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1. Introduction. The program to be described here is concerned 
primarily with an imbedding problem in the topology of 3-manifoIds. 
A preliminary remark or two will relate this problem with those of a 
more general nature. 

The compact 1-manifold without boundary, i.e. the simple closed 
curve, has long been characterized both as a subset of the plane and 
as an abstract space. The Jordan curve theorem and its converse, 
due to Schoenflies, accomplish the former. The latter is accomplished, 
for instance, by the theorem of Wilder [29 ] 2 that among the locally 
compact, locally connected continua, the simple closed curve is dis­
tinguished by the fact that for any pair of points A and B, the con­
tinuum is a union of two irreducibly connected sets from A to B 
having in common only these points. 

The compact orientable 2-manifolds without boundary likewise 
admit characterizations both as subsets of three-space, say, and as 
abstract spaces. The first step in the direction of the former was 
taken by Brouwer around 1912 and completed by Wilder in 1930. 
For citations to the rather extensive literature relating to the latter 
we refer to van Kampen 's article [21 ]. Specifically, however, it may 
be pointed out that among the Peano spaces, the topological 2-sphere 
is characterized elegantly as the set satisfying the Jordan curve theo­
rem nonvacuously. Zippin established the result in this form and^gave 
an analogous characterization of the closed 2-cell [31 ]. Had the first 
characterization of the 2-sphere as an abstract space followed its char­
acterization as a subset of three-space, one would be tempted to 
feel that perhaps a characterization of the 3-cell or 3-sphere along the 
lines of Zippin's work for dimension 2 would await the characteriza­
tion of the 3-cell, say, as a subset of three-space. There are two char­
acterizations of the 3-sphere or 3-cell as abstract spaces published to 
date that we are aware of. One is due to Bing [S], the other due to 
Woodard [30 ]. Bing has used his characterization in the solution of 
several problems. 
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2. The Schoenflies extension problem. It will be recalled that 
Schoenflies not only contributed a converse to the Jordan curve theo­
rem in the plane but also gave a proof of the theorem itself. The basic 
idea used in the proof of the Jordan theorem was the ultimate in sim­
plicity. If a homeomorphism h is given from a standard circle to a 
curve J in the same plane ir in such a way as to preserve orientation, 
then there is a homeomorphism of T onto itself, call it H, which is an 
extension of h. Since a standard circle separates the plane and is the 
common boundary of each of its residual domains, the same proper­
ties are established for J via the homeomorphism H. The problem, 
then, reduces to showing that h has an extension H. The solution is 
referred to as the Schoenflies extension theorem. 

In his thesis Antoine [4] considered many phases of the correspond­
ing extension problem in three-space. Among the numerous examples 
in his paper one of the most remarkable is that of a compact, totally 
disconnected perfect set, i.e. a Cantor set, call it P , such that if 5 is 
any topological 2-sphere in three-space whose interior and exterior 
both meet P, then S meets P. Since every Cantor set in three-space 
is known to lie on some arc, this example implies there are arcs in 
three-space that cannot be thrown onto a linear interval by a homeo­
morphism acting on the whole space. (The explicit construction of 
such Cantor sets in «-space, n è 3, and proofs of their properties have 
been carried out by Blankenship [8], Thus "wild" arcs exist in every 
euclidean n-space, £n , n^3.)z 

Generally, the problem Antoine sets for himself is this: Given a 
homeomorphism h between two sets A and B, does an extension of h 
exist to some pair of neighborhoods U and V of A and B, respectively? 
An interesting situation is that in which U and V are all of 3-space. 
In this fortuitous circumstance A and B are equivalent under the 
group of homeomorphisms of three-space. In general, if the required 
neighborhoods U and V exist, it will not be possible to extend the 
homeomorphism to all of space. The case in which A is the boundary 
of a plane triangle and B is a polyhedral trefoil knot suggests that in 
some cases h may be extended to neighborhoods U and V of A and Bf 

but neither U nor V may be taken to be all of 3-space. Considerations 
of the knot-group may be used to establish this latter fact. By means 
of the set P referred to above, we see there are cases in which not only 
may we fail to take U and V as all of three-space but U and V fail 
to exist at all as neighborhoods of A and JB, respectively. In a sense 

* The symbol E* stands for euclidean «-space with a fixed rectangular coordinate 
system. 



!957l LOCALLY TAME CURVES AND SURFACES 295 

one is not surprised about the failure of extension possibilities for 
polyhedral closed curves A and B due to global differences in the 
manner in which they are imbedded. However, the failure of the ex­
tension to exist for any neighborhoods U and V of the nonpolyhedral 
arc A and interval B showed a type of phenomenon entirely unex­
pected at that time. Antione also includes in his examples a topologi­
cal 2-sphere A such that any homeomorphism of A onto a standard 
2-sphere cannot be extended to all space. Thus the Schoenflies method 
of proof of the Jordan curve theorem does not admit generalization 
to higher dimensions. 

3. The extension theorem for polyhedra. In 1924 J. W. Alexander 
published three short notes in the Proceedings of the National Acad­
emy dealing with these matters [l ; 2 ; 3 ]. In the second of these notes 
a "horned " sphere is constructed failing to have the extension prop­
erty. In the third note further properties of one of Antoine's sets are 
described. 

In the first note Alexander proves that if a polyhedron in 3-space 
is a topological 2-sphere then both the interior and the exterior (in a 
compactified space) have closures that are closed 3-cells. (As a corol­
lary to the proof, one finds, almost immediately, that a polyhedral 
torus always has at least one unknotted complementary domain.) 
Progress on certain problems of 3-dimensional topology such as tri­
angulation theorems, limited analogues of the Schoenflies theorem, 
all of recent date, depend at some stage on the result for polyhedral 
2-spheres. In the thirty-three years that have elapsed since this was 
attained no generalization of this mild sounding result to higher 
dimensions has been forthcoming. It might be noted in passing that 
Bing's characterization of 3-space among Peano spaces by means of 
sequences of partitionings does not use this result. 

4. Homotopy in the complement and consequences. In their paper 
on Uniform local connectedness and contractibility, Eilenberg and 
Wilder [9] consider the consequences of postulating homotopy uni­
form local connectedness of the complement of a topological n — 1 
sphere in w-space. They show that each component of the comple­
ment is in this case simply connected. (Of course uniform local con­
nectedness in the homology sense over a proper coefficient group is 
always present in the appropriate dimensions.) Thus the domains 
complementary to Alexander's horned sphere are not both uniformly 
locally connected in the homotopy sense and simple alterations of the 
construction can destroy the contractibility of either domain. 

The above mentioned results gave some hope that suitable homo-
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topy properties of a domain complementary to a topological n — 1 
sphere might lead to an extension theorem. That this hope was futile 
was shown by the paper by Fox and Artin on Some wild cells and 
spheres in 3-dimensional space [lO]. In this paper an example is given 
of a topological 2-sphere whose complement is an open 3-cell, the 
closure of the complement is not a closed 3-cell. This shows, rather 
pointedly, that the homotopy properties of the complement, at least 
"in the large,v cannot be expected to yield an analogue of the Schoen-
flies extension theorem. The wildness of the examples in the Fox and 
Artin paper is established by destroying the usual homotopy prop­
erties of the complement either in the large, in the small, or both. To 
establish the quoted properties for their sets the authors bring into 
play the knot group of the set in question. Since all of the comple­
ments studied in that paper require an infinite set of generators, their 
techniques were essentially new in this field. (The first application of 
such group techniques to topology wherein the group requires an 
infinite set of generators and the presentation is given explicitly is 
due to Newman and Whitehead [26] as far as the author is aware.) 

Let us recall the terminology introduced in [lO]. 
Let K be a set in a geometric complex C. Then K is said to be 

tamely imbedded in C if and only if there is a homeomorphism of C 
onto itself throwing K onto a polyhedron. In the contrary case K is 
called wildly imbedded in C. The set K is called locally tamely im­
bedded at p provided there is a neighborhood N of p and a homeo­
morphism hp of the closure of N( = N) onto a polyhedron in C such 
that hp(Nr\K) is a polyhedron. If K is locally tamely imbedded at 
every point, call K locally tame. Clearly, if K is tamely imbedded in 
C, it is locally tamely imbedded. The converse proposition is estab­
lished in [6] and [25] for n = 3. 

The aim of the present program, in essence, is to discover when a 
particular topological type is locally tamely imbedded. 

In 1949 the author considered complements of cells in w-space hav­
ing uniformly abelian local fundamental groups [15]. Roughly speak­
ing, this property means that small paths determining a product in 
the sense of the path group commute on a set of small diameter and 
uniformly so. 

The principal result states: Let C be a closed, topological i-cell, 
i = 1, 2, • • • , w in the euclidean w-sphere, Sn, such that Sn\C has uni­
formly abelian local fundamental groups then iri(Sn\C) is trivial. An 
inspection of the method of proof for i = n — 2 is instructive. For n = 3 
a simple arc such that each point of the arc has neighborhoods satisfy­
ing the stipulated conditions is shown to have a simply connected 
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complement. A glance at the proof, however, shows that the local 
condition may be suppressed for one end-point. Consequently, an 
arc has a simply connected complement provided that each point, 
save possibly one end-point, has a local basis consisting of spherical 
neighborhoods, each having a closure that meets the arc in a con­
nected polygon. Example 1.2 of [lO] shows the arc may be wild. 

A set is called locally polyhedral at p if there are arbitrarily small 
neighborhoods of p whose closure meets the set in a finite polyhedron. 
The above result may then be re-stated: An arc that is locally poly­
hedral save for one end-point has a simply connected complement. 
It is natural to ask if "almost" locally polyhedral spheres have com­
plementary domains that are simply connected. 

Moise and the author [20 ] showed that if a topological 2-sphere is 
locally polyhedral at all except possibly 3 points, at least one comple­
mentary domain is simply connected. If at most two points are ex­
ceptional, either both domains are simply connected or one domain 
has a closure that is a closed 3-cell. If only one point is exceptional, 
both domains are simply connected and at least one of them has a 
closure that is a closed 3-cell. The 3-cell, of course, need not be tame. 

5. Covering an arc by almost polyhedral spheres. Inasmuch as a 
topological 2-sphere that is locally polyhedral save for 1 or 2 points 
has complementary domains much like those of a polyhedral 2-sphere 
(even if it is wildly imbedded) it seemed that if an arc would possess 
coverings by topological spheres of arbitrarily small diameters that 
are almost polyhedral one might hope to enclose the arc by a strictly 
polyhedral sphere lying near the arc. That is, if the covering 2-sphere 
associated with a point is required to be locally polyhedral save 
where it meets the arc and, if, at such common points, other such 
spheres exist enclosing these points of entry and exit along the arc, 
then the union of a finite collection of such spheres ought to have an 
unbounded complementary domain whose frontier is strictly poly­
hedral, and, if the spheres are properly related, this frontier should 
be a polyhedral 2-sphere. In view of the examples in [lO] some re­
striction on the cardinal of the set wherein the almost polyhedral 
sphere meets the arc is necessary. The condition on the cardinality 
turns out to be the essential condition. By the approximation theorem 
of Bing [7], the almost polyhedral nature of the enclosing spheres 
may be proved in Ez. 

6. Locally peripherally unknotted curves and surfaces. Let C be a 
topological ^-manifold with or without boundary in a euclidean space 
En. For i = 0 w e consider C to be locally peripherally unknotted and 
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proceed inductively: C is said to be locally peripherally unknotted at x 
provided that for each positive number e there exists a closed n-cell L 
of diameter less than e whose interior contains x and such that the com­
mon part of C with the boundary of L is a locally peripherally unknotted 
k — \ cell or k — l sphere according as x lies on the boundary of C or not. 
This property is evidently invariant under homeomorphisms of En on 
itself. I t implies, for k = l, n = 3, what was called property (P in [17]. 
A strictly polyhedral C in E3 has the property. 

7. The enclosure property. If C is a set in En and e positive it is 
convenient to say C has the enclosure property provided that there is 
a polyhedral n — 1 sphere in the e-neighborhood of C whose interior 
contains C. In the compactified 3-space any set with an open 3-cell 
complement has this property and conversely for compact C. For 
arcs we may summarize: If C is a tame arc, C is locally peripherally 
unknotted; if C is a locally peripherally unknotted arc, C has the en­
closure property. Neither implication may be reversed. (See Examples 
1.4 and 1.2 of [lO].) 

8. Locally unknotted curves and surfaces. Let M denote a closed 
&-cell and dM its combinatorial boundary. Suppose N is a closed 
k — 1 cell contained in M such that {dM)C\N is a k — 2 sphere and 
under some parameterization of M, N is a parameter k — 1 cell in M. 
We say shortly that N spans the boundary dM of M. For k = 2 every 
arc N in M whose intersection with the boundary is a pair of points, 
contains an arc that spans dM. 

If C is a topological fe-manifold in En with or without boundary, 
call C locally unknotted at x if and only if there is some k + 1 cell D such 
that CC\D is the closure of a neighborhood of x in C that lies on a span­
ning k-cell of dD. Ifw = 3,fe = l, this becomes what was called property 
Q in the local form [18]. 

If C is a simple closed curve in E3 that bounds any 2-cell, it is locally 
unknotted at every point. Suppose F is a 2-cell and dF= C. First we 
move F slightly by a homeomorphism on F, keeping the points of C 
fixed so that the image F' of F is locally polyhedral at points4 of 
F'\C. Let F' become inflated to obtain a 3-cell G, again leaving the 
points of C fixed, and G locally polyhedral at points of G\C. (The first 
step is justified by Bing's approximation theorem, the second step 
elementary on account of the polyhedral character of F'). For any 
point x of C we may draw the desired 2-cell D on dG. 

Now, if it is also known that C is locally peripherally unknotted, 

4 The complement of C in F' is denoted by F'\C. 
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then by Theorem VII of [18], C is tame and in fact bounds a tame 2-
cell. Thus C is unknotted in the classical sense. Since locally tame 
arcs and simple closed curves are evidently locally unknotted and 
locally peripherally unknotted, we may say a 1-manifold C is locally 
tame if and only if it is both locally unknotted and locally peripherally 
unknotted at every point. 

In the first proof of the theorem to the effect that a curve that is 
locally unknotted and locally peripherally unknotted is locally tame, 
a 2-cell D that is locally polyhedral modulo5 its boundary is postu­
lated and used for a complicated auxiliary construction. The embed­
ding of D itself was not studied. In a later work (unpublished) the 
authors showed that D is tame, and, as a corollary that C = dD is 
tame [19]. (This result may also be gotten from Theorem VII of 
[18] and a theorem of Moise on "smoothing an annulus" [25].) 

At this point we have attained a characterization of the 1-manifold 
and a fragmentary result for surfaces. The next sequence of steps seems 
clear. One might seek a more general result for surfaces or one might 
hope to tame more general 1-dimensional sets. Both steps will be 
necessary before attacking the general 2-dimensional complex. 

In connection with the Example 1.4 referred to we have a sample 
of the difficulties to be expected when the imbedding of more general 
1-dimensional sets than 1-manifolds is undertaken. This arc is a 
union of two tame arcs having in common only an end-point of each 
arc. At the end-point the union is locally knotted, hence the theorem 
about locally tame sets being tame cannot be applied. I t is natural to 
expect that conditions specifying a tamely imbedded finite graph 
should be closely related to the conditions obtained for an arc or sim­
ple closed curve. Since an arc or simple closed curve is tame if and 
only if every sub-arc is tame, one might wonder if this condition 
would be necessary and sufficient for the tame imbedding of a finite 
graph. P. Doyle6 has recently exhibited an example of a triod such 
that every sub-arc is tame, the complement is an open 3-cell, but the 
triod itself is wildly imbedded. A form of local peripheral unknotted-
ness (or property (P) applicable to 1-dimensional regular curves has 
been studied by C. Masaitis [23]. For finite dendrites he obtains an 
enclosure property analogous to that obtained for arcs. Since every 
dendrite, finite or not, has a homeomorphic image in the plane, it 
might be permissible to call a dendrite tame if some homeomorphism 
on space maps the dendrite into a subset of a plane. 

5 The set D is locally polyhedral modulo C if it is locally polyhedral at the points 
of D\C. 

6 University of Tennessee thesis, 1957. 
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Other known characterizations of tame curves will now be de­
scribed before discussing surfaces explicitly. 

9. Tame curve types have finite crookedness. If P is a simple 
closed polygon, let k(P) be the sum of suitably defined "external" 
angles measured along P according to some selected orientation. For 
an arbitrary simple closed curve define k(C) = l.u.b. k{P)> P inscribed 
in C. If C is the class of curves in Ez whose members are equivalent to 
C under some space isotopy, define &(C)=g.l.b. k(C), CÇz&- This 
number may be referred to as the total curvature of the class 6. 

If f = f(t) is a representation of the curve C, let JJ,(C, 5) equal the 
number of maxima of the function f h in a fundamental period 
0g /^27 r , where 5 is a fixed unit vector. J. W. Milnor sets JJL(C) 
= minô JU(C, h) and refers to M ( 0 as the crookedness of C. For a class 
6, put /i(e) =minju(C), CGC. The fundamental relation between 
k(Q) and fx(Q) is given by Milnor, 

27r/x(e) = jfe(e). 

The class of tame unknotted curves is then characterized by k(<B) 
= 2TT, and, for a class of tame curves generally, &(<B)< + oo [24]. 
Whether this device could be used to study the imbedding of other 
configurations seems not to have been investigated. 

10. Tame curves and regular curve families. In 1933 H. Whitney 
defined regular curve families and later showed that a regular curve 
family filling an open set in E2 or Ez may be cross-sectioned [27; 28]. 
It is easily seen that this implies each trajectory of the family is 
locally tame. For if a point p lies on a nondegenerate trajectory / , 
then nearby points p', p" of the same trajectory such that p' <p <p" 
will determine cross sections A', A" from which we can pick a pair of 
1-spheres B', B", enclosing p', p" on A', A'\ respectively, that cor­
respond under the parametrization. Then disks of A', A" bounded 
by B', B" and the ring swept out by following Bf along until it falls 
on B" give a topological 2-sphere enclosing p that meets / only at 
p' and p". Evidently / is locally peripherally unknotted at p. If we 
join B1 to p' by an appropriate arc a in A1 and consider the locus 
swept out by a as p' moves to p", we see J is locally unknotted7 at p. 
Hence J is locally tame. It is obvious that a tame curve is (locally) a 
member of a regular curve family. 

11. The enclosure properties for surfaces. In his thesis [12] H. C. 
Griffith generalized property (P to apply to &-cells in w-space. If C is 

7 To be exact, we see / has local property Q at p, then argue as in paragraph 8. 
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a closed è-cell in w-space, Griffith requires that each parameter k — 1 
cell T be enclosed in an arbitrary neighborhood of T by a topological 
n — 1 sphere that is locally polyhedral save where it meets C and the 
common part of C with the enclosing n — 1 sphere must be a pair of 
spanning k — 1 cells (or a single k — 1 cell if T* lies on the boundary 
of C). The hypothesis that the intersection consists of spanning k — l 
cells may be eliminated for k = 2, n = 3. The relation between this 
property and local peripheral unknottedness for k = 2, n = 3 is not 
clear at present. I t is not difficult to see, however, that the above 
defined property (P does imply that the boundary of C be tame. As 
we remarked earlier, the enclosure property implies C has an open 
3-cell complement. But, whereas in the 1-dimensional case property 
(P implies the enclosure property, this has not been proved true for 
surfaces without further hypotheses. 

Griffith defines a strong enclosure property as follows: a set C has 
the strong enclosure property provided each pair U, V of disjoint 
open subsets of dC contain, respectively, the initial point of a pair of 
disjoint rays, each of which is otherwise disjoint from C, and which 
are such that every neighborhood of C contains a polyhedral sphere 
enclosing C and meeting each ray of the pair in a single point. There 
are examples to show that for a &-cell, k^2, the enclosure property 
does not imply the strong enclosure property. 

12. The disk and uniform disk properties. Let T be a spanning cell 
of the boundary dC of C or a subset of dC. In the former case let 
M', N' be the components of C\T, in the latter case let Mf be the 
component of C\T and N' null. Putting M = M'\JT, N = N'\JT, 
T determines a triple (Tt M, N) of closed non-null sets. If a is the 
usual Hausdorff metric, put 

p(7\ , Tt) = min {cx{Mu M2) + *(NU N2), a(Mlt N2) + a(Nu ikT2)}. 

This is a metric over the collection of spanning cells of the boundary 
of C. 

The &-cell C is said to have the disk property provided that to each 
parameter k — 1 cell T of C and positive e there exists a set D such 
that (i) D is a disk; (ii) dJ9P\C = 0; (iii) DC\C is a parameter cell (not 
necessarily under the same parameterization that corresponds to 7") ; 
(iv) If C\D has two components, then D separates them in every 
sufficiently small neighborhood of C, and (v) p(DC\C, T)<e. 

If, as €—»0, it is possible to choose D so that the distance from C to 
the boundary of D does not approach 0, D is said to have the uniform 
disk property. 
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If in the choice of Tt we restrict ourselves to cells T corresponding 
to a particular homeomorphism h of P onto Ch, 1= [O, l ] , the other 
conditions remaining unaltered, Ck is said to have the disk property 
relative to h, or the uniform disk property relative to h, respectively. 

Griffith proves these weaker forms of property (P and the uniform 
disk property together imply the enclosure property. Then, using the 
stated forms of property (P and the uniform disk property, the strong 
enclosure property follows. Finally, any two of the three properties 
imply the third. Recently, Griffith [13] has shown that among the 
2-cells in 3-space having the disk property and strong enclosure prop­
erty a tame 2-cell C is characterized by the fact that if D\ and D2 are 
disks satisfying (i), (ii), (iii), and (iv) above and J1 is a parameter 
1-cell such that TC\Di is a point, i = l, 2, and e > 0 , then there exists 
a disk D satisfying (i), (ii), (iii), (iv), and (v) for this T and e and such 
that Dr\DiC^C is a point, for i = 1, 2. 

13. Relations between the concepts of local unknottedness and 
local peripheral unknottedness. Examples 1.2 and 1.4 of [lO] show 
that local unknottedness and local peripheral unknottedness are in­
dependent conditions for k = l and n = 3. For k = 2 and n = 3 local 
unknottedness implies local peripheral unknottedness as follows. If 
p is in C, there is a 3-cell D such that CC\D is (i) the closure of a 
neighborhood M of p in C, (ii) M lies on a spanning cell K of dD. By 
definition of D there is a homeomorphism h of D onto the locus 
a: {(x, y, z) ; x2+y2+z2^ 1} and h(K) may be taken to be a common 
part of a with the x-y plane, since K spans 3D. If 57 = i£, we are 
through. If MT^K, then M is a closed 2-cell with p on its boundary. 
The Schoenflies extension theorem may be applied to map h(M) 
onto the locus a'\ {(x, y, z)\ x2+y2^l, 2 = 0, y^O}. This generates 
a homeomorphism of <x on itself in an obvious manner so that the final 
image of D is a sphere and the image of M is a semi-circular planar 
disk. Since a could have been taken as a standard simplex, this shows 
C is actually locally tame, hence, as a corollary, locally peripherally 
unknotted. 

The condition local peripheral unknottedness is weaker than local 
unknottedness for k — 2 as may be seen by the following example, 
communicated by H. C. Griffith and R. L. Plunkett. Let C be ob­
tained from a planar rectangle by removing the interiors of a sequence 
of disjoint circles converging to the center of the rectangle. Fill in 
each open circular hole by a disk of diameter not more than twice 
the diameter of the hole which has the imbedding of the example 
1.2 of [lO] when that arc is replaced by a disk. The set C so formed 
is a disk that is locally peripherally unknotted at the center. It is not 
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locally tame at this point, hence locally knotted. The possibility 
remains that if a disk C is locally peripherally unknotted at every 
point that C would be locally unknotted at each point. 

14. Extension problems in euclidean 4-space. The definition in §6 
above shows that if C is a locally peripherally unknotted manifold 
in En and En is regarded as a hyperplane of En+m, then C is locally 
peripherally unknotted in En+m. Similarly, if C is locally unknotted 
in En, it is automatically locally unknotted in En+m. The extent to 
which these properties may characterize tame curves and surfaces in 
E n , n>3, is open. 

I t will be noticed that the definition of "tameness" for n>3 is less 
restrictive than for n = 3 in the sense that a fe-cell that is tame in £ 4 

may or may not be "flat," i.e. there may exist no semi-linear homeo-
morphism on £ 4 carrying a polyhedral 2-cell into a subset of some 
E2 in E4 . For instance, if C is the join of a polyhedral knot in £ 3 and 
a point p of E*\EZ, then C is polyhedral, hence tame, but not flat in 
the sense of Gugenheim [14]. I t is easy to see that C is locally pe­
ripherally unknotted in E4 . The decision as to whether C is locally 
knotted at p or not is resolved less easily. (It is evident that no "flat" 
3-cell D exists in E 4 of which C is a spanning 2-cell for 3D.) 

The construction of Antoine may be used to show that there are 
1-cells in En that are locally peripherally knotted. Presumably there 
might be a 1-cell in £ 4 that lies on no 2-cell in £ 4 and perhaps a 2-cell 
in E 4 that lies on no 3-cell. Fulfillment of both of these conditions 
would be necessary for a 1-cell in £ 4 to be equivalent to a flat 1-cell. 
Thus, even a locally unknotted and locally peripherally unknotted 
arc in E 4 might fail to be equivalent to a segment because of the lack 
of existence of the appropriate 3-cell. 

V. L. Klee has an extension theorem for subsets of linear normed 
spaces that may be used to show that every arc in E3 is tame in E 4 

(even "flat") [22, Theorem 3.3]. Hence every simple closed curve in 
E3 is locally tame in E4 . If / is a simple closed curve in £ 3 it may be 
shown that it bounds a disk in E 4 that is locally polyhedral modulo / . 
I t is not clear such a disk would be locally tame at the points of / . 

The immediate prospect of obtaining extension theorems in 4-space 
analogous to those quoted above in paragraphs 8, 12 seems remote 
until a suitable generalization or substitute is found for the Alexander 
theorem. Since a polyhedral 2-sphere may be knotted in E4 , it would 
appear a classification of the ways in which such a sphere may be 
imbedded in E4 would be an essential step. R. H. Fox and J. W. 
Milnor have extended results of Gugenheim in this direction [ l l ; 14]. 
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