
MATRICES OF ZEROS AND ONES 

H. J. RYSER1 

Let A be a. matrix of m rows and n columns and let the entries of 
A be the integers 0 and 1. We call such a matrix a (0, 1) -matrix of 
size m by n. The 2mn (0, 1)-matrices of size m by n play a funda­
mental role in a wide variety of combinatorial investigations. One 
of the chief reasons for this is the following. Let X be a set of n ele­
ments Xi, X2, • • • , xn and let Xi, X2, • • • , Xm be m subsets of X. Let 
dij= 1 if Xj is a member of Xi and let 0,7 = 0 if Xj is not a member of 
Xi. The a»/s yield a (0, 1)-matrix 4 = [a»y] of size w by w called the 
incidence matrix for the subsets Xi, X2, • • • , Xm of X. The l 's in 
row i oî A specify the elements that belong to set Xi and the l 's 
in column j of A specify the sets that contain element x3-. The matrix 
A characterizes the m subsets Xi, X2, • • • , Xm of the set X. 

Let A be a (0, 1)-matrix of size m by n. het the sum of row i of 
A be denoted by r» and let the sum of column j of 4̂ be denoted by Sj. 
We call 

R = ( r i , r 2, • • • , f m) 

the row sum vector and 

S = (s 1, S2, • • • , .?n) 

the column sum vector oi A. If r denotes the total number of l 's in A, 
then it is clear that 

m n 

i = i y=i 

The vectors i£ and 5 determine a class 

21 = « (£ , S), 

consisting of all (0, 1)-matrices of size m by n with row sum vector 
R and column sum vector 5. In this paper we summarize portions of 
the extensive literature on (0, l)-matrices and give special emphasis 
to problems dealing with the class 21 (R, 5) . We discuss diversified 
topics including traces, term ranks, widths, heights, and combina­
torial designs. A good deal of the subject matter is still in its infancy 
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and throughout the paper we mention a number of unsettled ques­
tions. A rather lengthy but by no means complete bibliography ap­
pears a t the end of the paper. 

1. The class 3ï(i?, S).Let R = (ru r2, • • • , rm) and S = (su s2} • • • , $» ) 
be two vectors whose components are nonnegative integers. Let 
2t(.R, S) denote the class of all (0, 1)-matrices of size m by n with row 
sum vector R and column sum vector S. We describe a simple neces­
sary and sufficient condition on the vectors R and 5 in order that 
the class StCR, S) be nonempty. Let 

(LD 5,- = (1, 1, , 1, 0, 0, ,0 ) (i = 1, 2, m) 

be a vector of n components with l 's in the first r» positions and 0's 
elsewhere. A matrix of the form 

(1.2) 

'Si 

L̂ m J 

is called maximal and we refer to A as the maximal matrix with row 
sum vector R. Let 5 = (Si, s2, * • • , sn) be the column sum vector of 
A. Then 

(1.3) 2 u = ]C h 

are conjugate partitions and the class 21 (R, S) consists of the single 
matrix A. Let S= (si, s2, • • • , sn) and 5* = (si*, s2*, • • • , s*) be two 
vectors whose components are nonnegative integers. The vector S is 
majorized by £* [32; 46] 

(1.4) S<S* 

provided that with subscripts renumbered 

(1.5) $ i è * è • • • ^ *», 

(1.6) st + s 2 + • • • +Sigs? + sf+ • 

(1.7) s i + 52 + + Sn = S? + S2* + ' 

*1* è *2* è • 

+ sf 
(» = 1, 2, • • • 

+ s*. 

• • à s* 

, » - l ) 

We are now in a position to state the conditions under which the 
class 31 (R, S) is nonempty. 
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THEOREM 1.1. Let R=(ri, r2, • • • , rm) and S=(s i , s2, • • • , sn) be 
two vectors whose components are nonnegative integers. Let A be the 
maximal matrix of size m by n with row sum vector R and column sum 
vector S. Then a necessary and sufficient condition in order that the 
class 31 (R, S) be nonempty is that 

S <S. 

The necessity of Theorem 1.1 is obvious. Proofs of the sufficiency 
appear in [17] and [58]. An application of Theorem 1.1 involving 
the completion of r by 5 latin rectangles to n by n latin squares is 
investigated in [58]. Generalizations and a critical survey of a wide 
range of related topics are discussed in [34]. A difficult problem re­
quires the determination of the precise number of matrices in %(Ry 5). 
This has been studied but suffice it to say the number of matrices in 
31 (i?, S) is an exceedingly intricate function of R and S [67]. Further 
insight here would be of considerable interest. In what follows we 
always assume that the class 31 (i£, S) is nonempty. 

Let A be a matrix in 31(i£, 5) . Consider the 2 by 2 submatrices of 
A of the types 

An interchange is a transformation of the elements of A that changes 
a minor of type A\ into type A2 or vice versa and leaves all other 
elements of A unaltered [58]. This is, in a sense, the most elementary 
operation that may be applied to A to yield a new matrix in the 
class 31 (R, 5) . The interchange concept gives us a simple procedure for 
the construction of a matrix in 3I(i£, S) [17; 19]. Let A be a matrix 
in 3I(.R, S). Let Ri be a row vector of n l 's and n — ri O's. Let the 
l 's be inserted in the positions in which S has its r\ largest com­
ponents. Let R2 be a row vector of r2 Ts and n — r2 O's. Let the l 's be 
inserted in the positions in which S — Ri has its r2 largest components. 
Rz is a row vector whose l 's are in the positions in which S — Ri~-R2 

has its r3 largest components, and so on. Let 

L.Rm J 

I t is clear that An may be constructed directly from the vectors R 
and S. We prove that AR belongs to 31 (i?, S). We may apply inter-
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changes to A and replace row 1 of A by Ri. Then we may apply inter­
changes to the transformed matrix and replace row 2 by R2. These 
interchanges do not involve Ri. In this way we transform A into 
An by interchanges. But then AR has row sum vector R and column 
sum vector S and hence AR belongs to 21 (R> S). An analogous con­
struction by columns of a matrix As may be carried out by inter­
changing the roles of R and S in the preceding discussion. 

THEOREM 1.2. Let A and A' belong to $l(R, S). Then A is trans­
formable into Af by a finite sequence of interchanges. 

This theorem is the interchange theorem [58]. I t is helpful in 
dealing with many problems involving the class 21 (i?, S). We give 
a simple proof based on the matrix A R of (1.8) [19]. We may trans­
form A into AR and A' into AR by finite sequences of interchanges. 
Let the intermediate matrices taking A' into AR be A\, A2, • • • , Aa. 
But then there exists an interchange taking AR into Aq. Also there 
exists an interchange taking Aq into Aq-\ and so on. Thus A R is 
transformable into A' by interchanges and hence A is transformable 
into A' by interchanges. 

2. The structure matrix. Let A be a matrix in the class SX(jRt S). 
In many investigations one assumes without loss of generality that 
the row sum vector R and the column sum vector 5 of A satisfy 

(2.1) n e r2^ • • • ^ rm> 0, 

(2.2) 5 l ^ 2 è ' - ' ^ n > 0 . 

This means that we have excluded zero rows and zero columns and 
permuted rows and columns so that they are nonincreasing. A non­
empty class 2ÏCR, S) with R and S satisfying (2.1) and (2.2) is called 
normalized. Henceforth throughout our discussion we take %(R, S) 
normalized. 

Let A belong to the normalized class 2ï(i^, S) and write 

(2.3) A'[v Zl-
where Wis of size e by ƒ (O^e^m; O^f^n). Let Q be a (0, l)-matrix 
and let NQ(Q) denote the number of 0's in Q and let Ni(Q) denote the 
number of l 's in Q. Now let 

(2.4) tef = No(W) + Ni(Z) (e = 0, 1, • • • , m; ƒ = 0, 1, • • • , n). 

We call the m + 1 by n + 1 matrix 

(2.5) T=[tef] 
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the structure matrix of the normalized class 3ï(i£, S) [62]. An easy 
calculation shows that 

(2.6) tef = ef + (re+1 + re+2 + - - - + rm) — (st + s2 + - - - + sf). 

Thus the structure matrix is independent of the particular choice of 
A in a(J?, S). From (2.6) it follows without difficulty that 

(2.7) 

and 

(2.8) 

te,f+l — tef + e 

(e = 0, 1, 

Sf+l 

0 ,1 , 1) 

te+l,f = tef + ƒ — re+l 

(e = 0, 1, • • • , m - ! ; ƒ - 0, 1, • • • , »). 

The recursions (2.7) and (2.8) are useful in constructing T from a 
given i£ and S. 

The structure matrix T contains a wealth of information concern­
ing the class 2t(i?, S). This will be apparent in succeeding sections. 
The entries of T are, of course, nonnegative integers and its size 
is ra + 1 by n + 1. For notational convenience we number the rows 
of T from 0 through m and its columns from 0 through n. Let Ek 

be the triangular matrix of order k + 1 with 1's on and below the 
main diagonal and O's elsewhere and let E j denote the transpose 
of Ek. Let r denote the total number of l 's in a matrix A of 31 (JR, S) 
and let J be the rn by n matrix with all entries equal to 1. Then by 
direct calculation it may be verified that 

(2.9) Err 

T 

— rx 

— r2 

'Si - 5 2 • • • -~Sn 

J 
\En 

One may also deduce that if e^sni then 

teO è tel è * * * è ten, 

and if e^Si> then 

teO •= ^el s=5 * * * ~ ten* 

However, if sn<e<Su then there exists an integer ƒ (0<f<n) such 
that 

teO ~ tei ^ ' * * è /«ƒ == tej+l =>''*=* ^en> 
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The columns of T have the analogous monotonie behavior. The fol­
lowing example illustrates the preceding remarks: 

s = 
p 

5 

2 

1 

Lo 

(3, 

5 

3 

1 

1 

1 

3, 

2 

1 

0 

1 

2 

1, 

1 

1 

1 

3 

5 

1) 

on 
1 

2 

s 
8j 

We now give an example of how the structure matrix T reveals 
properties of the class 21 (R, S). Let A belong to the normalized class 
21 OR, 5). An element aef=l of A is an invariant 1 provided that no 
sequence of interchanges applied to A replaces aef = 1 by 0. If aef = 1 
is an invariant 1 of A, then by the interchange theorem the entries 
in the (e, ƒ) position of all of the matrices in 21 (R, S) must be invariant 
l 's. Thus all or none of the matrices in 21 (ft, S) contain invariant l 's 
and we say 21 (ft, S) is with or without invariant l 's. 

One may deduce the following [59]. 

THEOREM 2.1. The normalized class 21 (ft, S) is with invariant Vs 
if and only if the matrices in 21 (ft, S) are of the form 

(2.H9 A-£2-
Here J is a matrix of Vs of specified size e by f (0<e^m; 0<f^n) 
and 0 is a zero matrix. 

Consider now the structure matrix T. We have called the first row 
and column of T the 0th row and column of T. Then by Theorem 
2.1 U(Rf S) is with invariant l 's if and only if a 0 entry appears 
among rows 1, 2, • • • , m and columns 1, 2, • • • , n of T. In fact 
the position of each such 0 in T gives appropriate integers e and ƒ 
for the decomposition (2.10). In our example with R = S~ (3, 3, 1, 1), 
the class 21 (R, S) is with invariant l 's and e=f=2. 

3. Traces. In this and in the following two sections we associate 
combinatorically significant integers with each of the matrices in the 
normalized class 21 (R, S) and study the maximum and minimum of 
these integers over the matrices of the class. We begin with the trace. 
For a (0, 1)-matrix A of size mhy n the trace of A is defined by 

t 

(3.1) a = 2 3 a**i t — min(w, n). 
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If A is the incidence matrix for the subsets Xit X2, • • • , Xm of X, 
then the trace counts the number of times that Xi is a member of X{ 
for i = l , 2, • • • , t. Now let A be a matrix of the normalized class 
21 (i£, S) and let cr denote the maximal and â the minimal trace of the 
matrices in 21 (R, S). One may deduce the following [62]. 

THEOREM 3.1. Let ôr^min(w, n). Then there exists a matrix A$ of 
trace a in the normalized class 21 (i£, S) of the form 

(3.2) 

Here J is a matrix of Y s of specified size e by f (0<e^<r; 0 < / ^ c r ) . 
The matrix 0 is of size g by h and has Vs in the main diagonal positions 
of A; and O's in all other positions. Moreover, 

rj * 

* 0 

L* o 

* n 

0 

oj 

(3.3) e + 

The O's denote zero matrices. 

= ƒ + * = 

Theorem 3.1 is derived by interchange manipulations that exploit 
the maximal property of <r. If in a (0, 1)-matrix the 0's are replaced 
by l 's and the l 's by 0's, then the resulting matrix is called the comple­
ment of the original matrix. The analogue of Theorem 3.1 for the 
minimal trace â may be derived from Theorem 3.1 by an investiga­
tion of complements [62]. 

THEOREM 3.2. Let the matrices in the normalized class 81(2?, S) have 
precisely u rows and v columns composed entirely of Vs and let 
<r^max(w, v). Then there exists a matrix A% of trace â in 21 (R, S) of 
the form 

(3.4) A, 

rj 

\Jl 

* 

Jl 

J 
* 

*~1 
* ! 

oj 
Here J is a matrix of Vs of order â. J\ of size â by s and Ji of size t 
by â are matrices of Vs. J is a matrix with 0's in the main diagonal 
positions of As- and Vs in all other positions. 0 is a zero matrix. (The 
cases 5 = 0 and t = 0 are not excluded.) 

The canonical forms (3.2) and (3.4) yield explicit formulas for â 
and â in terms of the elements of the structure matrix T— [te/] of the 
normalized class 21 (R, S) [62]. 
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THEOREM 3.3. Let a be the maximal and cf the minimal trace of the 
matrices in the normalized class 21(i?, S). Then 

(3.5) a = min {tef + max(e, ƒ)} (e = 0, 1, • • • , m\ ƒ = 0, 1, • • • , n) 
ej 

and 

(3.6) er = max {mm(e,f) — tej\ (e — 0, 1, • • • ,m;f = 0, 1, • • • , n) 
e,f 

I t is easy to verify that <J~G if and only if the structure matrix 
contains a zero on the main diagonal. The problem of intermediate 
values 

(3.7) â ^ g f f 

is settled by the following theorem [62]. 

THEOREM 3.4. The traces of the matrices in the normalized class 
21 (R, S) take on all intermediate values in the interval (3.7) unless 
2ï(i£, S) contains a matrix of the f or m 

VJ ƒ* 

(3.8) A 

* 

J*T Ic 0 

.* 0 0 

Here J is a matrix of Vs of order e, J* is a rectangular matrix of Vs, 
J*T is the transpose of J*t Ic is the identity matrix or the complement 
of this matrix, and the 0's are zero matrices. The order of Ic is g with 
g^2. (The cases e — 0, £ + g = m, and e-\-g — n are not excluded.) 

The normality assumption for the class 21 (R> S) is a genuine re­
striction in our study of the maximal and minimal trace. This as­
sumption appears to be essential in order to obtain the simple for­
mulas (3.5) and (3.6). But more insight into the behavior of the trace 
in an arbitrary §1(JR, S) would certainly be valuable. Fulkerson has 
investigated feasibility conditions for the existence of a (0, l)-matrix 
of order n with specified row and column sums and zero trace [14]. 
This approach utilizes the theory of network flows [ l l ; 12; 13]. The 
criterion assumes an especially simple form under the normality as­
sumption. Indeed, formulas (3.5) and (3.6) may be derived by net­
work flows. 

4. Term ranks. Let A be a (0, 1)-matrix of size m by n. The term 
rank p of A is the maximal trace obtained from A under arbitrary 
permutations of the rows and of the columns of A. Thus the term 
rank of A equals the maximal number of Vs that may be chosen in 



450 H. J. RYSER [November 

A with no two in the same row or column. The classical theorem on 
the subject asserts that the term rank of A is also equal to the mini­
mal number of rows and columns that contain all of the l's in A 
[40]. Let A be the incidence matrix for the subsets X\y X2, • • • , Xm 

of the set X of n elements Xi, x2, • • • , xn. The term rank of A is 
invariant under permutations of rows and columns of A. Conse­
quently the term rank is independent of the particular labelling of 
elements and subsets Xi, X2, • • • , Xm of X. In fact 
the term rank equals the maximal integer p for which there exists a 
labelling of elements and subsets X{, X{, • • • , X'm 

such that x[ belongs to XI for i = l , 2, • • • , p. The special case in 
which p = m is of considerable importance in its own right. Then the 
subsets Xi, X2, • • • , Xm of X are said to possess a system of distinct 
representatives. The topics described thus far in this section are sub­
ject to many generalizations and refinements. A very extensive 
literature is available. See, for example, [30; 34; 42]. 

Now let p equal the maximal and p the minimal term rank of the 
matrices A in the normalized class 2t(i?, S). Let p be an arbitrary 
integer in the interval 

(4.1) PÛP^P. 

The interchange theorem implies that there exists a matrix Ap in the 
normalized class 21 (R, S) of term rank p. The reason for this is that 
a single interchange may alter the term rank of a matrix by at most 
1. We remark that an interchange may alter the trace of a matrix 
by 2 and this accounts for the complication in intermediate traces 
described in Theorem 3.4. 

The integer p has been investigated in detail in [59] and the main 
content of this paper may be summarized in the following theorem. 

THEOREM 4.1. Let A be a matrix in the normalized class $l(R, S) 
and let p<m, n. Then 

(4-2) A - [r J . 
Here W is of specified size e by ƒ (0 <e <m\ 0 <ƒ <n) and 

(4.3) No(W) + N,(Z) = p - (e + ƒ). 

There exists a matrix Ap of term rank p in 21 (R, S) such that 

(4.4) No(W) = 0 

and 
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(4.5) Ni(Z) = ? - ( * + ƒ ) . 

We make no at tempt to prove Theorem 4.1 here. An easy conse­
quence of this theorem is a striking formula for p in terms of the ele­
ments of the structure matrix T= [tef] [59; 62]. 

THEOREM 4.2. The maximal term rank p for the matrices in the 
normalized class 91(i£, S) is given by 

(4.6) p = m i n { ^ + (e + ƒ)} (e = 0, 1, • • • , m\ ƒ = 0, 1, • - • , n). 
e,f 

A network flow derivation of formula (4.6) would be of interest. 
Attempts have been made in this direction but they have been un­
successful up to now. 

THEOREM 4.3. Let the normalized class %(R, S) be without invariant 
Vs and let p <m, n. Then p <p. 

Theorem 4.3 is also an easy consequence of Theorem 4.1. But note 
that Theorem 4.3 need not be valid if the hypothesis on invariant 
l 's is deleted. The class consisting of a maximal matrix A has p=p. 
Nor may the restriction p <m, n be removed. For the class of permuta­
tion matrices has p=p. An unsettled problem of interest calls for a 
neat classification of all classes 9t(i£, S) with p=/5. 

The integer p is elusive and difficult to handle. However, Haber has 
devised an effective algorithm for the evaluation of p [19]. A simple 
formula for p analogous to (4.6) for p may not exist, but p deserves 
further study in this connection. 

5. Widths and heights. We describe next the concepts of widths 
and heights introduced in [15]. Let A be a matrix in the normalized 
class 91 (R, S). Let a be an integer in the interval 

(5.1) lS*^rm 

and let e be an integer in the interval 

(5.2) l ^ e ^ n . 

Suppose that A has an m by e submatrix £ * each of whose row sums 
is at least a. Then the e columns of E* form an a-set of representatives 
for the matrix A. Let e(a) be the minimal number of columns of A 
that form an ce-set of representatives for A. Such a column set is 
called a minimal a-set of representatives for A and e(a) is called the 
a-width of A. The integer a and the matrix A uniquely determine e(a). 
Note that e(a) is invariant under arbitrary permutations of the rows 
and the columns of A. However, the a-width of AT, the transpose of 
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A, may differ decidedly from that of A. This is not the case for trace 
and term rank, both of which remain invariant under transposition. 

Now let £ * be a submatrix of A of size m by e (a) that yields a 
minimal a-set of representatives for A. Let E be the submatrix of 
£ * composed of all rows of E* that contain a Ts and e(a)—a O's. E 
is called a critical a-submatrix of A. I t follows without difficulty that 
A has an a-width e (a) for each a in the interval lS<x^rm. A critical 
a-submatrix E of A associated with an a-width e (a) cannot be empty 
and contains no zero columns. 

Each critical a-submatrix E of A contains e (a) columns. But the 
number of rows in the various critical a-submatrices of A need not 
be fixed. Let £ be a critical a-submatrix containing the minimal 
number of rows 8(a). The positive integer 8(a) is called the a-height 
of A. I t is clear that 

(5.3) e(l) <e(2) < • • <e(rm) 

and 

(5.4) 5(1) £ e(l). 

The width and the height of a (0, 1)-matrix have an important 
set theoretic interpretation. Let A be the incidence matrix for the 
subsets XL, X2, • • • , Xm of X. No loss is entailed by taking A in 
the normalized class 2ï(i£, S). A minimal a-set of representatives for 
A yields a subset X* of e(a) elements of X. The subset X* has the 
property that each X» C\ X* contains at least a elements 
( i = l , 2, • • • , m). No subset of X containing fewer than e (a) ele­
ments possesses this property. At least 5(a) of the sets X ; H X * con­
tain exactly a elements. If a== 1, then X* has the property that each 
X;P\X* is nonempty and no subset of X containing fewer than e(l) 
elements possesses this property. We mention in passing that the 
1-width of a matrix also arises naturally in certain network prob­
lems. Consider the problem of finding the fewest number of nodes in 
a network that touch all links of the network. This is equivalent to 
finding the 1-width of the incidence matrix of links versus nodes. 
The well-known "eight queens" chessboard problem may be reduced 
to a problem of this type [16]. 

Let l ^ a ^ f m . Then each A in the normalized class 21 (Ry S) deter­
mines an a-width e(a). For each a let the minimal of these €(a)'s 
over all A in 21 (i£, 5) be denoted by 

(5.5) e - e(a). 

We call € = e(a) the minimal a-width of the class 21 (R, S). Consider 
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now all matrices A g in %(R, S) of a-width 1(a). Each of these matrices 
has an a-height S (a). Let 

(5.6) 8 = 8(a) 

be the minimal of the S(a)'s over the matrices Aè in 2I(i£, S) of a-width 
e (a). We call 3 = S (a) the multiplicity of a with respect to e (a). I t is 
clear that 

(5.7) 

and 

(5.8) 

ê(l) < «(2) < < i(rm) 

5(1) è ï ( l ) . 

Similarly for each a let the maximum of the e(a)'s over all A in 
»(!?, 5) be denoted by 

(5.9) e = e(a). 

We call €=c(a) the maximal a-width of the class %(R, S). A direct 
application of the interchange theorem allows us to prove that if € 
is an integer in the interval 

(5.10) € ^ e é ë, 

then there exists a matrix Ae in 21(i£, 5) of a-width e. 
The following theorem yields a matrix 4g in 21(i?, S) of a-width i 

and with an unusually simple block decomposition. The canonical 
form (5.11) may be obtained by applying interchanges that utilize 
the minimal properties of e and ô [15]. 

THEOREM 5.1. Let e = e(a) be the minimal a-width of the normalized 
class %(R, S). Let 5 = 1(a) be the multiplicity of a with respect to 1(a). 
Then there exists a matrix Ai of a-width e in 2t (R, S) of the form 

(5.11) As = 

r M 

F 

L E 

J 

* 

* — ] 

0 

Here E is a critical a-submatrix of Azof size 1 by e. M is a matrix of 
size e by I with a+1 or more Vs in each row. F is a matrix of size 
m — (e + *8) by e with exactly a + 1 Vs in each row. J is a matrix of size 
e fry j—i consisting entirely of Vs, and 0 is a zero matrix. Each of the 
first I columns of Ai contains more than m — ï Vs. The degenerate cases 
e — 0, e+'8=mtf=e1 andf=n are not excluded. 
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We now define invariants N(e} e,f) of 3ï(i?, S) that are generaliza­
tions of the invariants te/ of (2.4). These invariants are effective in 
yielding explicit formulas for e(a) and 5 (a). Let 

(5.12) N(e, e,f) = tef + (*i + *2 + • • • + s€) - ee. 

Here €, e, ƒ are integer parameters such that 

(5.13) 0 S e S n, 

(5.14) OSeSm, 

(5.15) eSf Sn. 

Note that 

(5.16) N(0, e, ƒ) = 4/ (e = 0, 1, • - • , m; ƒ = 0, 1, • • • , »). 

Let A be in the normalized class 31 (R, S) and write 

x . J-
where X is of size m — e by € and F is of size 6 by/— e. Then it is easy 
to verify that 

(5.18) N(e, e,f) = N,(X) + N0(Y) + Ni(Z). 

THEOREM 5.2. The minimal a-width 1(a) of the normalized class 
%(R, S) equals the first nonnegative integer e such that 

(5.19) N(e,e,f) ^ a(tn - e), 

for all integer parameters e and f restricted by 0 Se S m and eSfSn. Let 

(5.20) 7 = min {N(e - 1, e,f) + ae], 
e,f 

where OSeSm and e—lSfSn. Then 

(5.21) ô(a) = (a + l)w - 7 - *«. 

Theorem 5.1 plays a critical role in the derivation of Theorem 5.2 
[IS]. Actually formula (5.19) is a rather direct consequence of Theo­
rem 5.1 once the appropriate formula has been guessed. I t should be 
remarked that (5.19) was obtained initially from a study of network 
flows. 

A formula for ê(a) analogous to (5.19) for e(a) does not exist. In 
fact we will show subsequently that for certain important classes 
$l(R, S) the value of ê(l) is determined by deep arithmetical proper­
ties of the class. A reasonable computational procedure for e(a) 
would be in itself of the utmost value. 
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6. The class 2t(i£, K). Thus far we have associated with the (0, 1)-
matrix A in the normalized class 2ï(i£, S) various integers that give 
us insight into the combinatorial structure of A. The possibilities 
have been by no means exhausted. For example, let w be the minimal 
and it the maximal ranks of the matrices in 21 (i£, S). If w is an arbi­
trary integer in the interval 

( 6 . 1 ) 7T ^ 7T ^ 7T, 

then by the interchange theorem there exists a matrix in 21 (R, S) of 
rank TT. But at the present time almost nothing is known about fr 
and 7f. Or consider the symmetric matrices B% and B2 defined by 

(6.2) AAT = Bu ATA = B2) 

where AT denotes the transpose of A. Nontrivial information on Bi 
and B2 as A ranges over 31(i?, S) would be very valuable. But deep 
theorems along these lines may well be far beyond the present range 
of our knowledge. 

For the remainder of the discussion we specialize 21 (i£, S) to the 
class 2l(i£, K) defined by 

(6.3) m = n = v 

and 

(6.4) R = S = K = (*, *, • • • , Jfe), 

where k is a fixed integer in the interval 

(6.5) 1 ^ k g v. 

Thus 2l(i£, K) consists of all (0, l)-matrices of order v with exactly k 
l 's in each row and column. We call the matrices of these z> classes 
the (0, l)-doubly stochastic matrices. For k = l, 21 (K, K) consists of 
the vl permutation matrices of order v and for k — v, 2t(i£, K) con­
sists of the matrix J of order v. 

For the class 21 (K, K), it is trivial to verify that 

(6.6) â = 0, Ö = v3 (1 g k < v), 

(6.7) â = ö- = i>, (ft = v). 

A well-known theorem on term rank [40 ] asserts that for the class 
21CK, K) 

(6.8) p = p = v. 

This implies tha t for an arbitrary matrix A in 2I(i£, i£) 

(6.9) 4 = P1 + P2+ • • • + Pk, 
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where the Pi are permutation matrices. The results on minimal widths 
simplify considerably for the case of the class 31 (i£, K) [IS]. For this 
class e(a) is the first integer e such that 

(6.10) e è av/k 

and 

(6.11) 0(a) = (a + l)v - ke(a). 

It is clear that much of the material discussed in the preceding sec­
tions becomes almost trivial for the class 21 (K, K). But 2t(i£, K) 
possesses deep and fascinating problems in its own right. Many of 
these problems involve combinatorial designs in one form or another 
and are discussed in the concluding sections. 

7. Combinatorial designs. Let v elements X\, X2j , X<p be arranged 
into v sets Xi, X2, • • • , Xv such that every set contains exactly k 
distinct elements and such that every pair of sets has exactly X ele­
ments in common (0 <X <k <v). Such a configuration is called a u, ky X 
configuration. Let #»•/= 1 if Xj is in set Xif and 0 otherwise. The matrix 
A = [aij] of order v is called the incidence matrix of the v, k, X con­
figuration. Let v, k, and X be integers such that 0<\<k<v. Then it 
is clear that a v, kf X configuration exists if and only if there exists a 
(0, 1)-matrix A of order v such that 

(7.1) AAT = B, 

where AT denotes the transpose of A and where B has k in the main di­
agonal and X in all other positions. For a v> k, X configuration, one 
may prove that 

(7.2) X = k(k - l ) / ( f l - 1). 

Moreover, the incidence matrix of a v, k, X configuration is normal, 
that is 

(7.3) AAT = 4 * 4 . 

The derivations of (7.2) and (7.3) are not difficult [53; 56; 63]. 
The central problem in the study of these configurations is the 

determination of the precise range of values of v, k, and X for which 
configurations exist. Formula (7.2) gives a first necessary condition 
and in discussing these configurations it is assumed that the integer 
parameters v, k, and X satisfy this requirement. 

THEOREM 7.1. Suppose that a vy k, X configuration exists. If'v is even, 
then k—\ equals a square. If v is odd, then the Diophantine equation 
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(7.4) x2 = (ft - \)y2 + (-l)(*-l"2\z* 

possesses a nonzero integral solution. 

Theorem 7.1 appears in [ó]. The case of v even follows easily upon 
taking determinants in the matric equation AAT = B. The case of v 
odd is far from trivial but may be derived by methods which are 
entirely elementary. Theorem 7.1 accounts for all known excluded 
configurations so that one may conjecture their existence in all other 
cases. An extensive literature centers around Theorem 7.1 and the 
matric equations (7.1) and (7.3). Some key references are listed in 
the bibliography. Surveys with more extensive references are also 
available [56; 63]. 

Certain specializations of the values of v, ft, and X lead to classical 
configurations. The configuration with parameters v — N2+N+l, 
k — N+ly X = l , iV~2 is equivalent to a finite projective plane ir of 
order N. Mention should be made of the Bruck-Ryser theorem on 
the nonexistence of these planes [5]. 

THEOREM 7.2. Let i V = l or 2 (mod 4) and let the squarefree part of 
N contain at least one prime factor = 3 (mod 4). Then IT of order N does 
not exist. 

The original proof of Theorem 7.2 utilized the Minkowski-Hasse 
invariants of a quadratic form [5]. These invariants have subse­
quently been used in a wide variety of combinatorial investigations. 
I t is easy to verify that Theorem 7.1 with X= 1 reduces to Theorem 
7.2. The first projective plane for which the existence problem is un­
decided has order N—10. The associated v, ft, X configuration has 
parameters «;= 111, ft = 11, X = l. 

Another important specialization of values of v, ft, and X is v = 4£ — 1, 
k = 2t,\ — t. Such a v, ft, X configuration is equivalent to a Hadamard 
matrix of order 4/. These are the matrices with entries ± 1 and of 
order h such that 

(7.5) HHT = hi. 

Here HT is the transpose of H and I is the identity matrix of order h. 
If H exists, then it is easy to verify that the order of H is 1, 2, or 
= 0 (mod 4). The existence of Hadamard matrices for orders 1 and 
2 is trivial, and it is conjectured that they exist for all orders 
s=0 (mod 4). The first undecided order is h = 92, and this corresponds 
to the configuration z; = 91, ft = 46, X = 23. 

8. Concluding remarks. We return now to the class %{K, K) of all 
(0, l)-matrices of order v with exactly ft Ts in each row and column, 
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where k is a fixed integer in the interval 1 ^k^v. We have already 
remarked that for the class 21 (i£, K) 

(8.1) p = p = v. 

Thus all matrices in 21 (i£, K) have the same term rank v. But suppose 
that for an A in %(K, K) we ask for the number of distinct ways in 
which this term rank is attained. This leads us to the concept of the 
permanent of a matrix. 

Let A = [an] be an m by n matrix with the at-y real and rn^n. Then 
the permanent of A is defined by 

(8.2) per (A) = X) *Ui a^n ' ' ' 0m*»> 

where ii, ^2, • • • , im range over all permutations of m integers chosen 
from among 1, 2, • • • , n. I t is clear that if A is a (0, l)-matrix, then 
per (A)>0 if and only if the term rank p of A is m. Moreover, if A 
is an incidence matrix for the m subsets Xi, X2, • • • , X w of X, then 
these subsets possess per (A) systems of distinct representatives. In 
the case of a square matrix it is natural to compare per (̂ 4) with the 
determinant det (A). But these two functions of A bear only a super­
ficial resemblance to one another. I t is usually much more difficult to 
evaluate the permanent. Also the permanent possesses a number of 
combinatorial characteristics not shared by the determinant. For ex­
ample, let J be the matrix of l 's of order v and let / be the identity 
matrix of order v. Then 

(8.3) per (J) = v\ 

and 

(8.4) per (J - I) = vl(l ~ ~ + - i + (-1)» — \ 
\ 1! 2! vl/ 

Each matrix A in the class 3t(i£, K) has per (A)>0. But little is 
known about the minimal value of per (A) for A in 31 (K, K). If 
3t(i£, X) contains an incidence matrix of a v, k, X configuration, then 
very limited empirical information suggests that the permanent of 
this matrix is small or even minimal in 21 (K, K). Computation be­
comes prohibitive in situations of this type even for very small values 
of v. Let J denote the matrix of l 's of order k. Let k divide v and let 
/ * denote the direct sum of v/k matrices J*. Then / * belongs to 
%(K, K) and we conjecture that in this case the permanent of J* is 
maximal in %(K, K). This suggests that the permanent of a matrix 
A in 21 (K, K) is related to the v(v—1)/2 integers above the main 
diagonal in ^4^4r. These integers lie in the interval O^x^k. For in-
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cidence matrices of v, k, X configurations, each of the v(v —1)/2 inte­
gers is equal to X. For the direct sum matrix J*, v(k — \)/2 of the 
integers are equal to k and the remaining integers are equal to 0. 

The preceding remarks are motivated in part by an analogous 
situation involving doubly stochastic matrices. A matrix X of order v 
is doubly stochastic provided its entries are nonnegative reals and its 
row and column sums are each equal to 1. I t is trivial to verify that 
if X is doubly stochastic, then per (X) rg 1, with equality if and only 
if X is a permutation matrix. In 1926 van der Waerden suggested 
the problem of determining the minimum of per (X) for X doubly 
stochastic [71 ]. This problem is still unsolved. But recently Marcus 
and Newman [44] have made advances toward a solution. The pres­
ent conjecture is that for X doubly stochastic of order v> per (X) 
^vl/vv, with equality if and only if X is the doubly stochastic matrix 
all of whose entries are 1/v. 

Very little is known about the permanent of the incidence matrix 
of a v, ky X configuration. A formula for the permanent is not available 
even if it is assumed that the incidence matrix of the configuration 
is cyclic. Nikolai has used electronic computers to carry out exten­
sive calculations in this area [47], For projective planes of orders 
2, 3, and 4, the permanents are 24, 3,852, and 18,534,400, respectively. 
The permanent is invariant under permutations of rows and columns 
and under transposition. Let A and A' be two v, k, X incidence 
matrices not transformable into one another by these operations. 
We conjecture that these matrices possess distinct permanents. Their 
determinants are, of course, equal in absolute value. 

Let Z denote an incidence matrix of a projective plane of order 2. 
The matrix Z is of order 7 and has the striking property 

(8.5) per (Z) = abs. val. det (Z) = 24. 

Tinsley has utilized this observation to carry out some interesting 
investigations involving permanents [68]. The following is one of his 
central theorems. 

THEOREM 8.1. Let A be a cyclic matrix in 21 (i£, K). If k>3, then 

(8.6) per (A) > abs. val. det (A). 

For k = 3, if 

(8.7) per (A) = abs. val. det (A), 

then upon permutations of rows and columns, A becomes the direct sum 
of the matrix Z taken e times. Hence v=7e and per (A) = (24)e. 



460 H. J. RYSER [November 

Theorem 8.1 appears to be valid without the restriction that A be 
cyclic. But this is an unsettled question at the present time. 

Incidence matrices of v, k, X configurations also arise in extremal 
investigations of a rather different type. The following theorem is a 
byproduct of a study of inequalities of compound and induced ma­
trices [60; 61 ]. 

THEOREM 8.2. Let Q be a (0, 1)-matrix of order v and let Q contain 
exactly r Vs. Define k and X by 

(8.8) r = kv, 

(8.9) X = k(k - l)/(v - 1), 

and suppose that 0 <X<k <v. Let ai, «2, • • • , a» denote the v character­
istic roots of QQT. Let S r be the rth elementary symmetric function of 
«i, a2, • • • , av and let 2* be the rth homogeneous product sum of 
au 0L2y • • • , av (i.e. 2* = a i+a£ _ 1 a2+ • • • )• Then 

(8.10) 2 r g ( ^ ( * + ( r - l ) X ) ( i - X ) - i ( r = 1,2,- • - , * ) , 

and 

* (v + i - 2\ 
(8.11) 2 * è Z ( . ) ( * + ( " - 1)X)^(* - X)« 

t -0 \ l / 

( r = 1,2, • - . ) . 

Equality holds f or r = l . /ƒ equality holds in either (8.10) or (8.11) /or 
aw r > l , /A^w Ö w the incidence matrix of a v, ky X configuration and 
equality holds throughout (8.10) and (8.11) for all r. 

It seems unlikely that inequalities of the type (8.10) and (8.11) 
will settle some of the deep arithmetrical problems associated with 
Vy ky X configurations. However, such inequalities are of interest in 
their own right. Note that (8.10) implies 

(8.12) (det ( 0 ) 2 S k2(k - X)*-1, 

where equality holds if and only if Q is the incidence matrix of a 
Vy ky X configuration [57]. Thus if the class 21 (K} K) contains an in­
cidence matrix of a Vy ky X configuration, then the determinant of this 
matrix is maximal in absolute value over the matrices of the class. 
This is in a sense surprising because our earlier remarks implied that 
the permanent of such a matrix may be minimal in the class. 
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We conclude with some observations on ce-widths in the class 
31 (K, K). We have already noted that the minimal a-width 1(a) of the 
class %{K, K) is the first integer e such that 

(8.13) e è ceo I h. 

One may at tempt to find a formula for the maximal a-width e(a) of 
the class 21 (i£, K). But the following remarks point out the difficulty 
of such an undertaking. With the class 21 (K, K) we associate the 
complementary class 21 (K\ Kf) of all (0, 1)-matrices of order v with 
exactly k'=v — k l 's in each row and column. 

THEOREM 8.3. Let %(K, K) be the class with parameters v = N2+N 
+ 1, k — N+1, N^2 and let 21 (i£', K') be the complementary class with 
parameters v~N2-\-N-\-\, k' = N2, N^2. If a projective plane w of 
order N exists, then the maximal 1-width of the class 21 (K\ K') satisfies 

(8.14) ë(l) = 3. 

If a projective plane ir of order N does not exist, then the maximal 
1-width of the class 21 (i£', Kr) satisfies 

(8.15) i(l) = 2. 

The proof is almost immediate. For the class 21 (i£, K) has param­
eters z; = iV 2 +iV+l , k = N+l, N^2 and the complementary class 
2l(X', K') has parameters v = N2+N+l} k' = N2, N^2. The average 
value of the inner product of two distinct column vectors of a matrix 
in 2I(i£', K') is 

N2(N2 - 1) 
(8.16) X7 = — = N(N - 1). 

N2 + N 

Now let A' be a matrix in 21 (K', K') such that all inner products of 
its distinct column vectors equal \' = N(N— 1). Then the 1-width of 
A' is e(l) = 3. Let A * be a matrix in 2ï(i£', Kr) that violates the inner 
product requirement of A'. Then A* has a pair of column vectors 
whose inner product is less than the average value X' = N(N— 1). But 
since the order of -4* is N2+N+l, it follows that the 1-width of A* 
is e(l) = 2. Hence if A' exists in %{K', K'), then c ( l ) = 3 and if A' 
does not exist in %{K'', Kr), then e(l) = 2. But the existence of A' in 
the class 2ï(i£', K') is precisely equivalent to the existence of an 
incidence matrix A of a projective plane w of order N in the class 
21 (K, K). This proves the assertion of the theorem. The interconnec­
tion between a-widths and combinatorial designs is a topic that de­
serves careful study. 
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