NORMAL OPERATORS ON THE BANACH SPACE $L^p(-\infty, \infty)$.

PART II: UNBOUNDED TRANSFORMATIONS1

BY GREGERS L. KRABBE

Communicated by Einar Hille, November 28, 1959

1. Introduction. Suppose $1 throughout. The transformation <math>D_p$ is defined by

$$D_p x = \text{derivative of } x$$

for all functions x in the set $\mathfrak{D}(D_p)$ of all locally absolutely continuous members of $L^p = L^p(-\infty, \infty)$ whose derivative belongs to L^p . The following result is prototypic: $(i/2\pi)D_p$ is a transformation (denoted P_p) that satisfies the spectral theorem in a sense to be described presently.

Let \mathcal{L}_p denote the norm-topology of L^p . Suppose that E is a spectral resolution in L^p (see §6), and let f be a function on $(-\infty, \infty)$. If T is a transformation of L^p with domain $\mathfrak{D}(T)$, then the relation

$$(1) T \subseteq \int f(\lambda) \cdot E(d\lambda)$$

will mean that, for all functions x in $\mathfrak{D}(T)$, the Riemann-Stieltjes integral

$$\int_{-\infty}^{\infty} f(\lambda) \cdot E(d\lambda) x$$

converges to Tx in the topology \mathfrak{L}_p .

Let \mathfrak{O}_p be the class of all linear transformations Q of L^p which give rise to a spectral resolution E^Q in L^p such that

(i)
$$Q \subseteq \int \lambda \cdot E^{Q}(d\lambda),$$

and

(ii)
$$I_p \subseteq \int 1 \cdot E^Q(d\lambda),$$

¹ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-505.

where I_p is the identity-mapping on L^p . The basic result can now be more precisely formulated: $P_p \in \mathfrak{D}_p$. As pointed out by Dunford [2, p. 223], P_p is probably not a spectral operator (when $p \neq 2$). In case p = 2, the relation $P_2 \in \mathfrak{D}_2$ comes from the spectral theorem (\mathfrak{D}_2 contains all self-adjoint linear transformations of L^2). Differential transformations of a more general sort also belong to \mathfrak{D}_p (see 5.5).

2. Applications. Let A be a function of bounded variation on $R = (-\infty, \infty)$. The convolution transformation A_{*p} is defined for all x in L^p by the relation: $A_{*p}x = A * x$, where

$$(A * x)(\lambda) = \int_{-\infty}^{\infty} x(\beta) dA(\lambda - \beta) \qquad (\lambda \in R).$$

If the function g defined by

(2)
$$g(\lambda) = \int_{-\infty}^{\infty} e^{2\pi i \lambda \beta} dA(\beta) \qquad (\lambda \in R)$$

is of locally bounded variation, then

(3)
$$A_{*p} \subseteq \int g(\lambda) \cdot E^{Q}(d\lambda) \qquad \text{(where } Q = P_{p}).$$

Relation (3) is generalized by 5.3 below; it is closely connected with some results that Bade [1] has derived from different assumptions.²

Let H_p denote the Hilbert transformation (also called *conjugation operator*). Then $D_pH_p \in \mathfrak{D}_p$, and

(4)
$$D_p H_p \subseteq \int -(-\lambda)^{1/2} \cdot E^Q(d\lambda) \quad \text{(where } Q = D_p^2 \text{)};$$

here we assume $(\beta)^{1/2}=0$ whenever $\beta<0$. This provides an interpretation of the equality $D_pH_p=-(-D_p^2)^{1/2}$, which is stated to hold "in some sense" by Hille-Phillips (see the bottom of p. 579 in [5]).

Hille [4] has proved that D_pH_p is the infinitesimal generator of the Poisson semi-group $\{T(\alpha)_p:\alpha>0\}$; this fact harmonizes with the relation

$$T(\alpha)_p \subseteq \int e^{\alpha\lambda} \cdot E^Q(d\lambda)$$
 (where $Q = D_p H_p$).

Theorem 5.4 (below) makes it easy to derive similar relations involving other semi-groups and their infinitesimal generators.³

² See also Exercise 4 in [2, p. 605].

³ In this connection, I wish to correct an error in [7]: both occurrences of E_p^D in two first displayed formulas (on top of p. 271) should be replaced by E^Q , where $Q = P_p$.

3. Unbounded multiplier-transformations. As in [7], we denote by L^+ the intersection of the family $\{L^q: 1 < q < \infty\}$, and again let \mathfrak{E} be the class of all linear mappings K of L^+ into L^+ such that $\|K\|_q \neq \infty$ whenever $1 < q < \infty$. The Fourier transformation and its inverse are written F_+ and F_- , respectively.

If f is a function on R, then p(f:1) is the class of all closed linear transformations T of L^p such that⁴

$$F_{+}(Tx) = (F_{+}x) \cdot f \qquad (all x in \mathfrak{D}(T))$$

whereas p(f:-1) is the class of all closed linear transformations T of L^p such that

$$F_{-}z \in \mathfrak{D}(T)$$
 and $T(F_{-}z) = F_{-}(f \cdot z)$

whenever z is a function in L^+ having compact support. Consider the class $t(f)_p$ of all endomorphisms of L^p whose restrictions to L^+ belong to $\mathfrak{C} \cap p(f; 1)$. The class $(t)_p$ described in [7] contains the class

$$(t')_p = \bigcup \{t(f)_p : f \text{ is of bounded variation on } R\}.$$

As in [7], we denote by $[\land (f)]_p$ the unique member of $t(f)_p$. If ϕ_α is the characteristic function of the interval $(-\alpha, \alpha)$, then $[\land (\phi_\alpha)]_p$ is is the Dirichlet transformation:

$$([\wedge (\phi_{\alpha})]_{p} x)(\lambda) = \int_{-\infty}^{\infty} x(\beta) \frac{\sin 2\pi \alpha (\lambda - \beta)}{\pi (\lambda - \beta)} d\beta.$$

Let \mathbb{C}_p be the class of all linear transformations of L^p that commute with each member of the family $\{ [\land (\phi_\alpha)]_p : \alpha > 0 \}$.

DEFINITION. The symbol p(f) will be used for the class of all T in \mathfrak{C}_p such that, for all x in $\mathfrak{D}(T)$:

$$[\wedge (\phi_{\alpha})]_p Tx = [\wedge (f \cdot \phi_{\alpha})]_p x \qquad (all \ \alpha > 0).$$

4. The transformations considered in this paper belong to the class

$$(t'')_p = \bigcup \big\{ p(f) : f \in [V] \big\},\,$$

where [V] is the family of all complex-valued functions of locally bounded variation on $R = (-\infty, \infty)$. It is easily seen that $p(f) \supset t(f)_p$ when $f \in [V]$, so that $(t'')_p$ is an extension of $(t')_p$.

4.1. THEOREM. Set $n_p = 1$ when p < 2, while setting $n_p = -1$ in case $p \ge 2$. If $f \in [V]$, then

$$p(f) \supset p(f; n_p) \cap \mathfrak{C}_p$$
.

⁴ In this article, "transformation of L^p " means "transformation whose domain and range are subsets of L^p ."

- 4.2. THEOREM. Suppose $f \in [V]$ and $g \in [V]$. If $Q \in p(f)$ and $T \in p(g)$, then $QT \in p(f \cdot g)$.
- 5. Main results. Denote by \Re the set of all real-valued, piecewise monotone functions defined and continuous on R. Let \Im be the set of all functions g in \Re such that $|g(-\infty)| = \infty = |g(+\infty)|$. For example, any real polynomial belongs to \Im .
 - 5.1. THEOREM. If $T \in p(g)$ and $g \in g$, then $T \in \mathfrak{D}_p$.

Set $I^1(\lambda) = \lambda$ for all $\lambda \in \mathbb{R}$; in virtue of 4.1, the relation $P_p \in p(I^1)$ can be obtained by showing that $P_p \in p(I^1: n_p) \cap \mathbb{C}_p$.

5.2. THEOREM. If $g \in [V]$ and $T \in p(g)$, then

(5)
$$T \subseteq \int g(\lambda) \cdot E^{Q}(d\lambda) \qquad (where Q = P_{p}).$$

5.3. COROLLARY. If $g \in [V]$ and $T = [\land (g)]_p$, then the relation (5) holds.

This follows from 5.2 and $t(g)_p \subset p(g)$. The relation (3) comes from the fact that $A_{*p} = [\land (g)]_p$ when g is defined by (2).

5.4. THEOREM. Suppose $g \in G$ and $Q \in p(g)$. Let f be a continuous function on R such that the composition $f \circ g$ is a function ϕ in [V]; if $T \in p(\phi)$, then

$$T \subseteq \int f(\lambda) \cdot E^{Q}(d\lambda).$$

Property (4) comes from 5.4. A repeated application of 4.2 yields the following

5.5. COROLLARY. Let $\{\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_n\}$ be an arbitrary finite set of real numbers. Let T be the transformation defined by the relation

$$Tx = \alpha_n(iD_p)^n x + \alpha_{n-1}(iD_p)^{n-1} x + \cdots + \alpha_1 iD_p x + \alpha_0 x$$

for all x in $\mathfrak{D}(D_p)$ whose successive derivatives $D_p x$, $(D_p)^2 x$, \cdots , $(D_p)^{n-1} x$ all belong to $\mathfrak{D}(D_p)$. Then $T \in \mathfrak{D}_p$, and the relation (5) is satisfied for

$$g(\lambda) = \alpha_n (2\pi\lambda)^n + \alpha_{n-1} (2\pi\lambda)^{n-1} + \cdots + \alpha_1 (2\pi\lambda) + \alpha_0.$$

6. The type of integration employed. Let \mathfrak{B} be the Boolean setalgebra generated by the subintervals of $R = (-\infty, \infty)$. Suppose that E is a spectral resolution in L^p (that is to say, E is a homomorphism of the Boolean algebra \mathfrak{B} into the class of all the idempotent members

of $(t')_p$ that are self-adjoint in the sense of [7]). Let ' (\mathfrak{L}_p) lim' indicate convergence in the topology \mathfrak{L}_p . For example, (1) means that

(6)
$$Tx = (\mathfrak{L}_p) \lim_{\beta \to \infty : \alpha \to -\infty} \int_{\alpha}^{\beta} f(\lambda) \cdot E(d\lambda) x$$

for all x in $\mathfrak{D}(T)$. The meaning of the integral in (6) will now be indicated.

Let \mathcal{B} be the set of all finite, disjoint families π of left-open, right-closed subintervals of R, such that π is a cover⁵ of $[\alpha, \beta]$. Let \mathfrak{S} be the set of all ordered pairs (π, σ) with $\pi \in \mathcal{B}$ and such that σ is a function on π with values σ_a in $[\alpha, \beta] \cap a^-$ (whenever $a \in \pi$). We write

$$\Phi(\pi, \sigma) = \sum_{a \in \pi} f(\sigma_a) \cdot E(a) x.$$

The set © is directed by the usual Riemann-Stieltjes ordering '>' (see [6, p. 79]), and we define

$$\int_{\alpha}^{\beta} f(\lambda) \cdot E(d\lambda) x = (\mathfrak{L}_p) \lim \left\{ \Phi(\pi, \sigma) : (\pi, \sigma) \in \mathfrak{S}, \gg \right\}.$$

REFERENCES

- 1. W. G. Bade, An operational calculus for operators with spectrum in a strip, Pacific J. Math. vol. 3 (1953) pp. 257-290.
- 2. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. vol. 64 (1958) pp. 217-274.
- 3. N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, New York, Interscience Publishers, 1956.
- 4. E. Hille, On the generation of semi-groups and the theory of conjugate functions, Kungl. Fysiogr. Sällsk. i Lund Förh. vol. 21 (1952) pp. 1-13.
- 5. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, rev. ed., 1957.
 - 6. J. L. Kelley, General topology, New York, 1955.
- 7. G. L. Krabbe, Normal operators on the Banach space $L^p(-\infty, \infty)$. Part I. Bounded operators, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 270-272.

PURDUE UNIVERSITY

⁵ In the sense of [6, p. 49].

⁶ Here a^- denotes the closure of a.