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Let T be a measurable transformation on a measure space (2, @, P),
with 0 <P(Q) < 0. Call T absolutely continuous if P(4)=0 implies
P(T4)=0. The transformation T is said to have the Birkhoff
recurrence property if, for each A€ @, lima.,(1/n) Y 228 x4(Tiw)
exists for almost all w& Q. It has been shown that if T is absolutely
continuous and has the Birkhoff recurrence property, then there
exists a non-negative, finite, countably additive measure Q on @ such
that (i) Q<KP, (ii) Qand P agree on invariant sets, (iii) Q(4) = Q(714)
for each A € @ [3]. In this paper we prove the following result.

THEOREM. If T is an absolutely continuous measurable transforma-
tion on (Q, @, P), where 0 <P(Q) < x, then there exists a non-negative,
finite, finitely additive measure Q with the following properties: (i) P(A)
=0 tmplies Q(A)=0; (ii) Q and P agree on invariant sets; (iii) Q(A4)
=Q(T'4) for each A& Q.

We shall only outline the proof here. Let ® be the collection of all
invariant sets; that is, BE® if and only if B=T7"B. Then ® is a
g-subalgebra of @. Consider the real algebras L*(®) and L*(®), and
represent them as the algebras R(X) and R(Y), respectively, of all
continuous real-valued functions on the extremally disconnected,
compact, Hausdorff spaces X and Y. The Boolean algebras E(X)
and E(Y) of idempotents in R(X) and R(Y) are both complete.
Moreover there is a natural isomorphism of R(Y) into R(X) which
maps E(Y) into E(X). The dual of this is a continuous mapping r of
X onto ¥, and the completeness of E(Y) assures that the mapping is
an open mapping. Theorems of Gleason [1] and Halmos [2] assert
that = has many cross-sections.

For any fER(X) define functions Mf and mf on Y by setting
Mf(y)=1ub{f(x):7rx=y} and mf(y)=glb{f(x):7rx=y}. Since 7 is
open, both Mf and mf are in R(Y). Call a linear transformation
u: R(X)—R(Y) a generalized mean if mf Suf < Mf for each fER(X).
Every cross-section of 7 gives a mean that is a homomorphism. An
absolutely continuous T induces a linear transformation ¢ of R(X)
into itself. A generalized mean u will be called invariant if uff=uf
for each fER(X). The set of all means is a nonempty, compact,
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convex set in the weak operator topology on linear transformations
from R(X) to R(Y). If u is a mean, then uf is also a mean, and the
mapping u—wué is continuous. An application of the Tychonoff fixed
point theorem yields a mean uo such that uof =uo. That is, there is an
invariant generalized mean.

Finally, any invariant generalized mean u can be translated into a
linear transformation of L*(®) into L*(®), which will also be denoted
by u. For each A€ @, define Q(4) = [fouxa(w)dP(w). Then Q has all
the required properties.

The transformation T is said to have the Poincaré recurrence
property if, for each A€ @, Zﬁ,l x4(Tw) diverges for almost all
w&A. If an absolutely continuous T has both the Poincaré and Birk-
hoff recurrence properties, then the countably additive and invariant
Q discussed above has the further property that Q=P [3]. It seems
plausible that an absolutely continuous 7" has the Poincaré recurrence
property if and only if any measure Q satisfying the conditions of the
theorem above has the further property that Q(4)=0 implies
P(4)=0. This condition on Q certainly implies the Poincaré prop-
erty; we have been unable to prove the converse.

The notion of generalized mean used in the proof above has a wide
range of applicability, and can be placed in a more general setting.
An account of this concept will be given elsewhere, along with a de-
tailed proof of the theorem stated here. For the moment, we note
only that, as it is used here, it is an extension of the concept of condi-
tional expectation. It is the linearized form of the notion of a constant
for a quantifier in algebraic logic [2], and is therefore the probabilistic
analogue of this notion.
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