, homogeneous 
constraints with real coefficients on the components of the In-dimensional 
vectors x, y. If u*, vk

t k = 1, • • • , m— 1 are (ra — 1) vectors for which 

l[uk, vk] = /**, k = 1, • • • , (m - 1) 

and also 

(u> + iv>, uh + ivh) = dij, 

then fjLm is the smallest value attained by the maximum of I(x, y) for 
vectors satisfying the conditions 0^I(x, y) ^ T, H(z) = 1, 

(x + iy, u* + ivk) = 0, k = 1, • • • , (m - 1) 

and (n—m) arbitrary linear homogeneous constraints. 

The reformulation of this problem independent of the dimension of 
the underlying space and its generalization to Hubert space are open. 

An interesting but as yet largely unexploited variational principle 
has been developed by Garabedian [30]. (Cf., however, the report 
by Wilcox and Hartman [114].) One defines the norm 

ƒ I I du 12\ 

i l « | 2 + - \*T 
, * | - r V \07l\ J 

for solutions of the Helmholtz equation in a region exterior to a closed 
domain D. Now if v is the solution of 
(10.4) v2v + v = 0 

satisfying 
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ƒ I dv I2 

iv \d2T = 0 

and taking the value ƒ on the B, the boundary of D, and if w is the 
solution of (10.4) and (10.5) taking the va lue /* on B, then the func­
tion 

v + w* 
UQ = 

is characterized by the property that among all the solutions of (10.4) 
with the boundary values/ , it has the smallest norm, 

||tfo|| = min 11 «| |. 

While this principle clearly has the advantage of being a minimum 
rather than a stationary principle, the necessity of having to consider 
the solutions v and w makes its application difficult. 

The situation is more confused in regard to more straight-forward 
analogues of the Dirichlet principle for compact problems and any 
at tempt to pass from the Laplace equation to the Helmholtz equation 
directly leads, in the words of H. Weyl [102], to integrals of doubtful 
convergence. The only principle which has been used extensively in 
calculations is that due to Hulthén-Kohn [40; 48; 49], which for the 
case of Schrödinger's time independent equation 

[V2 + k2 - V(r)]f = 0 

takes the form 

(10.6) ±wA\f{ku - * 0 = 4*A\u(ku -k2) + ƒ * 2 {V 2 + k2- 7}iMV. 

Here ^% represents a wave function incident along the direction ki 
and is assumed to be of the asymptotic form 

*i~AAe**«+Mki,k)^ 

where ft(kit k) represents the trial scattering amplitude in the direc­
tion k of a plane wave incident along ki. In (10.6) the term on the 
left-hand side denotes the true but unknown scattering amplitude of 
scattering from the direction ki to — k2. The second term on the right-
hand side is stationary for arbitrary variations of \pi with the above 
asymptotic form and is actually zero at its stationary points so that 
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(10.6) may be thought of as a variational principle for trial functions 
with correct asymptotic behavior but probably false scattering ampli­
tudes. Now if the Schrödinger operator is eliminated by the use of the 
free space Green function of the Helmholtz equation, is readily seen 
to be equivalent to the principle of Schwinger. That is, the correct 
wave function ^» satisfies the integral equation 

/

{fa if ft I 

—^ yr V{r')Ur')dh' 
47T I r — r' I 

which, with the well-known relation (cf. Morse and Feshbach [XI, 
Part II]) 

ƒ(*!, - JW = - ^ f e**"'V(r')Ur')dr' 
4TTJ 

can be written as 

(10.7) Ur) = - ƒ Gif, r') V{r')Ur'W 

where 

I eik\t-T'\ 
G = eiki.reik2.r> _|_ 

W(*i, ~*0 4ir I r — r' I 

Now it should be noted that whatever \pi is used in the right-hand 
side of (10.7), the left-hand side is a wave function whose scattering 
amplitude from k\ to — k2 is correctly given by /(fei, — fe2). Thus if 
one takes trial functions \pi, i— 1, 2, 

# , - - ƒ G( r , rOF( rO^( rO^ ' 

it will follow thatƒ*(&., — &2) =/(*i» — £2) so that J(fei, — fe2) = 0 . Sub­
stitution shows that this, however, is 

ƒ f f eik\r-r'\ 

+ w^(/^#w'*''*)(/*,we'v'FW<i'') 
and when this is solved for l/47r/(&i, — &2) it yields the Schwinger 
variational principle 
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1 

4TT/(*I , -k2) 

eik\r-T>\ 

ƒ Wfr&r + ƒ ƒ *2F(r) 4 T n VVteiWriV 

( f f*V(r)eik*'rfflr\( f ^(^e^'V^dhJ 

and is therefore subject to the same type of mathematical criticism. 
Often in practice it seems to be preferable since it does not involve 
such complicated integrals. These same criticisms also apply to the 
near-field generalizations of these same principles as developed by 
Levine [62] and Dolph and Altshuler [23]. 

In an at tempt to overcome the difficulties which occur because the 
indefinite natural Hubert metric associated with many elliptical dif­
ferential equations such as Schrödinger's and Helmholtz's, Nevan-
linna in a series of papers [79] developed a theory of Hubert spaces 
with an indefinite metric. Recently Krein and Iohvidov [52] have 
also systematically studied the spectrum of linear operators in these 
spaces. One of Nevanlinna's results was a generalized Dirichlet prin­
ciple appropriate to self-ad joint elliptic operators on a bounded do­
main and this principle has been used by Louhivarra [68] to give a 
discussion of the existence and uniqueness of the solution to the gen­
eralized Dirichlet boundary value problems for such second order 
equations. Subsequent to this, Browder [6; 7] and Littman [66] 
generalized his results to higher order equations and at the same 
time removed the restriction of self-adjointness and the limitation 
to bounded domains. Recently, Louhivarra [69] examined the rela­
tionship between the results of Browder and Littman and gave a char­
acterization of the range of bounded linear transformations in indefi­
nite Hubert spaces. At the same time, Hubert spaces with an indefinite 
metric are playing an increasing role in physical theories following 
the success achieved by Bleuer [2] and Gupta [36] in the theory of 
quantum electrodynamics. An introduction to the way such spaces 
are introduced in the physical theories as well as a discussion of some 
of the difficulties caused by the existing theory can be found in the 
article of Prandit [86]. 

In this approach, in order to solve the Dirichlet problem for a differ­
ential operator Lu = ƒ in an open domain D of three dimensional space 
with u = g on 5 , the boundary of this domain, one first extends the 
function g to the interior of D and replaces the above problem by that 
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of finding a v such that Lv = jfi in D and v = 0 on B where the relation­
ships are v — u — g and fi=fLg. In order to obtain a weak solution one 
notes that there is a bilinear form associated with the second problem 
obtained by integration by parts, that is, under suitable restrictions 
on the coefficients. 

(Lv, w) = (Ju w) 

= (v, L*w) = B(v> w). 

(The bilinear form is not uniquely determined except in the second 
order case.) Next the known linear functional 

F(P) = (Ju «0 - B(g, «0 

is considered and if this can be shown to be bounded, then there 
exists a unique z such that F(w)=B(z, w) = (fu w)—B(gy w). The 
solution to the generalized problem is then given by v = z+g. More 
precisely, in the second-order case, let C(2) be the linear space of twice 
continuously differentiable complex-valued functions defined over 
the closure of D and let H2 be the completion of C(2) with respect to 
the norm 

\\«\\l=f\u\Vx + f\Vu\2d\ 

while H% is the completion with respect to the same norm of the sub­
set of functions from C2 which have compact support in D. The 
generalized Dirichlet problem then consists of being given a g in H2 

and a n / i in L2 to find a v in H2 such that v—g belongs to Hi and for all 
wmH°2, 

B(v - g, w) = (Ju w) - B(g, w). 

Since the bounded bilinear form can be extended boundedly to 
functions in H2, the form B(z, w) can be written as 

B(z, w) = (Az9 w) 

where A is a bounded operator on H^ and the usual L2 inner product 
occurs in the right-hand side. If g is taken to be zero the generalized 
problem can then be stated as that of finding a z in H% such that 

(Ju w) = (Az, w) = (z, A*w) 

for all win H^ where -4* denotes the adjoint of A. A necessary condi­
tion for the solvability is clearly that ƒ be orthogonal in the L2 sense 
to all elements of the null space of A*. This condition is, however, 
not sufficient and in order to obtain a sufficient condition, it is neces-
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sary to obtain a somewhat larger space than the above null space. 
This is accomplished in case the bilinear form B(z, w) is hermitian, 
the case considered by Nevanlinna [79] and applied by Louhivarra 
[68] by decomposing Hi with the aid of A. Since A is self-adjoint, 
spectral theory implies that there will be a resolution of the identity 
such that 

(10.8) Az = f XdExZ. 

There is no loss in generality in assuming the range to be ( — 1 , 1). 
In order to obtain a self-adjoint operator in the general case, Littman 
[66] considers the hermitian16 part of B, namely, 

B(z, w) = B(z, w) + B*(w, z) 

for which there will be associated a self-ad joint operator A defined on 
Hi such that 

B(z, w) = (Az, w) = (z, Aw) 

for all z, w in H\. This operator will of course admit a spectral repre­
sentation in the form (10.8) so that in all cases it is possible to define 
subspaces 5+ and SL as the respective ranges of the operators 

I dE\ and I dE\, for a given e > 0. 

Further, on S+ and S_, 

| B(z, z)\ è | Re B(z, z) | à €(«, z) 

so that the lemma of Lax-Milgram (for a statement and proof cf. 
[69]) can be applied to guarantee the existence of unique 5-projec-
tions w+, wL of an arbitrary element w of H% into the subspace 5+ 
and SL respectively. If one now forms 

WQ = W — W+ ~ W-

and defines «SJ to be the subspace of all elements w0 obtained in this 
manner, Littman proved the following: 

THEOREM. A sufficient condition for the generalized Dirichlet problem 
to have a solution is that for all w% in So, 

(/i, w\) - B(g, wl) = 0. 

16 Note the relation to the theory of dissipative operators of §7. 
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This sufficient condition of Littman's has been obtained as a corol­
lary by Louhivarra [69 ] from a generalization of a result first proved 
by Browder. Before stating it, let 

Ek = ( dEx, k= ± 1 , ± 2 , -L 
by the family of projections associated with the above resolutions of 
the identity for the intervals 

a/k ^ X < — — > k = - 1, - 2 , • • • , 
7T*: k - 1 

a/(k + 1) < X ^ a /é , * = + 1, + 2 , • • • . 

In terms of this family of projection we have the following: 

THEOREM. Let A = T+iS be a closed unbounded transformation, for 
operators T and S having the same domains with T self-adjoint and S 
symmetric and let A* be its adjoint. If Ek denotes the above family of 
projections for the operator (A+A*)/2, then in order for an element y 
of Hi to be in the range of the transformation A it is sufficient that there 
exist a sequence of positive integers &;- ( j = l , 2, • • • ) and a sequence 
y* 0'==1»2, • • • ) for each k = 1,2, • • • of elements from the orthogonal 
complement of the null space of the transformations so that {yf = 0) 

lim (x, y - X) yA = 0; (*> *)* = Ml**' 
\ A—1/ / 2 

for each x in H2 and 

00 

sup 2^ *2||yi*||2 < °°-

In addition there is the following important special case due to 
Browder [6]. 

THEOREM. If A is a bounded self-adjoint transformation of the space 
i?2 and E\ the corresponding resolution of the identity, then the linear 
set M of those elements y from H2for which the integral 

d\(E\y,y)2 

- i X^ ƒ. 
exists is identical to the range of the transformation T. 

These results form a mathematical basis for Dirichlet principle for 
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scattering problems when they are considered together with the fol­
lowing theorem of Wilcox [112]: 

THEOREM. Let C2 denote the class of twice continuously differentiable 
functions satisfying the Helmholtz equation in the closure of a region V 
exterior to a closed bounded surface regular in the sense of Kellogg and 
which also satisfy the Sommerfeld radiation condition ; then the improper 
integrals 

f | u\*d*r 
J v 

and 

f | Vu\Hzr 
J v 

are convergent f or I m k>0 for all functions u in C^ 

In particular, in connection with the reformulation of the radiation 
condition in terms of square integrability as used by Ritt and Kazar-
inoff [87], the extensions of the above theory to appropriate Hubert 
spaces do not appear difficult and it is reasonable to conjecture that 
this extension of Dirichlet principle to scattering problems will be 
systematically carried out and evaluated as to its usefulness in the 
near future. 
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