EXAMPLES OF p-ADIC TRANSFORMATION GROUPS

BY FRANK RAYMOND AND R. F. WILLIAMS¹

Communicated by Deane Montgomery, June 11, 1960

1. Introduction. Our purpose here is to outline the construction of an n-dimensional space X^n , $n \ge 2$, upon which the p-adic group A_p acts so that the orbit space X^n/A_p is of dimension n+2. Though such examples are new, it had been known [1;4], that either they do exist or a certain long standing conjecture on transformation groups must be true. The conjecture states that every compact effective group acting on a (generalized) manifold must be a Lie group; it may well be false.

Another question concerns the amount, k, by which the (cohomology) dimension of a compact space can be raised under the decomposition map $X \rightarrow X/A_p$. By [1; 4], $k \le 3$. (An example in which k=1 is essentially due to Kolmogoroff [2].) No example is known for which k=3. The authors expect to have more to say on this subject.

- 2. The building blocks. There exists an (n+2)-dimensional complex X_i , a homeomorphism $h_i: X_i \rightarrow X_i$, maps $q_i: X_i \rightarrow s^{n+2}$ and $r_i: X_i \rightarrow X_i$ such that $(S^{n+2}$ is the standard n+2-simplex)
 - (a) h_i is of period p^i .
 - (b) $q_i^{-1}(j \text{ skeleton}) = X_i(j) \text{ is a } j\text{-complex}, j = 0, 1, \dots, n+2.$
- (c) $q_i h_i = q_i$ so that q_i can be factored through the orbit space: $i=1, p, \cdots, p^{i-1}$

- (d) q_{ij*} : $H_{n+2}(X_i/h_i^j, X_i(n+1)/h_i^j; Z_p) \rightarrow H_{n+2}(s^{n+2}, s^{n+2}; Z_p)$ is onto; and
 - (e) $r_i: X_i \rightarrow X_i(n)$ is a retraction.
- 3. (E, π, B, X, q) . Let m be a positive integer and s_0 be the standard m-simplex. We consider 5-tuples (E, π, B, X, q) , where E, B, and X are m-complexes and π , q are simplical maps such that
 - A1. $\pi: E \rightarrow B$, $q: X \rightarrow s_0$,
 - A2. for each m-simplex $s \in B$, there are specified maps

¹ Both authors are National Science Foundation Fellows.

$$\psi_s: X \to \pi^{-1}(s) = E_s,$$

 $\phi_s: s_0 \to s$

where ϕ_s is a linear homeomorphism;

A3. commutativity holds in the diagram

$$X \xrightarrow{\psi_s} E_s$$
 $q \downarrow \qquad \downarrow \pi \mid E_s$.
 $s_0 \xrightarrow{\phi_s} s$

A4. For s, s' two m-simplexes of K,

$$\psi_s \mid X_{s \cap s'} = \psi_{s'} \mid X_{s \cap s'}, \text{ and } \phi_s^{-1} \mid s \cap s' = \phi_{s'}^{-1} \mid s \cap s',$$

where $X_{s \cap s'} = q^{-1}\phi_s^{-1}(s \cap s')$.

We need two results concerning such 5-tuples.

- 3.1. Given X, q, and a complex B which is the barycentric subdivision of a complex, there exists a complex E and a map $\pi: E \rightarrow B$ such that (E, π, B, q, X) satisfies A1-A4 and such that the ψ_s 's are homeomorphisms.
 - 3.2. If in addition to A1-A4, we assume
- A5. $H_m(X, q^{-1}(\dot{s}); G) \rightarrow^{q_*} H_m(s, \dot{s}; G)$ is onto, then $H_m(E; G) \rightarrow H_m(B; G)$ is onto.
 - 4. The example. X^n is defined as the inverse limit of a sequence

$$E_0 \leftarrow E_1 \leftarrow E_2 \leftarrow \cdots$$

such that on each E_i (an (n+2)-complex) we have a map \bar{h}_i of period p^i . The E_i are defined inductively. E_0 is taken to be a triangulated (n+2)-sphere, and \bar{h}_0 =identity. Suppose E_i , π_i , \bar{h}_i have been defined. Then set B_{i+1} = the barycentric subdivision of E_i and use 3.1 relative to B_{i+1} , X_{i+1} , q_{i+1} (see §2), to obtain E_{i+1} , π_{i+1} . The homeomorphism \bar{h}_{i+1} is defined on E_{i+1} in terms of h_{i+1} , π_{i+1} and \bar{h}_i , so that we have the equivariance

$$\pi_{i+1}\bar{h}_{i+1} = \bar{h}_i\pi_{i+1}.$$

Thus the map

$$(e_0, e_1, \cdots) \rightarrow (\bar{h}_0 e_0, \bar{h}_1 e_1, \cdots)$$

defines an effective action of the p-adic group on X^n .

It is next shown that $\overline{E}_i = E_i/\overline{h}_i$, $i = 1, 2, \cdots$ satisfy axioms

A1-A5 of §3, where $\bar{\pi}_i$: $E_i/\bar{h}_i \rightarrow E_{i-1}/\bar{h}_{i-1}$ is defined via (2c), and the ψ_s 's are essentially like the q_{ij} 's in (2c). By (3.2) all homeomorphisms in the sequence

$$H_{n+2}(\overline{E}_0; Zp) \leftarrow \overline{\pi}_{1*} H_{n+2}(\overline{E}_1; Zp) \leftarrow \cdots$$

are onto so that the orbit space, X/A_p , which is the inverse limit of the sequence

$$E_0/\bar{h}_0 \leftarrow E_1/\bar{h}_0 \leftarrow E_2/\bar{h}_2 \leftarrow \bar{\pi}_3 \cdots$$

is (n+2)-dimensional.

Finally, it follows from (2e) that X^n is *n*-dimensional.

BIBLIOGRAPHY

- 1. G. E. Bredon, Frank Raymond and R. F. Williams, p-adic groups of transformations, to appear.
 - 2. A. Kolmogoroff, Über offene Abbildungen, Ann. of Math. vol. 38 (1937) pp. 36-38.
- 3. D. Montgomery and L. Zippin, Topological transformation groups, New York, Interscience, 1955.
 - 4. C. T. Yang, p-adic transformation groups, to appear.

INSTITUTE FOR ADVANCED STUDY