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Let P b e a measurable transformation on a measure space (Q, Cfc, P ) , 
with 0<P(£2) < oo. Call T absolutely continuous if P(A) = 0 implies 
P(T~*A)=0. The transformation T is said to have the Birkhoff 
recurrence property if, for each -4EG*, limn-co(lA0 2"~o XA{TJ'CO) 
exists for almost all co£0. I t has been shown that if T is absolutely 
continuous and has the Birkhoff recurrence property, then there 
exists a non-negative, finite, countably additive measure Q on & such 
that (i) Q « P , (ii) Q and P agree on invariant sets, (iii) Q(A) = Q(T~lA) 
for each 4 £ û [3 ]. In this paper we prove the following result. 

THEOREM. If T is an absolutely continuous measurable transforma­
tion on (0, Q,, P ) , where 0 <P(fl) < <*>, then there exists a non-negative, 
finite, finitely additive measure Q with the following properties: (i) P(A) 
= 0 implies Q(A)=0; (ii) Q and P agree on invariant sets; (iii) Q(A) 
= Q(T~lA) for each A^a. 

We shall only outline the proof here. Let (B be the collection of all 
invariant sets; tha t is, 5 Ç ( B if and only if B^T~lB. Then (B is a 
cr-subalgebra of Ofc. Consider the real algebras L°°(a) and i°°((B), and 
represent them as the algebras R(X) and P ( F ) , respectively, of all 
continuous real-valued functions on the extremally disconnected, 
compact, Hausdorff spaces X and F, The Boolean algebras E(X) 
and E(Y) of idempotents in R(X) and R(Y) are both complete. 
Moreover there is a natural isomorphism of R(Y) into R{X) which 
maps E(Y) into E(X). The dual of this is a continuous mapping r of 
X onto F, and the completeness of E(Y) assures that the mapping is 
an open mapping. Theorems of Gleason [ l ] and Halmos [2] assert 
tha t 7T has many cross-sections. 

For any f(~R(X) define functions M f and mf on F by setting 
Mf(y)=lub{f(x):irx = y} and mf(y) = gib{ƒ(x): irx = y}. Since ir is 
open, both Mf and m/ are in R(Y). Call a linear transformation 
lx: R(X)-*R(Y) a generalized mean if mf^\xf^Mf for each fÇ_R{X), 
Every cross-section of w gives a mean that is a homomorphism. An 
absolutely continuous T induces a linear transformation t of i?(X) 
into itself. A generalized mean \x will be called invariant if \xtf*=\xf 
for each fÇzR(X). The set of all means is a nonempty, compact, 
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convex set in the weak operator topology on linear transformations 
from R(X) to J?(F). If ju is a mean, then tit is also a mean, and the 
mapping p—>txt is continuous. An application of the Tychonoff fixed 
point theorem yields a mean JU0 such that pot =Mo. That is, there is an 
invariant generalized mean. 

Finally, any invariant generalized mean JU can be translated into a 
linear transformation of !>(($) into L°°((B), which will also be denoted 
by ix. For each A £ ®, define Q(A) =/Û/XXA(CO)<1P(U>). Then Q has all 
the required properties. 

The transformation T is said to have the Poincaré recurrence 
property if, for each AÇz@>, ]C£i XA(T><Û) diverges for almost all 
œÇ~A. If an absolutely continuous T has both the Poincaré and Birk-
hoff recurrence properties, then the countably additive and invariant 
Q discussed above has the further property that Q = P [3]. It seems 
plausible that an absolutely continuous T has the Poincaré recurrence 
property if and only if any measure Q satisfying the conditions of the 
theorem above has the further property that Q(A)=0 implies 
P(A)~0. This condition on Q certainly implies the Poincaré prop­
erty; we have been unable to prove the converse. 

The notion of generalized mean used in the proof above has a wide 
range of applicability, and can be placed in a more general setting. 
An account of this concept will be given elsewhere, along with a de­
tailed proof of the theorem stated here. For the moment, we note 
only that, as it is used here, it is an extension of the concept of condi­
tional expectation. I t is the linearized form of the notion of a constant 
for a quantifier in algebraic logic [2], and is therefore the probabilistic 
analogue of this notion. 
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