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Given a measurable transformation on a measure space one can 
ask whether or not there is an equivalent measure that is invariant 
under the transformation. This problem is discussed very thoroughly 
in Halmos' Lectures on ergodic theory, pp. 81-90, 97. The first result 
along these lines is due to E. Hopf who obtained necessary and suffi­
cient conditions for the existence of a finite invariant measure. The 
condition is that the whole space is "bounded," i.e. that the space is 
not a "copy" of a subset of strictly smaller measure. ("Copy" is 
defined below.) Recently Hajian and Kakutani (the paper is not yet 
published) showed that Hopf s condition is equivalent to the non­
existence of a set of nonzero measure having infinitely many disjoint 
images under the powers of the transformation. In [3] Halmos proved 
that there was a sigma-finite invariant measure if and only if the 
space was the union of a countable number of "bounded" sets. It 
was not known however whether or not every transformation had 
this property. Our example shows that there are transformations that 
admit no equivalent invariant measures. 

THEOREM. There exists a 1-1 invertible measurable and nonsingular 
transformation, Ty on the unit interval such that there is no sigma-finite 
measure equivalent to Lebesgue measure which is invariant under T. 

We could modify the example a little so that the only invariant 
measure which is absolutely continuous with respect to Lebesgue 
measure is identically 0. 

(A 1-1 invertible, measurable, nonsingular transformation is one 
such that it and its inverse take measurable sets into measurable 
sets and sets of measure 0 into sets of measure 0. A measure equiva­
lent to Lebesgue measure is a measure which is defined on the same 
class of measurable sets and has the same sets of measure 0. Sigma-
finite means that the interval is the union of a countable number of 
sets of finite measure. 

I t is possible to have a sigma-finite measure equivalent to Lebesgue 
measure such that every interval has infinite measure and it is this 
sort of thing that complicates our construction.) 

A transformation T on the unit interval will be said to have prop­
erty P if: for any integer N and any set S of Lebesgue measure 
> 9 / 1 0 there is a set MC.S of Lebesgue measure 1/8 such that there 
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are N disjoint "copies" of M in 5. [The set A is said to be a "copy" of 
the set B if A and B are each the union of a countable number of 
disjoint measurable subsets Ai and B< respectively, and Ai= Tni(Bi) 
where the Ui are integers, which might be positive, negative or 0.] 

A transformation T with property P can have no sigma-finite 
invariant measure equivalent to Lebesgue measure. To see this note 
that if there were such an invariant measure L' there would be a set 
S of Lebesgue measure > 9 / 1 0 which has finite L' measure. Our 
property implies that S contains sets of Lebesgue measure 1/8 with 
arbitrarily small U measure. This is impossible (see [2, p. 125, 
Theorem B]) . 

CONSTRUCTION OF T. We will do this in stages, each time defining 
T on a larger set and never changing T after it has already been de­
fined. At the iVth stage we will have the interval J (except for the 
left end point) written as the union of KN disjoint intervals (all our 
intervals will contain their right end point but not their left) 
if (j = 1, • • • , KN) (not necessarily the same length) and T will map 
if linearly onto if+x (1 SJSKN— 1). T will not be defined on I%N 

and T~l will not be defined on if. 
We will now define T on part of IRN (more than 1/2 of it) and 

T-1 on part of if (1/2 of if). We will denote by lftl the left half of 
if. We will divide the rest of if into Kf — 1 disjoint equal intervals 
if j (2 ^-J^KN). (KN will be any integer > 1 and large enough so that 
N'KN-LiTVfj)) <1/100 for any OgigKv-l and any 2gj£Kl

N. 
(L(A) = Lebesgue measure of the set A.) 

We now have I%N divided up into disjoint intervals TKlf"1(lfj) 
(lûjéKj,). We will now define T on Uffi"1 TK»~\ht3) (and, auto­
matically, r - 1 on \Jfl%lfj) by sending T^-^lfj) linearly onto 
• M J + l * 

We are now back in our original situation. J is broken up into 
KNKN = KN+I disjoint intervals lf+1 (1^1^KN+I) where 

k N 2V-4-1 1 

T (htj) = IKNu-i)+k+i (O^k^ KN), (lûjû KN). 

T maps If+1 linearly onto ijft1 (1 £l£KN+i). 
Choose the intervals J} = ( l / 2 , l ] and ll=(0, 1/2]. This finishes 

the construction 

N+l 1 N N+l 1 N 

I ( C ) ^ I ( W and L(I1
 + )=-L(I1). 

This means that the measure of the sets on which T and T~l are not 
defined is tending to 0 and hence we have defined T and T"1 on all 
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of J except a set of measure 0 (in fact we define it on all points ex­
cept 0 and 1). I t is easy to check that T and T~x are measurable. 
Both are nonsingular because any set of non 0-measure must, at some 
stage of the construction, intersect some interval other than the two 
end ones in a set Q of non 0-measure, and T(Q) and T~1(Q) must have 
non O measure. 

PROOF THAT T HAS PROPERTY P . Let 5 be a set of measure >9 /10 
and let N be an integer. Let Ii+1 = Jk- I t is easy to see that we can 
divide each Ji into 2KN+1 disjoint measurable subsets, J\ (1 ^l^2KN+1) 
such that each J\ lies entirely in either S or the complement of 5 and 
T(Jl)=fi+1 (l^igKv+i-1), ( l^Zg2**+0 [we will show how to do 
this, i.e. how to define the set J\. Look at the dyadic expansion of /. 
Denote the rth term by (/, r) and denote JiC\S by °Ji and (J— 0 /*) 
by lJi. Now let 

. KN+I . _ . n . . KN+I 

J< = n T r • ' % ) (1 ^ i s K N + 1 ) (1 g 1 g 2 ). 

We then have T(J\) = (f?i+1 r * 1 - ' ^ / , ) - J j + 1 and Jl
tC

(hi)Jil 
Define 5 ' = Ufjx

+1 /{. Let u% be the measure of Bl. If there are 
NKN or more intervals J't (Kx^k^Kif+i) in S we will call Bl a good 
BK 

Z(/5 L(j[) 
(1) -7777 = 7 7 7 7 = «i, (l£k£i£ KN+1), 

L(Ji) L(Jk) 

(1) is true because Ji=T*-*(Jk) and J j = r * - 1 ( ^ t ) and T^k maps /* 
linearly onto /»-. 

(2) E W = Z L(T(I?,i)) = -

because IitX was chosen to be the left half of 1^. 
(3) If Bl is not a good Bl then the complement of S intersects Bl in a 

set of measure ^ (1/2 —1/100)^. 
To see (2) we note first that the sum of the measures of any NKN 

of the Ji (Knr<iSKN+\) is less than 1/100 because of our choice of 
KN. I t now follows from (1) that for a fixed I the sum of the measures 
of any NKN of the J\ (KN<i^KN+i) is less than ui/100. 

From (2) we get that £ S J & + 1 £(/«) = 1/2 and this together with 
(1) implies that JLf^tN+1 L{Jl^^Ui/2. This and the last line of the 
preceding paragraph give (3). 

(4) The sum of the measures of the good Bl is greater than 1/2. 
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This follows from (3) and the fact that the complement of S has 
measure less than 1/10. 

Let M1 be the part of I f e Ji which lies in the good Bl. 

(5) L(M>) è 4" " 
4 

We get (4) in the following way: (2) and (1) imply £ & £ ( / * ) 
= Ui/2. This together with (4) implies (5). 

Let M be the part of M1 that lies in S. L(M)> 1 / 4 - 1 / 1 0 > 1/8. 
M1, and therefore M, has N disjoint copies in S because U j ^ J\ has 
N disjoint copies in SHiB1 if Bl is good. 

M is the subset of 5 needed for property P . 
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