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1. Introduction. Suppose 1<p <  throughout. The transforma-
tion D, is defined by

D,z = derivative of x

for all functions x in the set D(D,) of all locally absolutely continuous
members of L?=L?(— o, ») whose derivative belongs to L?. The
following result is prototypic: (¢/2m)D, is a transformation (denoted
P,) that satisfies the spectral theorem in a sense to be described
presently.

Let £, denote the norm-topology of L?. Suppose that E is a spec-
tral resolution in L? (see §6), and let f be a function on (— «©, «),
If T is a transformation of L? with domain ©(T), then the relation

) < [ 700 E@

will mean that, for all functions x in D(7T), the Riemann-Stieltjes
integral

- E@na
converges to Tx in the topology &£,.

Let ©, be the class of all linear transformations Q of L? which give
rise to a spectral resolution E€ in L? such that

@ X f A~ E2(d)),
and
(ii) I,C f 1. E9(an),

1 This research was supported by the United States Air Force through the Air
Force Office of Scientific Research of the Air Research and Development Command
under Contract No. AF 49(638)-505.
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where I, is the identity-mapping on L?. The basic result can now be
more precisely formulated: P,E9,. As pointed out by Dunford
[2, p. 223], P, is probably not a spectral operator (when p£2). In
case p =2, the relation P&, comes from the spectral theorem (.
contains all self-adjoint linear transformations of L?). Differential
transformations of a more general sort also belong to O, (see 5.5).

2. Applications. Let 4 be a function of bounded variation on
R=(— o, ). The convolution transformation Ax, is defined for all
x in L? by the relation: Ax,x =4 *x, where

A2 = [ “H@)dAN — ) * CR).

—0o0

If the function g defined by

@ 6 = [ emvaa nER
is of locally bounded variation, then

3) Axp © f g(\) - EQ(dN) (where Q = P,).

Relation (3) is generalized by 5.3 below; it is closely connected with
some results that Bade [1] has derived from different assumptions.?

Let H, denote the Hilbert transformation (also called conjugation
operator). Then D,H,E0,, and

@ D,H, C f —(=NU2-E9(d\)  (where Q = D});

here we assume (3)/2=0 whenever 8<0. This provides an inter-
pretation of the equality D,H,= — (—D?2)!/2, which is stated to hold
“in some sense” by Hille-Phillips (see the bottom of p. 579 in [5]).

Hille [4] has proved that D,H, is the infinitesimal generator of the
Poisson semi-group {7(a),:a>0}; this fact harmonizes with the
relation

T(a), C f 2. Ed\)  (where 0 = D,H,).

Theorem 5.4 (below) makes it easy to derive similar relations involv-
ing other semi-groups and their infinitesimal generators.?

2 See also Exercise 4 in [2, p. 605].
8 In this connection, I wish to correct an error in [7]: both occurrences of E: in
two first displayed formulas (on top of p. 271) should be replaced by E?, where Q= P,,.
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3. Unbounded multiplier-transformations. As in [7], we denote by
L+ the intersection of the family {L¢:1<g¢< « }, and again let € be
the class of all linear mappings K of L+ into L+ such that |||,
whenever 1 <g< «. The Fourier transformation and its inverse are
written Fy and F_, respectively.

If f is a function on R, then p(f: 1) is the class of all closed linear
transformations T of L? such that*

Fi(Tx) = (Fyx)-f (all 2 in D(T))

whereas p(f: —1) is the class of all closed linear transformations T
of L? such that

F2& D(T) and T(F-3) = F_(f-2)

whenever z is a function in L+ having compact support. Consider the
class ¢(f), of all endomorphisms of L? whose restrictions to L+ belong
to ENp(f: 1). The class (¢), described in [7] contains the class

(#), = U {4(f),: f is of bounded variation on R}.

As in [7], we denote by [ A ()], the unique member of ¢(f),. If ¢q is
the characteristic function of the interval (—a, @), then [A (¢a) ], is
is the Dirichlet transformation:

([A @) = f_:x(ﬂ)ihlfg%ﬂdﬁ'

Let €, be the class of all linear transformations of L? that commute
with each member of the family {[A (¢.)],: @>0}.

DEFINITION. The symbol p(f) will be used for the class of all T in
S, such that, for all x in D(T):

[A @a)]sT2 = [A(f-6a) ]2 (ol « > 0).

4. The transformations considered in this paper belong to the class
@, =U {p(N:1 € [V},

where [V] is the family of all complex-valued functions of locally

bounded variation on R=(— «, «), It is easily seen that p(f) D¢(f),
when fE[V], so that (#), is an extension of (¢'),.

4.1. THEOREM. Set n,=1 when p <2, while setting n,= —1 in case
p22. If fE[V], then

#() D p(f: n)) N €.

¢ In this article, “transformation of L?” means “transformation whose domain and
range are subsets of L?.”
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4.2. THEOREM. Suppose f&[V] and g€[V]. If QEP(f) and
Tep(g), then QTEP(f-9).

5. Main results. Denote by 3C the set of all real-valued, piecewise
monotone functions defined and continuous on R. Let G be the set
of all functions g in 3C such that Ig(-— 00)[ = 0 = |g(+ oo)l. For ex-
ample, any real polynomial belongs to G.

5.1. THEOREM. If TEp(g) and g&<G, then TED,,.

Set I'(\) =\ for all NER; in virtue of 4.1, the relation P,Ep(IY)
can be obtained by showing that P,&Ep(I': n,)MNE,.

5.2. THEOREM. If g€ [V] and TEp(g), then
) TC f () - EO(dN) (where Q = Py).

5.3. COROLLARY. If g&[V] and T=[A (g)], then the relation (5)
holds.

This follows from 5.2 and ¢(g), Cp(g). The relation (3) comes from
the fact that A«,=[A (g) ], when g is defined by (2).

5.4. TuEOREM. Suppose g&G and QEp(g). Let f be a continuous
function on R such that the composition f o g is a function ¢ in [V]; if

TEp(), then
TC f FO\) - EQ(dN).

Property (4) comes from 5.4. A repeated application of 4.2 yields
the following

5.5. COROLLARY. Let {ao, o, Oy, * 0 0, a,.} be an arbitrary finite set
of real numbers. Let T be the transformation defined by the relation

Tx = ay(iDp)"% + an1(Dp)" 2 4 + + + + ariDpx + aox

for all x in D(D,) whose successive derivatives Dyx, (Dp)%x, - - -,
(Dp)*x all belong to D(D,). Then TED,, and the relation (5) is
satisfied for

gN) = an(2m\)" + ap—1(2oN)" 1 4 - - - 4 @i(2mN) + ao.

6. The type of integration employed. Let & be the Boolean set-
algebra generated by the subintervals of R=(— «, »). Suppose that
E is a spectral resolution in L? (that is to say, E is a homomorphism
of the Boolean algebra ® into the class of all the idempotent members
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of (¢'), that are self-adjoint in the sense of [7]). Let ‘(£,) lim’ indi-
cate convergence in the topology £,. For example, (1) means that

8
(6) Tx = (£,) . lim f JO) - E(@@\)x
for all x in D(T). The meaning of the integral in (6) will now be indi-
cated.

Let B be the set of all finite, disjoint families 7 of left-open, right-
closed subintervals of R, such that 7 is a cover® of [a, 8]. Let &
be the set of all ordered pairs (w, ¢) with #& 3 and such that o is a
function on 7 with values o, in [@, B]Na~ (whenever a&w).® We
write

(r, 0) = X f(00) E@)x.

aET

The set &€ is directed by the usual Riemann-Stieltjes ordering ‘>’
(see [6, p. 79]), and we define

fﬂf()\) -E(d\)x = (£,) lim {<I>(1r, 0):(r, o) ES, >>}.
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