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The purpose of the present note is to show that the results recently 
announced by S. I. Goldberg [ l ] in this Bulletin are valid also in 
slightly more general forms. 

1. Consider a conformai Killing vector vh in an ^-dimensional Rie-
mannian space. Then the Lie derivative of the fundamental tensor 
gji and that of Christoffel symbols with respect to vh are respectively 
given by 

(1.1) 8.gy< = VjVi + \7iVj = 24>gji 

and 

(1.2) 8 J I = V,. ViVh + KkjiV = A% + Ahi<l>j - <£ ga, 

where Vy is the symbol of covariant differentiation, Kkji the curva­
ture tensor, A] the unit tensor and #»• = V*0, <f>h being its contravariant 
components. 

For a skew-symmetric tensor Wipip^...iv we have in general [5] 

%v VfU)%p... H ~ Vj8»wip • • • n 

(1.3) = - ( 2V< . . HWtfp-!...*! - • • • ~ I %v\ . , | j î » y . . M . 

Taking the skew-symmetric part with respect to j , ip • • • iu we 
find 

(1.4) %vV[jWip...h] = \/[j2vWip...ilh 

from which 

THEOREM 1.1. The Lie derivative of a closed skew-symmetric tensor 
is closed. 

Transvecting (1.3) with g1'^ and taking account of (1.1) and (1.2), 
we get 

= (» - 2£)0lw«J,_1...<1, 
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from which 

THEOREM 1.2. The Lie derivative of a coclosed skew-symmetric tensor 
of order p with respect to a conformai Killing vector is coclosed if and 
only if p = n/2, n being even, or V ' C ^ w ^ ^ . . .,-J = 0 , that is, </>Wip.. .^ is 
also coclosed, where <j> is the function appearing in %vgji — 2<l>gji-

Combining Theorems 1.1 and 1.2 we have 

THEOREM 1.3. The Lie derivative of a harmonic tensor w of order p 
in an n-dimensional Riemannian space with respect to a conformai 
Killing vector is also harmonic if and only if p = n/2, n being even, or 
<f>w is coclosed. 

The most specific statement resulting is as follows, see [4; 5; 6] . 

THEOREM 1.4. The Lie derivative of a harmonic tensor w of order p 
in an n-dimensional compact orientable Riemannian space with respect 
to a conformai Killing vector is zero if and only if p — n/2, n being even, 
or 4>w is coclosed where <t> is a function appearing in Svgyi = 2$gy* [ l ] . 

2. In an almost complex space, a contra variant almost analytic 
vector is defined as a vector vh which satisfies 

(2.1) %vFih = vdtF* - Fi'dtv
h + J?*W = 0. 

In an almost Hermitian space, (2.1) may be written as 

(2.2) %vFih = v\7tFi - F < W + FNA = 0, 

from which, by a straightforward calculation, 

(2.3) v ' V<i>* + KiV - F< W ) Fjfoy) = 0, 

where Kih is the Ricci tensor and 

P = V F y , 

Fjih = VjFih + ViFhj + \7hFji. 

If we put 

ii it i 

S1 = g (&F, ), 

and suppose that the space is compact, we have 
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ƒ [" { V* V / + KU - F^F) - - F^W)} vh 

(2.4) 2 

+ — S^SjAda = 0, 

da being volume element of the space. 
From (2.3) and (2.4) we have 

THEOREM 2A. A necessary and sufficient condition f or a vector vh in 
a compact almost Hermitian space to be contravariant analytic is (2.3). 

Suppose that a conformai Killing vector vh satisfies 

^ W ) + J Fji\%vFJi) = 0. 
Substituting 

% h , „„, h % ri L h. i 
V S7iV + KiV = V (S/iv) 

n 

obtained from (1.2) into (2.4), we find 

r Yn - 2 1 "I 

(2.5) J ( V^)2 + — S^SA da = 0, 

from which, for n>2, 

V,-v* = 0, Sa = 0 

and consequently vh is a Killing vector [4; 6] and at the same time a 
contravariant almost analytic vector, and for n — 2, we have Sji = 0. 
Thus we have 

THEOREM 2.2. If a conformai Killing vector vh in an n-dimensional 
compact almost Hermitian space satisfies 

(2.6) F < W ) + Y Fh
h($vF

Ji) = 0, 

then, for n>2, it defines an automorphism of the space, that is, the 
infinitesimal transformation vh does not change both the metric and the 
almost complex structure of the space, and f or n — 2, it is contravariant 
almost analytic. 

An almost Hermitian space in which F{ = 0 is satisfied is called an 
almost semi-Kahlerian space. In such a space, we have 
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FjihF
H = 2FtFn = 0. 

Thus from Theorem 2.2, we have 

THEOREM 2.3. If a conformai Killing vector vh in an n (>2 ) dimen­
sional compact almost semi-Kahlerian space satisfies 

(2.7) Fy*(8,F>9 = 0 or (2vFjih)F" = 0, 

then vh defines an automorphism in the space. 

An almost Hermitian space in which 7 ^ = 0 is satisfied is called 
an almost Kahlerian space. In such a space, we have 

1 ji t 

Fh =z —— FjnF Fh = 0, 

that is, Fji is harmonic. Thus from Theorem 2.3, we have 

THEOREM 2.4. A conformai Killing vector vh in an n (>2 ) dimen­
sional compact almost Kahlerian space defines an automorphism of the 
space (cf. [ 1 ; 2 ; 3 ] ) . 
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