CONFORMAL TRANSFORMATIONS IN RIEMANNIAN AND HERMITIAN SPACES

BY KENTARO YANO

Communicated by S. Bochner, April 20, 1960

The purpose of the present note is to show that the results recently announced by S. I. Goldberg [1] in this Bulletin are valid also in slightly more general forms.

1. Consider a conformal Killing vector v^h in an *n*-dimensional Riemannian space. Then the Lie derivative of the fundamental tensor g_{ji} and that of Christoffel symbols with respect to v^h are respectively given by

$$\mathfrak{L}_{v}g_{ji} = \nabla_{j}v_{i} + \nabla_{i}v_{j} = 2\phi g_{ji}$$

and

$$(1.2) \qquad \mathfrak{L}_{v}\left\{\begin{array}{c}h\\j\\i\end{array}\right\} \;=\; \bigtriangledown_{j}\bigtriangledown_{i}v^{h} + K_{kji}^{h}v^{k} = A_{j}^{h}\phi_{i} + A_{i}^{h}\phi_{j} - \phi^{h}g_{ji},$$

where ∇_i is the symbol of covariant differentiation, K_{kjl}^h the curvature tensor, A_j^h the unit tensor and $\phi_i = \nabla_i \phi$, ϕ^h being its contravariant components.

For a skew-symmetric tensor $w_{i_n i_{n-1} \cdots i_1}$, we have in general [5]

$$\mathfrak{L}_v \nabla_j w_{i_p \dots i_1} - \nabla_j \mathfrak{L}_v w_{i_p \dots i_1}$$

$$(1.3) = -\left(\Re \begin{Bmatrix} t \\ j \ i_p \end{Bmatrix}\right) w_{ii_{p-1}\cdots i_1} - \cdots - \left(\Re \begin{Bmatrix} t \\ j \ i_1 \end{Bmatrix}\right) w_{i_p\cdots i_2 t}.$$

Taking the skew-symmetric part with respect to j, $i_p \cdot \cdot \cdot i_1$, we find

$$\mathfrak{L}_{v} \nabla_{[j} w_{i_{p} \cdots i_{1}]} = \nabla_{[j} \mathfrak{L}_{v} w_{i_{p} \cdots i_{1}]},$$

from which

Theorem 1.1. The Lie derivative of a closed skew-symmetric tensor is closed.

Transvecting (1.3) with g^{ii_p} and taking account of (1.1) and (1.2), we get

$$(1.5) \begin{array}{l} \Omega_{v}g^{ii} \nabla_{j}w_{ii_{p-1}\cdots i_{1}} + 2\phi g^{ji} \nabla_{j}w_{ii_{p-1}\cdots i_{1}} - g^{ji} \nabla_{j}\Omega_{v}w_{ii_{p-1}\cdots i_{1}} \\ = (n - 2p)\phi^{t}w_{ti_{p-1}\cdots i_{1}}, \end{array}$$

from which

Theorem 1.2. The Lie derivative of a coclosed skew-symmetric tensor of order p with respect to a conformal Killing vector is coclosed if and only if p = n/2, n being even, or $\nabla^t(\phi w_{ti_{p-1}...i_1}) = 0$, that is, $\phi w_{i_p...i_1}$ is also coclosed, where ϕ is the function appearing in $\mathcal{R}_v g_{ji} = 2\phi g_{ji}$.

Combining Theorems 1.1 and 1.2 we have

THEOREM 1.3. The Lie derivative of a harmonic tensor w of order p in an n-dimensional Riemannian space with respect to a conformal Killing vector is also harmonic if and only if p = n/2, n being even, or ϕw is coclosed.

The most specific statement resulting is as follows, see [4; 5; 6].

THEOREM 1.4. The Lie derivative of a harmonic tensor w of order p in an n-dimensional compact orientable Riemannian space with respect to a conformal Killing vector is zero if and only if p = n/2, n being even, or ϕw is coclosed where ϕ is a function appearing in $\mathfrak{L}_v g_{ji} = 2\phi g_{ji}$ [1].

2. In an almost complex space, a contravariant almost analytic vector is defined as a vector v^h which satisfies

In an almost Hermitian space, (2.1) may be written as

from which, by a straightforward calculation,

$$(2.3) \qquad \nabla^{i} \nabla_{i} v^{h} + K_{i}^{h} v^{i} - F_{i}^{h} (\mathfrak{L}_{v} F^{i}) - \frac{1}{2} F_{ji}^{h} (\mathfrak{L}_{v} F^{ji}) = 0,$$

where K_{i}^{h} is the Ricci tensor and

$$F^{i} = \nabla^{j} F_{j}^{i},$$

$$F_{jih} = \nabla_{j} F_{ih} + \nabla_{i} F_{hj} + \nabla_{h} F_{ji}.$$

If we put

$$S^{ji} = g^{jt}(\mathfrak{L}_v F_t^{i}),$$

and suppose that the space is compact, we have

(2.4)
$$\int \left[\left\{ \nabla^{i} \nabla_{i} v^{h} + K_{i}^{h} v^{i} - F_{i}^{h} (\mathfrak{L}_{v} F^{i}) - \frac{1}{2} F_{ji}^{h} (\mathfrak{L}_{v} F^{ji}) \right\} v_{h} + \frac{1}{2} S^{ji} S_{ji} \right] d\sigma = 0,$$

 $d\sigma$ being volume element of the space.

From (2.3) and (2.4) we have

Theorem 2.1. A necessary and sufficient condition for a vector v^h in a compact almost Hermitian space to be contravariant analytic is (2.3).

Suppose that a conformal Killing vector v^h satisfies

$$F_i^h(\mathfrak{A}_v F^i) + \frac{1}{2} F_{ji}^h(\mathfrak{A}_v F^{ji}) = 0.$$

Substituting

$$\nabla^{i} \nabla_{i} v^{h} + K_{i}^{h} v^{i} = -\frac{n-2}{n} \nabla^{h} (\nabla_{i} v^{i})$$

obtained from (1.2) into (2.4), we find

(2.5)
$$\int \left[\frac{n-2}{n} \left(\nabla_i v^i\right)^2 + \frac{1}{2} S^{ji} S_{ji}\right] d\sigma = 0,$$

from which, for n > 2,

$$\nabla_i v^i = 0, \qquad S_{ii} = 0$$

and consequently v^h is a Killing vector [4; 6] and at the same time a contravariant almost analytic vector, and for n=2, we have $S_{ji}=0$. Thus we have

THEOREM 2.2. If a conformal Killing vector v^h in an n-dimensional compact almost Hermitian space satisfies

(2.6)
$$F_{i}^{h}(\mathfrak{L}_{v}F^{i}) + \frac{1}{2} F_{ji}^{h}(\mathfrak{L}_{v}F^{ji}) = 0,$$

then, for n>2, it defines an automorphism of the space, that is, the infinitesimal transformation v^h does not change both the metric and the almost complex structure of the space, and for n=2, it is contravariant almost analytic.

An almost Hermitian space in which $F_i = 0$ is satisfied is called an almost semi-Kählerian space. In such a space, we have

$$F_{jih}F^{ji} = 2F_tF_h^{\ t} = 0.$$

Thus from Theorem 2.2, we have

THEOREM 2.3. If a conformal Killing vector v^h in an $n \ (>2)$ dimensional compact almost semi-Kählerian space satisfies

$$(2.7) F_{jih}(\mathfrak{L}_v F^{ji}) = 0 or (\mathfrak{L}_v F_{jih}) F^{ji} = 0,$$

then v^h defines an automorphism in the space.

An almost Hermitian space in which $F_{jih} = 0$ is satisfied is called an almost Kählerian space. In such a space, we have

$$F_h = -\frac{1}{2} F_{jit} F^{ji} F_h^{\ t} = 0,$$

that is, F_{ji} is harmonic. Thus from Theorem 2.3, we have

THEOREM 2.4. A conformal Killing vector v^h in an $n \ (>2)$ dimensional compact almost Kählerian space defines an automorphism of the space (cf. [1; 2; 3]).

BIBLIOGRAPHY

- 1. S. I. Goldberg, Conformal transformations of Kähler manifolds, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 54-58.
 - 2. A. Lichnerowicz, Géométrie des groupes de transformations, Paris, 1958.
- 3. S. Tachibana, On almost analytic vectors in almost Kählerian manifolds, Tõhoku Math. J. vol. 11 (1959) pp. 247–265.
- 4. K. Yano, On harmonic and Killing vector fields, Ann. of Math. vol. 55 (1952) pp. 38-45.
 - 5. ——, Theory of Lie derivatives and its applications, Amsterdam, 1957.
- 6. K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, vol. 32, 1953.

University of Hong Kong