SOME HYDRODYNAMICAL METHODS!
L. M. MILNE-THOMSON

The famous lines

Geography is about maps,
Biography is about chaps

leave little to be desired in conciseness. About what is mathematics?
To use a hydrodynamical metaphor I shall take the plunge and as-
sert that mathematics is about the logical consequences of assumed
propositions, nowadays called axioms. Thus all mathematics is one.
The fancied distinction between “pure” and “applied” is a modern
and false dichotomy unknown to Euler and Cauchy. To see this
clearly, reflect on the investigations to which the objects of nature
have given rise. Insofar as they are mathematical, these investiga-
tions have been concerned, not with the objects of nature themselves,
but with models, that is to say with certain ideal objects which are
defined solely by a set of precise statements concerning the properties
to be attributed to these objects. With such a set of statements the
mathematician is on firm and familiar ground, and he can follow the
path wherever it leads; perhaps to paradox or perhaps to such results
as may induce the opinion, it can be no more, that his model fur-
nishes an explanation of the physical counterpart which inspired the
original postulates. From this point of view the ocean wave of the
mathematician smacks as little of salt as does the Riemann Hypothe-
sis. Indeed the flavor of fluid is a property from which no mathemati-
cal inference can be made, and so flavor, perhaps regrettably, must
be consigned to the consideration of the chemist or the connoisseur.

1. Tensors. It is becoming increasingly realized that the most in-
sight giving statement of the equations of motion of continuous media
in general and of fluids in particular is by means of tensors.

There are at least two ways of regarding tensors, namely as quan-
tities attached to a coordinate system, or as intrinsic entities, the
latter way presenting many advantages not the least of which is the
absence of an irrelevant coordinate system. Our intrinsic definition
of a tensor of rank # is recursive.

An address delivered before the Lexington meeting of the Society, November 30,
1956, by invitation of the Committee to Select Hour Speakers for Southeastern Sec-
tional Meetings; received by the editors November 29, 1956.

1 The results presented in this paper were obtained in the course of research
sponsored by the Office of Naval Research, Contract Nonr-567 [07].
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DEFINITION. A tensor or rank # is a linear vector operator which,
operating on an arbitrary vector x by scalar multiplication, gives
rise to a tensor of rank n—1.

This definition together with the statement that a tensor of rank
zero is a scalar, completely characterizes tensors of all positive inte-
gral rank.

Thus, for example, a vector a is a tensor of rank 1 since a-xis a
scalar, or tensor of rank zero.

Similarly the dyadic product pg;q combines with x to give pg(q-x)
a tensor of rank 1 and so pq;q is a tensor of rank 2, a 2-tensor, in-
deed the important momentum transfer tensor. The equation of
steady motion of a fluid under no body forces can be written [1]

V-[® — pg; q] = 0,
where

2
® = — pI —?u(V-q)I+ p(Via+ q; V)

is the stress tensor, I being the idemfactor or unit 2-tensor.

From this form of the equation of motion, by integration over a
sphere of large radius an expression for the force on a moving solid,
for example an aerofoil, is readily obtained. The application of
Oseen’s approximation at a distance permits analysis of this force
into a lift and drag. The drag is of particular interest since its ex-
pression [2]is VF where V is the velocity of the body and F is an
influx of liquid into the sphere, predominately an influx into the wake
behind the body. Moreover the result is of an asymptotic character
improving in accuracy as the radius of the sphere is increased. The
two-dimensional form of this theorem was obtained by Filon [3]
thirty years ago.

Tensor expression also pinpoints the Lagrangian form of the equa-
tion of motion [4]

d;r (o' 1 9p
—_—— - F + —_———— = 0,
6:0 ai2 p al'o

where r is the position vector at time ¢ of the particle originally at r,.
The equation of continuity is

()
P\ — = po
dro /1n

where the notation indicates the third scalar invariant of the tensor
derivative.
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Integration from 0 to ¢ leads directly to Weber’s transformation

d;r dx
al'o a Qo aro ’

¢ dp 1
x=f{f —+Q———q’}dt, F = —VqQ.
0 p 2

The Lagrangian form of the equation of motion has been applied to
the one-dimensional motion of a gas, to two-dimensional steady mo-
tion and to free surface problems which I shall mention later.

The point that I want to make here is that the Lagrangian form is
not quite so repulsive as the three equations which result from its
expression in coordinates would seem to indicate. In the case of in-
compressibility we have p=p, and a consequent simplification. The
equation should repay further study.

where

2. The theorems of Gauss and Stokes. The two great weapons of
general fluid mechanics are the theorems of Gauss and Stokes [5]
and their vector forms are suggestive;

fVonr=deoX, f(dS/\V) oX=deoX,
r 8 8 c

where, in the first the closed surface S encloses the region 7, and in
the second the diaphragm S spans the closed curve C. Here the small
circle indicates scalar, vector, or dyadic multiplication and X is a
general function of position, scalar, vector, or tensor.

For the rate of change of circulation in a circuit which always con-
sists of the same fluid particles we have

d 1
—circC = —de--—-Vp=de'P,
at c p 8

where P = Vp A V(1/p), so that P is a vector along the intersection of
surfaces of constant pressure and constant density. Also VP = 0, and
so by Gauss’s theorem P defines tubes of constant intensity. Thus we
have the famous meteorological theorem of Bjerknes [6] that the
rate of change of circulation in C is measured by the number of unit
P tubes which C embraces. When p is a function of p alone, P=0 and
we obtain Kelvin’s theorem on the constancy of circulation.

3. Complex variable. For plane flow the vector notation leads di-
rectly to the complex variable [7]. The use of the complex variable in
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two-dimensional problems has a long history, but it is only in recent
years that full advantage has begun to be taken of the methods of
function theory as opposed to resolution into equations in x and y.
What is beginning now to be more fully realized is that the variables
most generally useful are not x, ¥ but the conjugate pair 2, 2. For
example if ¢(x, y) is a plane harmonic function, it is the real part of
a holomorphic function f(z). The identity 2¢(x, y) =f(z) +f(2) leads,
on putting =0, to

1 1
1&) = 2 (7 5 — ?‘z) — 4(0, 0) + i,

where v is an arbitrary real constant.

Again the circle theorem [8] states that the motion of an un-
bounded liquid whose complex potential is f(2) when disturbed by
the circle |z| =g is governed by the complex potential

w(z) = f(s) + f(a¥/3),

for on the boundary £=a?%/z so that the boundary is a streamline.
That no new singularities are introduced is clear from the fact that
of the points z and a?/z only one lies inside the circular boundary and
therefore if f(z) has no singularities inside lzl =a, f(a?/2) will have
none outside.

The circle theorem enables us to deal with the perturbation pro-
duced by a cylinder of any form of cross-section, which can be mapped
conformally on the circle.

From another point of view if the cross-section is the curve {=«
in the net z=n({), { =£+14n, we have {+§=2a on the boundary of
the cross-section. Since f(2) =f[n(¢) ] = F({), the complex potential

F@) +F(2a — )

makes ¥ =0 on the boundary, but the second term may introduce new
singularities. For example if the stream Uz is disturbed by the elliptic
cylinder £=a« in the net z=c cosh {, we shall have

- 1
F() +Fa—5) = — Uclef + e + 2 + 2ot}
The last term in the brackets introduces a singularity at infinity but
the second term and the last are conjugate complex on the boundary

and can therefore be omitted. Thus we get

1
w = r3 Uc(et + e*=t) = Uce= cosh ({ — a).
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Similarly if the parabola £=« in the net z={? disturbs the stream
Uz, we have

F@) + FQ2a — ) = U+ UQ2a — §)*
which gives at infinity the velocity 2U instead of U. Halving gives

1 1
= U+ — UQ2a — ¢
w 2U§+2U(a= 9]

In the same line of thought we know that a stream function, say
¥(2, £), can be defined for any two-dimensional flow whether irrota-
tional or rotational, and the complex velocity is given by

0
u—1v=—21 _¢ .
0z
In the case of steady streaming past a fixed cylinder, ¢ is constant
on the boundary, and so
W 4

—ds 4+ —dz=0.
9z +8§

The Blasius theorem for the force (X, Y) then gives [9]
1 2
X —iV = —ipf(u — i) + iv)dz = — Zipf (ﬂ) dz,
2 c c \0z

where the integral is taken round the contour C of the cross-section.
But the equation of C is of the form A(z, £) =0. Thus on the boundary
% can be eliminated and Cauchy’s residue theorem can be used even
in the case of rotational motion.

For example a circular cylinder of radius a exposed to a stream U
on which is superposed uniform shear flow of vorticity w undergoes
the lift mpa?w U.

4. Complex Stokes’s theorem. Just as the theorem of Stokes is
fundamental in the theory of “solid flow” if I may use that term to
contrast with plane flow, so is the form which the theorem assumes
in two dimensions in terms of z and z a powerful tool. This plane
form I have named the complex Stokes’s theorem [10]. The complex
Stokes's theorem refers to a plane area .S bounded by a closed curve

C and states that
d
ff(z, z)ds = Zif —]:cdS
¢ s 0%

Cauchy's theorem is a particular case, namely when df/9z =0, which
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is the single equation implying the Cauchy-Riemann equations.
One immediate and important application is to the calculation of
the kinetic energy [11] of liquid in irrotational motion, with its bear-
ing on virtual mass. Thus
1 dw dw

1
Kinetic energy = — f 2dS = — —_—
&= 2 P)sa &

1 ] dw 1
S ———pf ——(w —)dS = — —ipf’d)dw.
2 s 0% dz 4 c

If the region S is multiply-connected, suitable barriers must be intro-
duced as part of the boundary C. Note that on the boundary z is a
function of z so that the integral can be evaluated by the residue

theorem.
The complex Stokes’s theorem effects a simple proof of a theorem
on conformal mapping due to Bieberbach [12].

ON0

z-plane ¢-plane
F1G. 1

Let us map the area D bounded by the contour C in the z-plane
on the area A bounded by the contour v in the {-plane by the relation
3={¢+ aft+ af*+ - - - = f(§).

We then have

2D = 2i [ a5 = [ 20: - f foOr@x = 2i [ FOr@s.

Suppose now that A is the circle [ §'| <r.Thenonv, §=r2/{ and there-
fore by Cauchy’s theorem applied to the above integral round

D= rr’{l + 2a2dsr% + 3azaxrt + - - - } > 7l

Thus of all areas on which D is mapped by choice of a, as, - + -, the
circle is the least. Alternatively if we regard A as the given area the
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problem of mapping on a circle D is that of choosing as, a3, - - -, to
make [af’(D)f'(£)dS a minimum. These are Bieberbach’s results.

5. Theorem of Plemelj. Another theorem important for the study
of plane flow is due to Plemelj [13]. Let C be a closed contour, ¢(f)
a function defined at every point ¢ of C, and consider the holomorphic
function

1 0]
(+) P(z) = P

TiJo I — 32

di

it being assumed that the integral exists as a Cauchy principal value.
Let

lim (I>(Z) = q)L(to) or ‘I’R(to)
Lad

according as 2z approaches #y from within C or from without i.e. from
the left or right. Then Plemelj has proved that (under certain restric-
tions on ¢(t))

é(t)) = 2L(t)) — 2E(k).

It easily follows that the function ®(z) which satisfies this condition,
which is holomorphic in the whole plane (except perhaps on C), and
which vanishes at infinity is given uniquely by ().

As a simple illustration in potential theory we seek the function
f(2) holomorphic within the unit circle v, |z| =1 and zero at infinity,
whose real part at the point ,=¢%* on the circumference is sin 26.
Then

2 sin 20 = f(e%) + f(e ).
If we continue f(2) outside the circle by the definition
) = — F(1/3), |21 > 1,
we have
fi(to) = lim f(z), |2| <1 and fB(t) = lim —f(1/5), |sz]| > 1.
) —n

Thus on the circle

) — f () = — ilts — 1/10)
and so

1 — (2 — 1/1%)dt
f(z) = — S - yma i,
2wt o t— 32
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the continuation of which outside the circle is —4/22 which tends to
zero as |z| tends to infinity.

Another method for such problems is to apply the formula of
Schwarz [14] which is substantially equivalent to the foregoing.

6. Quaternion variable. The generalization of the complex variable
to three dimensions leads to Hamilton’s quaternions. Alan Rose [15]
defines a stream function (x, ¥, 2, £, , {) as the flux across the triangle
formed by the origin, the point (x, v, 2), and the point (x+£&, y+7,
z+¢). If we introduce the vector

W o oY
¥ = v = (00 2 %)
T 3% O Ot/ emetmo’
the velocity is g= — VAW

When the motion is axisymmetrical and irrotational with velocity

potential ¢, the function

F=¢4 i1+ ¥ + ks

satisfies the condition for it to be a right-regular quaternion [16]
function of the quaternion variable

w + ix + jy + ks,

where w is an imagined coordinate whose axis is perpendicular to the
axes of x, y, z. This condition of right regularity is

9
OF =0, where O =—+4V.
dw

This condition, which has four scalar components, may be regarded
as the analogue of the Cauchy-Riemann equations for a function f(2)
which are in fact the two scalar components of Vf=0.

Thus the theory of analytic quaternion functions is in principle
available.

Rose has shown that it is possible to deduce the perturbation of a
uniform stream by a sphere (in terms of the quaternion variable), by
starting with a needle-shaped body along the axis of the stream and
which therefore does not disturb the uniform flow. This method is
entirely analogous to that for deducing the perturbation of a uniform
stream by a circle in terms of the complex variable, by starting with
a needle-shaped body.

7. Virtual mass. To take the simplest case when a body of mass M
moves, with uniform speed V in a straight line, in inviscid liquid the
total kinetic energy of the system is of the form (M +H)V?/2 and
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the body moves as if the liquid was absent and the mass of the body
were increased from its actual mass M to its virtual mass M+ H.
Here H is the added or hydrodynamic mass for this particular mo-
tion and is the coefficient of ¥2/2 in the expression for the kinetic
energy of the liquid.

It is only quite recently that a physical interpretation of hydro-
dynamic mass as an actual mass of the liquid has been given by Sir
Charles Darwin [17]. To understand Darwin’s interpretation con-
sider the particular case of a circular cylinder which moves (two-
dimensional motion) along the x-axis from minus to plus infinity. Sup-
pose that when the cylinder is at x= —  blue dye is used to color
the particles of the fluid in a plane perpendicular to the direction of
motion. Since the cylinder in its motion displaces a certain volume
of liquid the gap left behind must be filled up, and it might appear
reasonable to suppose that when the cylinder has attained the posi-
tion x= - «, the blue wall of liquid will have retreated a certain
distance to the rear of its initial position. Now the paths of the parti-
cles are elasticas as indicated in Fig. 2. So that a particle which is at

Fi1G. 2

A when the cylinder is at x= — « will have drifted to B when the
cylinder is at x =4 . If then we consider those particles which at
a given instant lie in an axial plane of the cylinder perpendicular to
the direction of motion, the positions of these particles when the cylin-
der is at x= — « and at x =+ « define surfaces which, in the plane
of the motion are typified by curves 4, 4, and B, B in Fig. 3.

Thus the particles on the curves 4, 4 move forwards not back-
wards to the positions B, B. The intuitive idea of reflux of a wall of
dyed particles is false. Darwin’s discovery is this, that the mass of
liquid enclosed (per unit thickness of fluid) between the surfaces
A, A and B, B is in fact the hydrodynamic mass of the cylinder (per
unit thickness) for this particular motion.

The fact can be established by direct integration since the co-
ordinates of the points on the elastica are expressible rationally in
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F16. 3

terms of Jacobian elliptic functions [18]. The argument is however
capable of general formulation independent of the particular shape of
the cross-section of the cylinder. Moreover as Darwin has shown, the
proof can be extended to three-dimensional motion. Thus we have
here, I believe for the first time, a genuine physical interpretation of
hydrodynamic mass as a mass of fluid entrained by the body.

The corresponding problem of interpretation with a free surface
still awaits investigation, although some computations of the hydro-
dynamic mass itself have been made by Bloh [19] for spheres and
ellipsoids half immersed and totally immersed. The problem of rota-
tion also offers opportunities for investigation. If we consider a plate
rotating in two-dimensional motion, it is found that two regions 4
and B (Fig. 4) exist in which the liquid is trapped and moves round

N
S

Fi1G. 4

with the plate, not as a rigid body but consistently with irrotational
flow. This points to a method of interpreting hydrodynamic mass due
to rotation.
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8. Free streamlines. Problems concerning free streamlines have
been intensively studied in recent years in relation to the cavities
formed behind bodies moving at high speed and the water entry of
missiles.

The plane problem has been greatly simplified by Max Shiffman’s
method [20] of reflection across free streamlines whereby an image
in the free streamline is obtained of the actual flow; in effect a method
of analytical continuation of the flow across the free streamline.
Apart from the insight-giving character of this method, one of the
integrations is already performed by geometrical considerations, thus
greatly simplifying the technique. The method also affords a direct
geometrical interpretation of the drag coefficient.

To give the simplest possible illustration, it is a provable theorem
that the image of flow in an angle is flow outside an equal angle.
Thus for a jet running along a wall ABC (Fig. 5) with a free stream-

F1G. 5

line (shown dotted) we reduce the problem to flow in a channel
formed by the original wall and a parallel wall got by translation
along the bisector of the angle ABC.

The method also takes care of re-entrant jet problems such as the
impact of a stream on a wedge (Fig. 6).

F1G. 6

Applied to the impact of a stream on a lamina the image flow indi-
cates a layer of sources on the down stream face, and thus offers at
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F16. 7

least a suggestion for tackling the corresponding problem of a stream
impinging on a circular disc.

Riabouchinsky [21] 30 years ago discovered a method of finding
an approximation to the drag on a lamina exposed to a stream.

- -~

.......

The method consists in placing an image lamina downstream, the
two being joined by free streamlines. This problem is capable of exact
solution [22] in terms of Jacobian elliptic functions, where Prandtl’s
cavitation number o= (p,—p.)/2"pV?, where p, is the pressure at
infinity and p, is the pressure in the cavity between the free stream-
lines, appears in the parameter of the elliptic functions. The case of
an unlimited cavity can be approximated to any degree of accuracy
by increasing the distance between the plate and its image.

Quite recently Garabedian [23] has undertaken the numerical
study of the axisymmetrical problem, in particular that of the circular
disc with an equal image disc behind it on the Riabouchinsky model.
The two discs are joined by a free stream surface to enclose a region
containing water vapor. A convergent iterative process is set up,
taking an initial form of the free streamline based on the curve af-
forded by the plane flow solution of Riabouchinsky.
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9. Gravity flow with a free surface. Let us now turn to the prob-
lem of free surfaces when the liquid moves under gravity. By a free
surface we shall mean a surface which always consists of the same
fluid particles and on which the pressure is constant. The grand il-
lustration in nature is the surface of the ocean.

But few simple complete solutions of this problem are known. Two
nontrivial cases are Gerstner’s trochoidal wave and Rankine's com-
bined vortex. In the Gerstner wave [24] the free surface is a trochoid
and the motion is rotational. In Rankine’s combined vortex [25] the
motion is rotational within a vertical cylindrical core and is irrota-
tional outside the core, reminiscent of Poe’s “Maelstrom.”

Fi16.9

There are three main problems whose solution still eludes us,
namely the problem of periodic surface waves on deep water, surface
waves on water of finite depth, and the solitary wave.

Let us examine what is involved in the problem of the two-dimen-
sional progressive wave of permanent type on water of infinite depth.
As long ago as 1925 Levi-Civitd [26] stated the boundary value
problem in the form

a0 g .

— = — — ¢ ¥ sin 6, ¥ =0, q = ce".

oy c
Here 8 is the inclination of the velocity vector to the horizontal. By
mapping the strip defined by a period on the unit circle and then ob-
taining a Taylor series expansion Levi-Civit4 established the exist-
ence of this type of wave.

One might enquire why such an existence theorem should be
necessary, when waves are to be seen any day. But it is only fair to
remember that the wave here considered is perfectly regular and is
propagated in an inviscid fluid, conditions to which observed waves
only approximate.
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The intrinsic difficulty of the problem here envisaged is the non-
linearity of the boundary condition, quite apart from the fact that
the form of the boundary is part of the solution.

10. Method of T. V. Davies. Write w=0-47. The linearized ap-
proximation is obtained by assuming lw| = (024-72)V2 to be small of
the first order. From this assumption follows the usual theory of
waves of small amplitude and slope.

There is, however, a serious limitation to the use of the linearized
approximation. A wave will break at the crest when the fluid velocity
there exceeds the velocity of advance of the wave. The critical case
is when the fluid velocity at the crest is equal to the velocity of the
wave that is to say when

g=ce =0

so that 7= — «. It follows that no approximation based upon the
assumption that 7 is small can throw any light on the case of breaking.

A way to avoid this difficulty has been proposed by T. V. Davies
[27], namely in Levi-Civitd’s boundary condition to replace sin 6 by
(sin 36)/3. This substitution replaces one nonlinear boundary condi-
tion by another. It still preserves the essential feature but allows 7
to be large. Mathematically the nonharmonic function e sin 8 is
replaced by the harmonic function e~% sin 30. The boundary condition
then becomes

a0 g .
— = — —— ¢~¥ gin 30, ¥ =0,
Y 3ct

which leads to

e ¥ = 1 — 34 exp (2miw/cN),

where w=¢ -+ is the complex potential, ¢?=g\/2m, and N\ is the
wave length.

The critical condition for breaking at the crest is ¥ —4v =0 when
w=0, which, since # —iv=ce~*, leads to 34 =1. In the neighborhood
of the crest the wave then forms a wedge of angle 27/3.

Again if we write 4 =2wa/\, where a is small we recover the ordi-
nary linearized theory.

Thus the method discovered by Davies yields an approximation
which applies over the whole range from waves of small amplitude
to those on the point of breaking at the crest.

The method has also been applied by my colleague B. A. Packham
[28] of the Royal Naval College to obtain a unique solution in closed
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form of the problem of the solitary wave on the surface of water of
depth &, namely

1
e3 =1 — sin? kch sechz-—z- k(w — ich),

c?/gh = (tanh kch)/kch, 0 < kch = /3.

} | W= —ch

F1cG. 10

In this result 2 =0 corresponds to rest and kch =m/3 corresponds to
breaking at the crest.

11. Exact methods for free surfaces. We can now turn to exact
methods of treating the free surface problem. The equation of motion
of an inviscid liquid under gravity can be written in the form [29]

1
a‘_é="‘—'V?,
p

where a is the acceleration of a fluid particle and g is the gravitational
force per unit mass. Since Vp is a vector normal to the surfaces of
constant pressure, of which the free surface is one, it follows that for
particles in the free surface, the vector a—g is normal to the free
surface. This remark has been applied by Fritz John [30] to reduce
the attack on the two-dimensional case to the solution of a linear
partial differential equation of the second order, of parabolic type as
follows. If the free surface has the equation

2= fla,9), z=2x+1y,
where « is a real Lagrangian parameter, we have

o .. of
E’—_l_ ig = ir(e, §) 2
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where (e, t) is an arbitrary real-valued function. Every two-dimen-
sional continuous free surface must satisfy this equation, whether the
motion is rotational or irrotational, steady or time-dependent.

When the motion is irrotational it is not difficult to deduce the
equation satisfied by the complex potential. John has also shown that
the form y =k(x, t) of the free surface can be prescribed. For a particle,
x and y are functions of ¢ and the constant pressure condition then
implies that x, as a function ¢, satisfies a nonlinear ordinary differen-
tial equation of the second order.

In the case of irrotational steady motion the problem can be
simplified still further to depend on the solution of an ordinary sec-
ond order linear equation of the form

f'B) + ig = iSB)f(B),

where S(B8) is an arbitrary function.

It follows from these considerations that two-dimensional free sur-
face problems can be reduced to the study of a limited class of differ-
ential equations. Nevertheless progress will necessarily depend on
divining the proper form of the arbitrary function involved.

On the other hand we have here a means of generating an un-
limited number of free surfaces by assigning the arbitrary function.
In particular, in the steady irrotational case, putting S(8) equal to
a constant leads to a trochoidal free surface from which we can pro-
ceed to a trochoidal progressive wave. Unfortunately this wave has
to be associated with a moving ocean bed since the singularities of
the progressive wave are no longer fixed.

A different approach to steady irrotational flow is due to H. Lewy
[31]. By proper choice of axes and units the surface condition can be
expressed in the form

dz ( dz . ay 1 R
(———2_)-'_—:0: ¥ =0, w=¢+ W

—31; dw 1dw

Let us regard this as an equation in the complex domain involving
a complex function y = —n(w), real when ¥ =0. The equation has the

solution
1 dn 2711/2
s= =i+ [ [5- () ] o

Provided the integral is real on some segment of Y =0, we have
y=—n(w) ony=0

and the point z describes a free streamline.
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Lewy has also proved that the flow is analytic on the free surface
in the steady case and has thus established that the formula gives
the most general steady irrotational motion with a free surface.

M. ]J. Vitousek [32] has studied in detail flows obtained by at-
tributing certain forms to n(w) and in particular waves of trochoidal
and cycloidal profile.

12. Analogies. It sometimes happens that problems in apparently
diverse branches of science lead to equations and boundary conditions
which have the same mathematical form and differ only in the physi-
cal interpretation attributed to the symbols. We then say that an
analogy exists. Examples are Kirchhoff’s analogy [33] between the
equations of equilibrium of a thin rod, straight and prismatic when
unstressed, held bent and twisted by forces and couples applied at
the ends, and the equations of motion of a heavy rigid body turning
about a fixed point: the analogy between the torsion of a prismatic
beam [34] and the two-dimensional hydrodynamic problem of a
cylinder of the same shape as the surface of the beam, hollow, filled
with inviscid liquid, and rotating about an axis parallel to the gen-
erators: the analogy between electric circuits [35], electric current,
magnetic force, positive magnetic pole, and vortex filaments, strength
of vorticity, fluid velocity, source respectively. I quote here as further
illustrations two analogies between flow of a viscous and an inviscid
liquid.

The first concerns flow in a straight horizontal pipe [36] in which
viscous liquid flows steadily under a pressure gradient P. The veloc-
ity of a particle at distance r from the axis is ¢ — Pr2/(4u), where u
is the coefficient of viscosity and ¢ is the stream function for inviscid
liquid filling the same pipe and rotating about the axis with angular
velocity P/(2).

The second analogy concerns the slow motion of a solid of revolu-
tion which rotates with angular velocity wabout its axis of revolution
in unbounded viscous liquid [37]. The fluid particles describe circles
about the axis of revolution with velocity ¥/r, where 7 is the distance
of the particle from the axis and ¢ is the stream function when the
solid moves in inviscid liquid in the direction of its axis with velocity
—2w.

13. Motion of a body through a fluid. The classical case, governed
by Kirchhoff’s equations, when a vessel deeply submerged (e.g. a
submarine) moves with velocity u=u(#) and angular velocity o in
liquid otherwise at rest gives [38] for the force Ry and the moment
M,, exerted by the liquid on the vessel,
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oK
Ry = — — — oAK,

at

oL
My = — — — 0AL = u\K,

where
K=pf¢dS, L=pf¢r/\dS

the integrals being taken over the surface of the body, and 4.S denot-
ing the vector element of area directed into the fluid. When a surface
ship moves with speed less than (gh)/? where % is the depth of the
water, it is accompanied by a wave train whose energy is maintained
at the expense of the fuel supply of the ship and consequently the
ship experiences a wave making resistance. A deeply submerged sub-
marine experiences little resistance from this cause, and that is one
reason why the submarine is coming into prominence as a war vessel.
M. D. Haskind [39] has this year extended the above formulae to
include the case where the liquid has velocity v=v(f) at infinity and
consequently acceleration f=dv/dt. If ® is the velocity potential, he
defines ¢ =® —v-r and the corresponding force and moment are

R = R, + M'f,
M= M,+ vAK+ M't/\f,

where M,, R, are calculated from the Kirchhoff formulae, M’ is the
mass of liquid displaced and r is the position vector of the centre of
buoyancy.

The motion of a submarine when gravity is taken into account has
been discussed also this year by P. V. Harlamov [40]. The problem
he studies is that of a body totally immersed with buoyancy equal to
the weight of the body so that, in general, the weight and buoyancy
form a couple. The results of Harlamov’s thorough-going discussion
are not suited to reproduction here but I mention one as a specimen.
If r is the position vector of the centre of buoyancy relative to the
centre of gravity of the body, permanent translation is impossible if
the body is immersed so that the plane containing the vector r and
one of the principal axes of the virtual mass ellipsoid is vertical but
the vector r is not vertical.

14. A general solution of the hydrodynamical equations. Let me
conclude this necessarily brief review of some of the methods used in
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hydrodynamics today, (I have purposely kept exclusively to the
mathematical aspect), by stating a general result [41].

The equation of motion and the equation of continuity of a fluid,
viscous or inviscid, compressible or incompressible, are satisfied iden-
tically by

p=Vx  pgq= — V(dx/d),
® = p(q; q) + (V — *%/d)I + VAF¥AV.

Here & is the stress tensor, x is an arbitrary function, ¥ is an arbi-
trary 2-tensor, and V=¢pQ, where Q is the potential of a conservative
field of external force and e=1 if the fluid is incompressible, and
e¢=0 otherwise.
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