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The main purpose of this paper is the study of the analytic con­
tinuation of solutions of elliptic differential equations in two inde­
pendent variables across an analytic boundary on which they satisfy 
further analytic equations connecting the point of the boundary, the 
value of the solution and those of its first order partial derivatives. 

In its simplest form the problem is that of the continuation of a 
harmonic function of two variables x, y across a segment of the x-
axis if on this segment an analytic relation holds between x, the given 
harmonic function u and its conjugate harmonic vy and the deriva­
tives ux and uy. This case was the subject of [2] and of [7]. Here we 
shall complement the methods and results of [7] by discussing the 
special case of a linear boundary relation. We shall see that u can be 
extended as harmonic function into the mirror image of its domain D 
of definition provided D is simply connected. In other words: the 
general linear boundary condition and the boundary condition u = 0 
do not differ with respect to the domain into which they permit the 
class of harmonic functions on D to be extended, they are "coexten­
sive. " 

In this respect there is a fundamental difference between harmonic 
functions of two and of three variables. We shall furnish an example 
of a harmonic function of three variables which satisfies a linear 
boundary condition, even of constant coefficients, on a boundary 
plane, but which is not coextensive with the class of harmonic func­
tions of the same domain of definition, but satisfying the condition 
w = 0 o n the boundary plane. The example is such as to permit the 
choice of the boundary condition in a manner to exclude an arbitrary 
point of the mirror image domain from the domain of analytic ex­
tension. 

This example illustrates, by exhibiting the breakdown of analogy 
of facts, the necessity of employing in the treatment of equations in 
two independent variables tools especially adapted to this case. We 
shall see that in essence the problem of analytic continuation of 
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solutions of elliptic equations in two variables can be thrown back 
on the problem of analytic extension of holomorphic functions of one 
complex variable. But the boundary conditions upon which this ex­
tension can be made to rest are no longer of the simple type described 
above, but require for formulation and treatment the introduction of 
a novel kind of functional, the terminal. A sketch of a theory of 
terminals was the subject of [8], together with applications to the 
problem at hand. Here we shall offer a slightly different approach 
which has the advantage of being more direct, especially where linear 
equations are concerned. 

The main result concerning solutions of analytic elliptic equations 
in two variables is the fact that they can be "reflected" on analytic 
boundary conditions and that a local construction can be given to 
effect this extension. Again the case of linear equations and linear 
boundary conditions is privileged: apart from conditions about the 
domain of regularity of the coefficients it can be asserted that for 
simply connected domains D of definition the solutions of the general 
equation 

uxx + uyy + a(x, y)ux + b(x, y)uy + c(x, y)u + e(x, y) = 0 

with general linear boundary condition of first order are coextensive 
with harmonic functions defined in D and satisfying on the same 
boundary arc the condition u — 0. 

This paper consists of 2 parts. The first part deals exclusively with 
linear boundary conditions. The second part gives an introduction 
to a theory of "terminal" operators and applies it subsequently to 
the reflection of solutions of linear equations on non-linear boundary 
conditions. 

PART I. LINEAR PROBLEMS 

1. Extension of harmonic functions across linear boundary condi­
tions. We denote by D a simply connected domain of the x, ^-plane 
whose boundary contains a segment cr of the x-axis with the origin 
as interior point and such that D contains the portion y < 0 of a neigh­
borhood of each point of cr. We express this condition by saying: 
D is adjacent to o*, on the side y<0. Let u(x, y) be harmonic in D 
and let v(x, y) be a conjugate harmonic of u. Put 

z — x + iy, F(z) = u + iv. 

THEOREM 1. Assume u and v to be conjugate harmonic in D, and in 
C1 on D\J(T, and to satisfy on a the linear boundary condition 

(1.1) ai(x)ux(x, 0) — a2uy + b\U + b2v = f(x) 
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where the coefficients a\{z), #2(2), bi(z), ô20s), f(z) are regular in DKJa 
and real on a (i.e. for z~x) and where in D\Jv 

(1.2) ai(z) + ia2(z) ^ 0. 

Then F(z) can be continued analytically across a into the mirror image 
DofD. 

PROOF. As in [7] we consider the differential equation in D 

a&XF'iz) + G'OO) + ia2{z)(-F'(z) + G'(z)) 

+ Ji(s)(F(*) + G(z)) + ib*{-F + G) = 2f(z). 

In view of (1.2) it can be solved with respect to G'(z). We prescribe 
the initial condition G(0) =F(0) =u — iv(0, 0) and express the solution 
G(z) of (1.3) by a well-known explicit formula <f> in terms of the coeffi­
cients and F{z) and F'(z). On account of our hypotheses about the 
coefficients and F, G(z) is regular in D, and continuous on D\J<r. The 
simple connectivity of D results in the integrals entering <j> being inde­
pendent of the path which joins the origin to z. On cr, the formula <t> 
gives the unique solution of (1.3) for the specialization z = x and 
initial value G(0) =F(0 ) . 

Now consider in D the function F\(z) defined by 

Fi(s) = G{z). 

Since z lies in D, Fi is defined in D and regular there. Furthermore 
Fi(z) assumes on & continuous boundary values. I say that on a we 
have Fi(x)=F(x). This is true for x = 0, since we let F(0)=G(0) . If 
we substitute in (1.3) z = x and G(x) =F(x) , we satisfy (1.3), for upon 
this substitution (1.3) reduces to (1.1). Now the uniqueness of the 
solution of (1.3) for z = x implies that G(x) be identical with F(x). 
Hence F(z) is regular in D> continuous in PUcr, F\(z) is regular in 
D, continuous in Z)U<r, and on a, F and Fi agree. Thus according to 
a classical theorem, Fi(z) is the analytic extension of F into D\Ja. 
The theorem is proved. 

REMARK. If we replace in (1.1) the derivative uy by —vx and per­
form an integration with respect to x, we free the boundary condition 
of any reference to derivatives of u and v, obtaining a condition 
(1.1 ;). Now if we knew of u and v only their continuity in D\Jay to­
gether with (1.1') on cr and harmonic conjugation in D, we could re­
peat the above reasoning as follows: While formula <j> contained the 
derivative F'(z)y we can remove the reference to Ff(z) by an integra­
tion by parts and obtain a new formula <f>\ which expresses G(z) in 
terms of the coefficients and their derivatives and of F and integrals 
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of such. Now the proof proceeds as before, since the uniqueness of 
the solution of an ordinary differential equation is established by 
considering only the integrated form of the equation. Under circum­
stances such as arise frequently in the calculus of variations, it may 
be easier to ascertain boundary conditions of type (1.1') rather than 
the hypotheses of the theorem as stated above. 

2. Example of a harmonic function of three variables. We show 
in this section that the analog of Theorem 1 for harmonic functions 
of three variables is incorrect. Let x, y, z be three real variables and 
consider the auxiliary function 

U(x, y,z) = f e~z+t{x2 + y2 + t2)-l'2dt 
J -oo 

defined for all x, y, z with the exception of the points of the positive 
s-axis. Upon approach to a point of the positive s-axis U tends to oo 
and therefore the derivative of U in a fixed direction other than the 
0-direction cannot remain bounded upon approach to the positive z-
axis. 

Z7is harmonic. In fact, consider an integral of form ft ^"^^{x, y} t)dt 
where ƒ has continuous second derivatives which remain bounded at 
infinity. We have 

d 

dz. 
f r*'f(x,y,t)dt = - f e-^tf(x)yyt)dt+f(x,y,z) 

(2.1) - J J -

- / : 

d 
— f(x,y, t)dt 
ot 

and similarly 

d2 rz r* d2 

dz2 
f e-*+tf(x, y, t)dt = f *-*-' —fix, y, t)dt. 

J -oo J -oo dt2 

Now Laplace's equation follows for U since it holds for ƒ(#, y, z) 
= (x 2+y 2+2 2) 1 / 2 . Moreover, by (2.1), 

(2.2) U. + U = (x2 + y2 + z2)-1/2. 

Take an arbitrary plane p through the origin which does not con­
tain the 2-axis. Denote by d/dn that linear combination with con­
stant coefficients of the first partial derivatives which is the deriva­
tive in the direction normal to p. Let D be the halfspace bounded by 
p which contains the negative z-axis and let D be its mirror image 
with respect to p. Put 
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u(x, y, z) = (d/dn)U(x, yy z). 

Then (2.2) yields Ug+u — Q on p. Furthermore, u is harmonic in D 
and continuous with all derivatives in DKJp minus the origin 0. 
Evidently u can be continued as harmonic function across p minus 0, 
but does not stay bounded upon approach to the positive 2-axis, hence 
is singular there. The plane p can be chosen so as to make an arbi­
trarily small angle with the 2-axis. Therefore u becomes an example 
of a harmonic function on a half-space adjacent to a plane py con­
tinuous up to and including p minus 0, and which satisfies on p minus 
0 a linear homogeneous boundary condition of first order with con­
stant coefficients. Yet u cannot be continued across p as harmonic 
function into a domain which contains a line through 0 of some fixed 
but arbitrarily small angle with p. 

This example illustrates the difference between the behavior of 
harmonic functions of two variables where extension into the full 
mirror image domain of the domain of existence was proved, and 
that of harmonic functions of three variables where even under the 
most restrictive assumptions as to the nature of the boundary condi­
tion, the assumed domain of existence and its boundary, the analo­
gous conclusions may be erroneous. 

3. Linear boundary conditions for linear elliptic equations. We 
return to the notations of §1 concerning D and <r. We suppose that 
u(x, y) be real and continuous with its first derivatives in D\Ja and 
satisfy in D the differential equation 

(3.1) uzz + (A(z, z) + iB(z, z))uz + (A - iB)u-z + C(z, z)u = 0 

where the symbols are defined by 

(3.2) z = x + iy, z — x — iy, 

d/dz = \/2{d/dx - id/dy), 

d/dz = \/2{d/dx + id/dy), 

and where we assume that A(z, f), B{zy f), C(z, O are analytic func­
tions of z and f for z in P U < r U 5 , f in D^Ja^JD and furthermore that 

(3.3) J ( s , f) = A(f, 2), 3(s, f) = B(l z), C(zy f) = C(f, z). 

Regarding (3.3) we remark that every function of x and y which is 
real and analytic in x and y near the origin becomes, upon introduction 
of z and z instead of x and y, the specialization for f = z of a function 
A(Zy f) analytic in z and f and which satisfies (3.3). This is true for 
real constants, for the function x which is the specialization of 
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( s + D / 2 and for y which is the specialization of — i(z — Ç)/2 for 
f = z; it furthermore is true for all sums and products of these func­
tions and their limits. I t thus becomes evident that (3.1) is the form 
of the general linear homogeneous elliptic equation with real analytic 
coefficients whose terms of highest order coincide with the Laplacian. 
The assumptions about the coefficients made above are more special 
only in that they require analyticity in all of the stated domain. In­
cidentally, the restriction that u(x, y) be real and the corresponding 
restriction (3.3) of the coefficients plays no essential role in the follow­
ing considerations and was made only in order to link the subject 
of our investigation with the customary notion of second order equa­
tions. Another remark concerns the supposed homogeneity of (3.1). 
I t would have been possible to treat the nonhomogeneous equation 
by the same method, but we have chosen to restrict the generality 
for the sake of shorter formulae and brevity of expression. 

Let us write, for real x and y, 

(3.4) u(*,y) = U(z,z). 

Our first aim is to construct an analytic function U(z, f ) whose argu­
ments z and £* range independently over Z)VJcrUZ>, and which for 
J* = s reduces to (3.4). 

Although in later sections of this work we at tempt to dispense 
with the explicit expressions of those functionals which furnish ex­
tensions such as the one presently to be performed, here in the linear 
case these expressions are simple enough and connected with the 
familiar notion of Riemann's function, so that they can serve as an 
example of, and introduction to, the more abstract notions which the 
complexity of the nonlinear case requires in their stead. 

Denote by M[v] the expression 

(3.5) M[v(z, £)] = Vnt - (ov), - (6»)r + cv 

where 
ö(«,f) = A(z,f) + iB{z,f), 

(3.6) b(%A) = i4 (* , r ) - f s (* , r ) , 

*(*,r) «c(s,r) . 
The Riemann function R(z°, f°; z, f) is a function of four complex 
arguments, each ranging independently over D U ( r U 5 , and satisfy­
ing in z, f the equation 

(3.7) M[R] = 0. 

I t fulfills the further conditions 
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*(3 0 ,r 0;s 0 ,r°)==i , 
(3 . 8) RZ{Z\ f 0; 2 , r0) _ b{Zj f 0)^0, f 0 . S | f 0) » Q, 

* r (s 0 , f ° ;s 0 , r ) - a(^,f)i?(2
0 ,f0 ;2°,f) = 0, 

or their integrated form 

#(s° , r 0 ; s , r 0 ) - exp ƒ b(t,?«)dt, 

(3.80 °°f 

i?00 , f0 ;3°,f) = exp f o(8°,0*. 

The construction of Riemann's function for complex arguments pro­
ceeds in a manner entirely analogous to the case of real arguments: 
identical formulae furnish the successive approximations, only the 
intervening integrals must be interpreted as Cauchy integrals of 
complex functions rather than as real integrals of real functions. To 
make matters specific, let us join the point z° to z by a path (p) of 
D\Jcr\JD, and f° to f by a path (TT) of DUaVD. The Cartesian prod­
uct of (p) and (TT) yields a two-dimensional surface S2 of the four-
dimensional space of complex z and f. Now (3.8') yields first the value 
of R for z on (p) and f = ?°, and for f on (T) and z~z°. These deter­
minations serve to introduce the first approximation on S2 of R, de­
noted by R1(z°f f°; z, f) and solution of i?*f = 0 . The successive ap­
proximations are then obtained by solving for & = 1, 2, • • • the 
equation 

Rzî = (a(s, f)lî ) • + ( " O r - <* 

with the initial condition Rk+l(z», f°; 0, f°) =i?1(2°, f°î 2, f°) for 2 on 
(£) and lï*+1(*0, f°; 2°, f) =i?1(^°, f°; 2°, ?) for f on (TT). The successive 
approximations converge uniformly as in the purely real case and 
furnish R(z°, f°; z, f) for 2, f on S2. Now we note that all the succes­
sive approximations depend on (p) and (TT) through finitely many 
applications of the following processes: integration in z from z° to z 
of an analytic function of z and f, integration in f of an analytic func­
tion of z and £*, and integration of an analytic function of z and f 
over the product of (£) and (r). Now every one of these processes 
yields a result which is independent of the choice of (p) and (7r) and 
depends only on the endpoints z and f. The limit function is con­
tinuous in z, f ; 0°, f° as each of these four variables ranges over 
D\Ja\JD. Since each of the approximations is analytic in all four 
variables so is the limit function. Moreover, as in the real case, R 
satisfies in z°, f° the adjoint equation L[v] = 0 to be defined presently. 
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The proof of this last fact needs indeed no repetition because its 
truth in the real case implies by analytic continuation its truth in the 
complex domain indicated. 

Let us set 

(3.9) L[ ] = ayazdi + a(«, t)a/az + *(*, t)a/at + fa, f) 
with the meaning (3.6) of the coefficients. Consider the special S2 

which is the Cartesian product of a s-path (p) of DVJ<r and a J"-path 
(7r) where now (w) is the conjugate path of (p) and where (p) begins 
at the origin and ends at z°. Accordingly (w) = (p) remains in DUo* 
and ends at f° = z°. Take the "diagonal" of S2, consisting of those 
points z, f with z on (p) and f on (f) for which s==f, and define for 
these points U(z, f) = U(z, z) in agreement with (3.4) as the (real) 
solution of (3.1), and define, in accordance with (3.2') for points of 
the diagonal of S2, Ufa, f ) | r - i = Ufa, z) and Ufa, f)|r»* = Ufa, z). 
We wish to extend U into S2 as function of z and f according to the 
equation L[U] = 0. We have, precisely as in the real case, the identity 

(3.10) - UM[v]+vL[U]\= (kUv),t-(Uvt)M-(Uv,)t+(aUv).+ (bUv)t. 

Integrate (3.10) over the "triangle" of S2, bounded by the diagonal d, 
the side of points z on (p), f = 0 and the side of points z = z°, f on (p) 
and substitute for v the function R(z°, 0; z, f). We find for the hypo­
thetical solution U(z, f) on S2 the identity 

(3.11) 0 = £ (Uv)zdz - £ Ufa - bv)dz + £ Ufa - av)dÇ. 

Hence in view of (3.8) 

U(zQ, 0) = 17(0, 0)R(z«, 0; 0, 0) 

+ f [(Ufa z)R(z*, 0; », *)). - # ( * . - bR)]dz 
\O.12) J a 

+ C Ufaz)(Rt- aR)dz. 
J d 

(3.12) is a special case of the more general formula in which (z, f) 
is a general point of the triangle, and which is obtained by integrating 
over a subtriangle of corners (z, z), (z, f) and (?, f) and which is 

(3.13) 

U(z, f) = t/(?, f)*(«, f ; ?, f) + fu(t, *)(*,(*, f; /, I) - c(*, Ql2)df 

+ f [(£/(*, 1)^(8, f; f, *)), - tf (*, - bR)]dt 
J d' 

file:///o.12
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where d' is the part of the diagonal from (?, f) to (s, z). 
In particular we have the special case 

u(o, n = ua°, s<>)R(o, f»; f», n 
+ f U(t, ï)(Ri(0, f; t, Ï) - a{t, t)R)dt 

+ f [ ( f f M * ( 0 , f ° ; * , * ) ) « - U(t,t)(Rt-bR)]dt. 
J d' 

The apparent asymmetry of (3.12) and (3.12') could easily be re­
moved by integrating out the first term of the second integral, due 
regard being taken of the meaning of the derivative d/dt on d''. 

Finally, integration in (3.11) over the quadrilateral (0, 0), (s, 0), 
(3, 2), (0, z) yields the expression of U(z, z) in terms of U(tf 0) and 
[7(0, t) as 

U(z, z) = - U(0, 0)R(z, z) 0, 0) + U(z, 0)R(z, z\ z, 0) 

+ £7(0, z)R(z, z;0yz) 

ƒ• <*.o) 

U(t, 0)(Rt(zy z; /, 0) - b(t, 0)R)dt 
(G.0) 

ƒ• (0 ,* ) 

Z7(0, t)(Rj(z, z; 0, J) - a(0, J)^)^J, 
(0 ,0) 

a formula of fundamental importance for the problem of reflection of 
U on boundary conditions along <r. 

On the left hand of (3.13) we have suppressed the reference to the 
path (p) which enters the construction in an essential way. Let us 
prove that the result is independent of (p). We must show that the 
line integral in (3.13) does not depend on d' where df is an arbitrary 
path in the plane of real (#, y), leading in D\Ja from (?, f) to (z, z). 
But this is immediate since by (3.1) and (3.7) 

(U(t, t)R(z, f ; /, t))a - (U(Rt - bR))j - (U(Rj - aR))t 

= - UM[R] + RL[U] = 0. 

The next fact is the analyticity of U(z, £*)• We must show d U(z, Ç)/dz 
= 0 and dU(z, f)/ôf = 0. Now the first of these is immediate since R 
depends analytically on z and the contribution of the integrals in 
(3.13) amounts, upon differentiation with respect to z, to 

J7(«, z)(Ri(z, f ; t, t)-a(t, t)R)\^ZtJ^ 

and vanishes by (3.8). The equation dU(z, f)/<3? = 0 follows similarly 
if we first replace 



46 HANS LEWY [March 

U(f, t)R(z, f; f, t) + f (tf(*, *)*(*, f; *, t))4t 
J d' 

by 

ff(», *)*(*, r ; M ) - f (tf (*, *)*(*, f; *, *)*»". 

The analyticity of U(z, f) is of course a classical result due to 
Picard. Even the above mentioned method of proving it is essentially 
about 30 years old [3; 5] . But what matters here is the extent of the 
domain into which U(z> f) is analytically extensible, in its depend­
ence on the original domain of definition of the solution u(x, y) of 
(3.1): namely, for z in D, and f in D. 

We are now in a position to discuss the simplest linear boundary 
condition for u(x, y) — U(z, z) on <r, which is 

(3.15) u(x, 0) = U(x, x) = b{x) 

where we suppose that ô(z) is regular for z in DKJ<j\JD. We replace 
in (3.14) U(z, 0) by f(z) and [7(0, z) by g(z) and obtain for z on a 

d(z) = - 5(0)R(z, z; 0, 0) +ƒ(*)*(*, z; z, 0) + g(z)R(z, z; 0, z) 

(3.16) - f f(t)(Rt(z, z\ /, 0) - b(t, 0)R)dt 
J o 

- f «(')(**(*, ^; 0, t) - a(0, 0-R)*. 
J o 

Notice that in view of (3.8') i?(z, s; z, 0) and i?(3, 2; 0, z) do not vanish 
for z in D\J<r\JD. Observe that f(z) is known through (3.12) for z in 
D\Ja% in terms of the given solution u(x, y), and so is g(z) for 2 in 
D\J<r, through (3.12'). The idea of the analytic continuation of 
u(x, y) across <s is first to extend/(s) and likewise g(z) into DKJa\JD, 
by using (3.16), which is originally valid only on cr, throughout 
DKJcrKJD for the construction of these extensions. 

Notice that (3.16) is a Volterra integral equation for g(z)} z in 
DKJ<T, since f(z) and ö(z) are known in DKJa. The solution g{z) must 
therefore exist and be unique in all of DKJa, and be regular in D since 
the kernel and the terms which do not involve g(z) satisfy the requi­
site analyticity conditions. Now g(z) is known beforehand to be 
regular in 25 and continuous in 25VJo\ The above construction of g(z) 
furnishes therefore the analytic continuation of g(z) into DVJaKJD. 
In analogous manner the analytic continuation oîf(z) into D\J<xKJD 
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is effected by interpreting (3.16) as a Volterra integral equation for 
f(z) in DKJcr where g(z) and 8(z) are known beforehand. 

We now utilize (3.14) and obtain U(z, z) for arbitrary z of D\Ja\JD 
as analytic extension of U(z, z) for z in D U a as given originally. Hence 
the 

THEOREM 3.1. Reflection of the ^-solutions u(x, y) of (3.1) on the 
boundary condition (3.IS) on a is coextensive with the reflection of har­
monic f unctions on the boundary condition u = 0. 

Notice that U(z, f) is known now through (3.13) in all of the 
Cartesian products of z and f ranging through DVJcrVJD. 

Our next problem is the general first order boundary condition on o* 

(3.17) a(x)Uz(x, x) + P(x)Uè(x, x) + y(x)U(x, x) + Kx) ^ 0 

where a (z), P(z), y(z), ô(z) are regular throughout DKJcrVJD. This is 
a real boundary condition if a(z)—fi(z). We require 

(3.18) a(z) ^ 0, 0(s) -^ 0 throughout DKJ aVD. 

Differentiate (3.14) with respect to z and thereafter set z = z for z 
on <r. We do not write down the lengthy result of this operation, but 
can content ourselves with ascertaining its structure in terms of 
U(z, 0), 17(0, z) and U9(zt 0). 

For this purpose we remark that a function f(z) as well as the Vol­
terra integral JlK(z, t)f{t)dt are a t the same time, but for an additional 
term dependent only on /(O), Volterra integrals of f(f) since 

f K(z, t)f(t)dt = /(O) f K(z, t)dt + f K(z, f) ( ( f(t)dt) dt' 
*/ o J o J o \J o / 

= / (0 ) i? i ( s J 0)+ f'Ki(z9t)f(t)dt, 
J o 

iPi(«, /) = f #(*> t')dt'. 

Accordingly we can write the result of the above differentiation 

Uz(z, z) = R(z, z\ z, 0) U9(z, 0) + Volterra integral of Ut(t, 0)dt 

+ Volterra integral of Uj(0, Î)dt 
(3.19) 6 

+ known function times 17(0, 0), 
Ui(z, z) =* i?(s;, 3; 0, z) Ui(0, z) + terms similar to above. 
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On setting z = z = x for points of a, (3.17) becomes, with U(z, 0) =/(z), 
tf(0f «)««(*), 

«(*)*(*, z; z, 0)/'(s) + 0(z)R(z, z\ 0, z)g'(z) 

+ Vol terra integral oîf(t)dt + Vol terra integral of g'(t)dt 

= given analytic function of z times {7(0, 0) 

+ given analytic function of z. 

Again we notice that the coefficients oif(z) and of gf(z) do not vanish 
throughout DUaUD on account of (3.18) and (3.8'). The kernels 
of the Volterra integrals are analytic functions of their arguments as 
long as these remain in DVJaKJD. We can therefore solve (3.20) for 
the function g'(z) in DKJcr, where f (z) is known and continuous, and 
determine g'(z) as continuous in DVJcr and regular in D. Thus g'(z) 
has been extended analytically into D\J<JKJD. In a like manner ƒ (z) 
is analytically extended into the same domain. Again (3.14) yields 
U(z, z) for z in DKJaKJD as analytic function of z and z, and (3.13) 
yields U{z, f) as z and f range independently over JDUO-VJ5 . Thus 

THEOREM 3.2. Let u(x, y) be in C for z in D^Ja and satisfy (3.1) 
in D. Assume that on <r the boundary condition (3.17) is satisfied and 
that the coefficients A (s, f)» B(zf f), C(z, Ç),a(z), {S(z),y(z), ô(z) of equa­
tion and boundary condition are regular for z and £* in D\Jv\JD and 
that (3.18) holds. Then u(xf y) can be extended as analytic f unction into 
D\JaKJD. 

REMARK. The assumptions concerning (^'-continuity of u in Theo­
rem 3.1 could be considerably relaxed. We omit details. 

4. A theorem on Cauchy data admitting a solution for Au = 0 and 
for Au+\u = 0. An interesting consequence may be drawn from 
(3.14) when applied simultaneously to two different differential equa­
tions whose solutions share Cauchy data on o\ We shall restrict the 
consideration to the equation UZz = 0 (Laplace's equation) and Uzi 

= —X£/, with \(z, z) 5^0 and analytic near the origin. In the first case 
the Riemann function is identically equal to 1, in the second case R 
satisfies, by (3.8') 

R(z, z\ z, 0) = R(z, z\ 0, z) = 1 

whence 

IU(z, 2; 0, t) \u* + Rj(z, z; 0, t) \Ui = 0 

and 
[Rzj+ RzS(z,z;0, î)]u* = 0. 
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Now RzS+\(z, z)R = 0, R being a solution of the same equation rela­
tive to its first two as well as last two arguments. Hence 

Rzj(z, z; 0, t) \u-z = X(s, z)R(z, z; 0, z) ^ 0 

for | s | sufficiently small. 
Differentiation of (3.14) yields under the present circumstances 

U.(z, z) = - 17(0, 0)Rz(z, S; 0, 0) + ƒ'(«) - f(z)Rt(z, z; t, 0) |«_ 

- J Rzt(z,z;t,0)f(t)dt- f R,i(z,z;0,l)g(l)dt, 
Jo J o 

We recall t ha t / ( s ) is known in D\Ja, g(z) in DKJa, provided w(#, y) 
is given in DKJcr. Now let z;(x, 3/) = V(z, z) be harmonic in P U c and 
have the same first derivatives on a as U. (3.14) for F is 

V(z, z) = - F(0, 0) + F(z) + G(g) 

with F and G having analogous meaning as ƒ and g and with same 
domain of definition and of regularity. On a we find accordingly 

F'(z) = - tf(0, 0)*,(s, z; 0, 0) + ƒ'(*) - f *«,(*, 2; *, 0)f(t)dt 
J 0 

•/ 0 

Now this equation can be used to extend g(z) across a because the 
kernel of this Volterra equation for g{t) does not vanish, at least in 
the neighborhood of the origin. A similar computation will show that 
f(z) can be extended analytically across a near the origin. Therefore 
(3.14) yields the analyticity of the Cauchy data themselves. Hence 
the Theorem (see [ô]). 

THEOREM 4.1. If v(x, y) and u(x, y) are in C' in DUcr, v(x, y) is 
harmonic in D and Aw+4Xw = 0 in D with X(x, y)?*0 near the origin 
and analytic in x, y in a full neighborhood of the origin, and if on a we 
have ux = Vz, uv~vyi then u and v can be analytically extended across a 
near the origin. Hence the Cauchy data are analytical near the origin. 

The interest of Theorem 4.1 lies in the following observation. Sup­
pose we call a function of one real variable strictly nonanalytic in an 
interval if it is analytic in no subinterval. What can be said about 
the existence of solutions of elliptic equations in a domain D for 
strictly nonanalytic Cauchy data on 0? Theorem 4.1 asserts that the 
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equations Aw=0 and Au+4X^ = 0 can never have solutions in D near 
the origin, for the same set of strictly nonanalytic Cauchy data. 

5. Explicit formulae of reflection. In §3 the reflection of a solution 
of (3.1) on boundary conditions on a was based on an extension of the 
solution into a four-dimensional domain of complex x and y which 
contains the given domain of definition of u. Can the result of this 
reflection be expressed analytically without reference to any complex 
extension, as linear functional of the given solution and its first de­
rivatives in its domain of original definition? The answer is in the 
affirmative and is provided with the aid of certain functions, akin to 
Riemann's function, which depend on 4 real variables x, y, X, F, 
satisfy in each pair x, y or X, Y certain differential equations closely 
connected with (3.1), and which for x = X, y— — Y satisfy a further 
system of equations embodying the given boundary condition on 
which the reflection is effected. Although it would be possible to base 
the existence of these auxiliary functions on the proofs given we shall 
not pursue this explicit representation here for the sake of brevity. 

PART II . NONLINEAR BOUNDARY CONDITIONS 

6. Terminals. Definitions and elementary consequences. If a 
solution of the linear equation (3.1) is subject to a nonlinear boundary 
condition of analytic character what can be asserted relative to the 
analytic continuation of the solution across this boundary condition? 
In the case of Laplace's equation it was seen in [7] that the problem 
of analytic continuation can be solved with the aid of the solution of 
an ordinary differential equation in the complex plane; the method 
explained in §1 of this paper yields the possibility of analytic con­
tinuation in this case. I t is easily seen by examples that in general no 
more than a local extension is possible, even for solutions of Laplace's 
equation. 

If Laplace's equation is replaced by the general equation (3.1) the 
device of solving an ordinary differential equation in order to con­
struct the analytic continuation, is no longer available. We saw in 
§3 how in the case of a linear boundary condition the analytic con­
tinuation is reduced to the solution of certain Volterra type integral 
equations. In the nonlinear case even this is no longer a sufficiently 
large frame of operations. Our present task is to develop a short 
theory of functional adequate for this purpose. I t is simpler to do 
this without reference to the problem under consideration and the 
following two sections do not require any reference to the theory of 
partial differential equations. 
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We consider a simply connected domain D of the complex z-plane 
with rectifiable boundary B. Suppose the origin 0 to lie in DUJ5 and 
designate by (p) a rectifiable path in D\JB leading from O to z, by 
{p') a portion of (p) leading from O to the point z' of (p). Denote by 
0(s) a (complex-valued) function of z which is continuous in DKJB. 
We emphasize that0(s) should be admissible whether regular or not. 
We consider a functional 

0(0(0 I (P), *) 

of the function <f>(t) on (p) of endpoint z, whose value is a complex 
number. In practice it may also be necessary to impose an upper 
limitation on the length of the path (p) and/or the modulus of 0 in 
D\JB. 

ö(0(O I (P)> z) is called a terminal if, whenever 0(g) is analytic in D, 
the value 

T̂  = 0 (0 | (*),*) = *(*) 

is independent of the path (p) used to connect 0 with z, whence for 
such 0, 0 becomes a function of the endpoint alone. 

A terminal 0(01(£), z) is said to be continuous if in the above 
notation for (p) and (pf) 

lim 0(0 | (*'),*') = 0(0 | (*),*)• 

A terminal is called regular if 0(2) is regular in D whenever <j>(z) is 
regular in D. 

EXAMPLES. Every function of <j>{z) is a terminal. Sums, products 
and limits of terminals are terminals. A function of a terminal is a 
terminal, in particular the reciprocal of a nonvanishing terminal. 
f(P)<l>(t)dt is a regular continuous terminal. Notice that here the simple 
connectivity of D is essential. 

Let 0,(01 (p), z), v = l, 2, • • • be a sequence of regular terminals 
uniformly bounded for all admissible 0, z, (p), v, and which converges 
as p—» oo. Then the limit is also a regular terminal. 

If 0 is a regular continuous terminal, the transform \p(z) 
= 0(01 (p), z) of a function 0 regular in D and continuous in D\JB is 
again (regular in D and) continuous in DKJB. 

A terminal of a regular continuous terminal, A(0), is a terminal. 
This is correct if properly interpreted. Forming À for a path (p) we 
need the values of 0 = 0(01 (q), z') a t all points z' of (p) which in turn 
appear as endpoints of certain paths (q) used in forming 0(01 (g), z'). 
We now require that (q) = (p') as defined above. Then A becomes a 
functional of 0 on (p) alone, and the argument function 0 of À(01 (p), z) 



52 HANS LEWY [March 

is continuous on (p) by hypothesis about 0. Furthermore, if <j> is 
regular in D, \p is regular in D, and since A is a terminal the value of 
AO/'I (p), z) does then not depend on the path (p)f only on its end-
point z. If A is a regular and continuous terminal of yp, A(12) is a regular 
continuous terminal of <j>, 

A trivial extension of the notions occurs when the argument func­
tion <j> of Q is replaced by a vector function of n components and when 
the result \p of the operation ti is again a vector of m components. 

7. An inversion theorem. We designate by K(z), (j>(z), <$>(z)y • • • 
vectors of n (complex-valued) components, by Jlf, M\ > M, N, a0 posi­
tive constants, by o>(s) an increasing function of s with co(0) = 0 . We 
assume K(z) to be continuous in D\JB and denote by | K(z) | a norm 
for K(z), e.g. the maximum of the moduli of the components at s. 
Let s(p) stand for the length of (p). 

Suppose Q(0|Gf>), z) to be a regular continuous terminal with n 
components, defined for all vector functions $ which are continuous 
in D\JB and whose norm does not exceed Mi, and for all paths (p) 
with s(p)^<To. 

Assume the following inequalities for z in DUJ3, s(p) ^cro: 

(7.1) 1*001 <M, 
(7.2) | 0(* | (*),*) | £«(*(*) ) , 

(7.3) | 0 ( * | ( * ) , s ) - 0« ; | ( * ) ,s ) | 

g tofo) | *(«) - *(*) | + N f | *(0 - W) \\dt\. 
J (P) 

THEOREM 7.1. Under the stated assumptions there exists a positive 
a^ao depending only on Mi, M, N, co, o*o such that the equation 

(7.4) * ( * ) « * « + 0(*| (*),*) 

#as owe and 0w/y owe solution <£(s) existing on all paths (p) of length 
s(p)^>(r. Moreover, <t>—K is itself a regular continuous terminal fix of 
K(z) and satisfies inequalities similar to (7.2) and (7.3), but with other 
constants. 

PROOF. The construction of the solution <j>(z) of (7.4) is achieved 
by successive approximations and does not differ in essence from the 
construction of the solution of an ordinary differential equation in 
the complex plane. 

Set <}>l{z) = K(z), p+l(z') =K(z')+Q(4>'\ (ƒ>'), *')• p " t 

A"(p') = max | <l>v+1(t) - <p(f) | 
(P') 
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and determine a > 0 such tha t 

IN a < 1, a g o-o, w(<r)(l - 2Na)~l £ Mi- M. 

Then A 1 ^ ' ) ^co(cr) £Mi-M, hence fl(02| (ƒ>'). «0 is denned. Thus 

A2(/>') ^ 2NaA1(p') ^ co(<r)2iW, 

| 031 ^ | 011 + A1 + A2 S M + a>(er)(l + 2Na) ^ J f i, 

&(081 (P')> *') is defined for s(p') < *, etc. 

The sequence 4>v converges uniformly and all |0V | <Mi. 
Now <t>l{z) = i£(js) is a regular continuous terminal of K(z). Assume 

that <j)v is a regular continuous terminal of K(z). Since 0(0") is a regu­
lar continuous terminal of 0" it becomes a regular continuous terminal 
of K(z). Now the uniform convergence of 0" guarantees that the limit 
0 of 0" as v—>oo is a solution of (7.4), by (7.3). I t follows that 0 — i£ 
is a regular continuous terminal Qi of K. We have by (7.2), (7.3) 

OiCJT | (ƒ>), ̂ ) = 0(* | (#), 2) ; | Oi(JC | (*), z) | ^ *(*(#)), 

| QX(K | (ƒ>), ^) - Ox(£ | (*), 2) | = | 0(0 | (J, *) - 0(0 | (p), z) | 

iV | 0(s) - 0(z) | s{p) + N f \ 0(0 - 0(0 | A, < _ 
(p) 

*(«) - «(B) I = | *(*) - f(z) - (0(0 | (*), z) - 0(0 | (f), «)) 

(2>) 

è | *(s) - tf (s) | (1 - #*(*)) - N f | 0 - 0 I 
•J (2>) 

f | K (/)-£(/) I |A| 
•J (p) 

^ f | 0 - 0 | | <ft1 (1 - 2iWri), for *(ƒ>) < o-i ^ (T; 

| K(z) - K(z) | *(*) + f | *(*) - K{t) | | A 
J
 (P) 

è | 0(2) - #(«) | (1 ~ Mri)*(*) + f | 0(0 - 0(0 I I A I (1 - 3Mn) 
J <P) 

à a - 3^o [ | m - *oo | J(#) + ƒ 10W - 0(o 11 *| ] . 

Hence a relation analogous to (7.3) holds for &\{K\ (p), z) with N 
replaced by N/(\ -3N<ii)~l provided O O i ^cr, 3Nai<l. Finally, 
(7.4) has no other solution than the one constructed. For otherwise 
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let z' be tha t point on (p) for which the norm of the difference of two 
solutions <t>, # is maximum, say =/*. Then by (7.4) and (7.3) 

JJL ^ 2Ncrfiy or ix = 0 since 2Na < 1. 

A corollary of Theorem 7.1 which has the appearance of greater 
generality relates to the equation 

(7.6) <j>{z) = K(z) + ti(<t>,K\(p),z) 

where now 0 is allowed to depend on K as well. To see this we only 
have to introduce a vector of In components \p whose first n compon­
ents are those of <£, whose last n components those of K. The n-vector 
K on the right of (7.6) is to be replaced by a 2w-vector whose first n 
as well as last n components are those of K. The terminal £2($, K \ (p),z) 
thus becomes the first n components of a terminal Q*(^| (p), z) whose 
last n components are identically zero. 

THEOREM 7.2. The conclusions of Theorem 7.1 hold good f or (7.6) 
instead of (7.4) provided the terminal fi($, K\ (p), z) considered as ter­
minal 12* of the 2n-vector \p = (<£, K) satisfies the conditions of Theorem 
7.1 relative to x//. 

8. Typical reflection problem. Let 12(01(£), z) be a regular con­
tinuous terminal of 0 for s in a circle y about the origin, defined for all 
<j> which are continuous in y and whose norm remains there inferior 
to Mi, and for all paths (p) with s(p) ^ o \ Assume that in y the in­
equalities (7.2) and (7.3) hold. 

Denote by /3 the segment of the x-axis contained in 7, by D and 
D the two adjacent semicircles of y. Let (l>0(z) be defined in D\Jf3, 
regular in D and continuous on D\Jj3t and with |<j[>0j <M\. Let K°(z) 
be defined in D\Jj3, regular in D and continuous in -DU/?, and with 
\K°(z)}<M, M<Mi. 

Now suppose that on /3 there holds 

(8.1) 00(a) = K°(x) + 0(0° I x) 

where it is understood that the path leading from O to x is the seg­
ment Ox. 

Then <$>Q(z) can be analytically continued across /3 near 0. 
PROOF. The inversion Theorem (7.1) yields a unique solution in 

DU/3 for sufficiently short paths s(p), of 

*°(s) = tf°(s) + 0(*°|(*),s). 
This <t>°(z) is regular in D near the origin and coincides with 0°(x) 
on ]8. being the unique solution of (8.1). Thus <£0(is), z in -DUjS, has 
been extended across /3 near 0 as analytic function. 
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9. Nonlinear boundary condition for linear differential equations. 
We shall now show how the reflection of the solution of (3.1) on a 
nonlinear boundary condition of first order can be reduced to the 
situation dealt with in the preceding section. 

THEOREM 9.1. Let u(x, y) = U(z, z) be a solution of (3.1) in the part 
y<0 of a circle y about the origin of the x, y-plane, continuous with first 
derivatives in yèO. Assume that u(xt 0) satisfies on y~Q a real relation 

(9.1) uy = h(x, u, ux) 

where h is an analytic f unction of its arguments near # = 0, u~u(Q} 0), 
ux — ux(0, 0). Then u(x, y) can be continued analytically across y = 0 
near the origin. 

PROOF. (9.1) assumes in terms of U, UZ1 Uz the following two forms 

(9.2) Ui = Hi(z, U, U.), 

(9.3) U. - H2(z} U, UM), 

where the arguments of U and its derivatives are x, x and z = x. For 
(9.1) becomes 

UM = Uz + ih(x, U, Uz + U,) 

which can be solved algebraically with respect to Us since 1 —idh/dux 

9*0, giving (9.2). Similarly for (9.3). Note that Hi and H2 are power 
series of z, 17-17(0, 0), I7.-Z7.(Of 0) and of z, C7— f/(0, 0), UM 
— Uz(0, 0) respectively. 

Denote by D the part y<0oîy,byD its mirror image on {$, the 
diameter of D. Our construction consists of three steps the first of 
which is the repetition of a construction of §3 and yields the formula 
(3.12) for U(z, 0), z in DU/?, and (3.12') for [7(0, £), f in SW/3. Note 
that U(z, 0) is regular for z in D and in C1 for z in D^Jfi, while [7(0, J") 
is regular for f in D and in C1 for f in DU|3. In terms of U(z, 0) and 
£7(0, z) we have the expression (3.14) for U(z, z), zin DU/3. 

Set 

(*) 

so that 

tf.(«,0)- tf.(0,0) = F(»), 

tff(<U)-ffr(0,0) = G(i-)> 

U(z, 0) = U(0, 0) + 2*7,(0, 0) + f F(t)dt, 
J o 

U(0, z) = U(0,0) + zUt(0, 0) + f G{t)dt. 
J o 
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Substitute into (3.14) and find 

U(z, z) = ai(«, z) + R(z, z;z,0) f F(t)dt + R(z, z;0,z) f G{t)dt 
J 0 J 0 

(9.4) 

ƒ» Z p Z 

7i(a, a; 0 ^ ( 0 * + I Fi(s, 2; î)GÇt)dï 
o «/o 

where «1(2, z) ,FI(JS, z; /), ^2(2, z; I) are certain analytic functions of 
z, z, t, ï when z and / are in 7, and cei(0, 0) = Z7(0, 0). Differentiation 
of (9.4) with respect to z, followed by replacing 2 by 2 for z on /3, 
yields on ]8 

U.(z, z) = Pl(z)F(z) + ƒ V8(«, / ) F ( 0 * 

(9.5) 

+ r V4(», t)G(t)dt+ai(z) 
J 0 

where V%{zy i), Vi(z, i)> ai(z) are certain analytic functions of z and 
t in 7, and ai(0) = L^O, 0), pi(z) ^R(z, z; z, 0). Similarly differentia­
tion of (9.4) with respect to z followed by replacing z by z for z on j3, 
yields on /3 

tfi(*, )̂ = P2(s)G(«) + ƒ V8(«, 0^(0* 
(9.6) 

+ f F.(a, t)G(t)dt + «2(2) 
•/ 0 

where Vs(z, t), VQ(z, t), a${z) are analytic for z and t in 7 and a2(0) 
= Z7i(0, 0), p2(s) = 2?(s, 2; 0, s). We recall that by (3.8') pi(«) and p2(z) 
do not vanish. 

We now take from (9.4) the expression of U(z, 2) — [7(0, 0), from 
(9.5) that of Uz(z, z) - Uz(0,0) and from (9.6) that of U(z, z) - 17,(0, 0) 
and substitute these in (9.3). The result is a formula 

(9.7) F{z) = G(F| (#),*) + *(*) 

with K(z) = («1(0) — Ug(0, 0)/pi(z) and Î2 a certain functional the na­
ture of which we must describe. First of all £2 depends also on G(z). 
We have suppressed in (9.7) the mention of G(z) because we wish to 
utilize (9.7) in Z)U|3 and we know that G(z) is regular in 25 and con­
tinuous in Z M 3 . Note that F ( 0 ) = G ( 0 ) = 0 and that F{z) enters fi 
only through Volterra integrals foV(z, t)F(t)dt with analytic V(z, t) 
so that ÎÎ is independent of (p) if F(z) is regular in Z) and continuous 
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in 25V7/3. Thus Œ is seen to be a continuous terminal. I t is regular 
since in D the result of substituting a regular F(z) makes Ü regular in 
D. Finally, there is some concentric subcircle y' of y and some posi­
tive constant Mi such that for \F(z)\ £MI, Z in y'C\ÇD\J$)% the 
power series H2 of U— Z7(0, 0), [/,— Z75(0, 0), z will converge and rep­
resent an analytic function, provided s(p) is inferior to some positive 
Co. Moreover, in view of the continuity of G(z) in Z5U/3 an inequality 
of form (7.2) is readily established. Now, as to the Lipschitz condition 
(7.3), we notice that (Uz(z, z) — Uz(0, 0))/pi(z), considered through 
(9.5) as a functional of F(z), obviously satisfies a Lipschitz condition 
of form (7.3), and so does (17,0s, z)- 17,(0, 0)) from (9.6) and U(z, z) 
— Z7(0, 0) from (9.4). Substitution in the power series H2 thus makes 
iJ2 subject to a Lipschitz condition (7.3). If the circle y' has suffi­
ciently small radius we are sure that K(z) = (a1(z)—ai(0))/pi(z) re­
mains in 7 /P\(DUjS) absolutely inferior to a constant M, chosen posi­
tive and <Mi. 

Having thus established for the terminal Î2 of (9.7) the conditions 
of the inversion Theorem 7.1, we proceed to solve (9.7) for F(z) in 
(\z\ <<r)r\(D\Jfi) where a is the constant of Theorem 7.1. The solu­
tion is unique and continuous, and is regular in (| z\ <a)C\D. But on |3 
(9.7) expresses the boundary condition which the given u(x, y) satis­
fies by hypothesis. Hence on j8, (9.7) holds for F(x) as just con­
structed as well as for F(x) as given by (3.12); recall the definition 
(*) of F{z) in terms of U(z, 0). The two determinations are equal on 
account of uniqueness. Therefore we have obtained an analytic ex­
tension of F(z) from its original domain D of definition into ((D\J(3) 
P\ ( | z | <<T))KJD; F(Z) has been continued analytically across 0 near 
the origin. 

In analogous manner (9.2) is used to establish the analytic continu­
ation of G (z) across ]8 near 0 from its original domain of definition D. 
This completes step 2 of the construction. 

The final step of the construction is this. We know that (3.14) holds 
for z in Dyjfi. But the functions U(z, 0) and £7(0, £*)> being respec­
tively the integrals of F(z) and G(f), a r e n o w known in a full neigh­
borhood of the origin. Hence (3.14) yields U(z, z) as an analytic func­
tion in a full neighborhood of the origin. This is the statement of 
Theorem 9.1. 

In the following bibliography only the case of two independent 
variables is recorded. The first to prove analytic extensibility for gen­
eral linear equations and special linear boundary conditions was 
Hadamard [3] who based the extension on the Cauchy-Kowalewski 
Theorem and Green's formula employing the fundamental solution. 
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The precise domain of extension (Theorems 3.1 and 3.1') is new. A 
special case of Theorem 9.1 was treated in [ l ] . 
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