
SCIENTIFIC REPORT ON THE 
SECOND SUMMER INSTITUTE 

SEVERAL COMPLEX VARIABLES 

The Second Summer Institute, devoted to several complex vari­
ables, was held from June 21 to July 31, 1954 at the University of 
Colorado. I t was supported by a grant from the National Science 
Foundation to the American Mathematical Society. This report 
outlines much of the work presented at the seminars at the Summer 
Institute. The report has been written under the supervision of an 
Editorial Committee consisting of S. S. Chern, W. T. Martin, and 
Oscar Zariski. The report is presented herewith in three parts, each 
of which has its own bibliography and may be read independently 
of the other two parts. Part I, which is based on the Analysis seminar, 
was prepared under the editorial supervision of W. T. Martin; Part 
II , Complex Manifolds, was written by S. S. Chern; and Part III, 
Algebraic Sheaf Theory, by Oscar Zariski. Detailed acknowledgments 
for each of the three parts of the report are given in the separate 
parts. 

The report does not cover the work done on a seminar on Algebraic 
Geometry since the topic of that seminar—the problem of existence 
of minimal models for algebraic surfaces—will be the subject of a 
separate memoir by Oscar Zariski. Several lectures on the Albanese 
variety were given in that seminar by W. L. Chow. 

PART I. REPORT ON THE ANALYSIS SEMINAR 

Introduction. In the analysis seminar talks were given by several 
members of the Institute on topics ranging from the kernel function 
and automorphic functions to functions on abstract algebras and 
applications of function theory to linear partial differential equations. 
The talks included not only reports of work previously done in the 
field but also recent work done by the participants. 

In this part we present a brief report of the seminar. This part is 
divided into sections corresponding to the lectures on a given topic. 
Some unsolved problems of interest have been included in the sec­
tions to which they are related. The material in each section is based 
upon a written summary prepared by the speaker or speakers as 
follows: 

§§1A and 4: H. J. Bremermann; 
§1B: M. Maschler; 
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§§2A and 6: S. Bergman; 
§2B: R. C. Gunning; 
§3 A: W. L. Baily; 
§3B: J. H. Sampson; 
§5A: H. G. Haefeli; 
§5B:N. S. Hawley. 
In addition the Editorial Committee wishes to thank Doctors 

W. L. Baily and R. C. Gunning for their assistance in the planning 
and coordinating of the material of this part. 

1. Applications of kernel functions to some geometrical problems. 
In this section we discuss some applications of the theory of the kernel 
function. A general treatment of the kernel function with further 
applications may be found in Bergman [3; 5; 6] and other papers 
cited there. 

A. Domains of holomorphy. The Bergman kernel function KD(Z, t) 
of a domain DQCn is a holomorphic function of (the In variables) 
z, t in the product domain DzXDj. The envelope of holomorphy E of 
a product domain is equal to the product of the envelopes of holo­
morphy of the domains: E(DzXDf)=E(D)zXE(D)r Therefore for 
any domain D, KD(Z, Î) is holomorphic in E(D)zXE{D)-t. In particu­
lar (letting t = z), KD(Z, Z) has a (plurisubharmonic) continuation 
into E{D). Some of the properties of the kernel function continue to 
hold in the larger domain E(D). For instance the reproducing prop­
erty holds in the following sense: Let f(z) be holomorphic and let 
/G-C(I>) . Thenf(z)=fDKD(z, t)f(f)do)t not only f or z£D but also f or 
zÇzE(D). (However the property ƒ £o£2(.D) does not in general imply 
ƒG.£2(£(£>)).) Also the Hermitian form 

» Ö 2 J M * , Z) 

ds2 = 2^ : — dzpdz, 
n,v=~i dzpdzp 

is positive definite and invariant with respect to holomorphic trans­
formations not only in D but also in E(D). 

We say that UKD{Z, t) becomes infinite everywhere at the boundary 
of D" if for arbitrarily large real M the closure of {z\ KD(Z, Z) KM] 
is contained in D. Bremermann [2 ; 5 ] has shown that a necessary con­
dition for K to become infinite everywhere at the boundary of D is 
that D be a domain of holomorphy. He has given counter-examples 
to show that this is not a sufficient condition. However he has shown 
that any domain of holomorphy can be approximated by domains 
Dv for which K does become infinite everywhere at the boundary. 
Each of the Dv can be approximated by {Z\KDV{Z1 Z)<M}, which 
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turn out to be regions of holomorphy. Both approximations together 
give Bremermann's theorem [2]: 

Any domain of holomorphy can be approximated from the interior by 
regions of holomorphy each having an infinitely differentiable boundary 
surface. 

Bremermann has proposed the following two problems: 
1. Express the kernel function for simple domains explicitly in 

terms of known transcendental functions. 
2. Develop this theory for complex manifolds. 
B. Minimal and representative domains. As there is no known ana­

logue to the Riemann mapping theorem in the space of two complex 
variables, it is interesting to know that it is at least possible to map 
an arbitrary domain onto a domain which has certain properties. (In 
order to save space, the results of this portion are stated for the case 
of two complex variables. Similar theorems hold for the space of n 
complex variables, n^l.) In Bergman [5] (and other papers men­
tioned there) two kinds of such domains were introduced: minimal 
domains and representative domains. A minimal domain D in zi, 22-
space with respect to a point £ = (/i, t2) G.D as center is a domain which 
has the property that under any pseudo-conformal transformation 
Wk — WkÇzij z2), (& = 1, 2), d(wu w2)/d{z\1 z2) = l at z = t1 its (four-
dimensional) volume does not decrease. We allow also mappings in 
which Wk are not single-valued functions, provided that the Jacobian 
of the transformation is a single-valued function in D. In this case 
we identify the image points which correspond to the same point in D. 
A representative domain B with r G 5 as center is a domain which 
satisfies 

Zj = MW(zu z2)/M(zh z2) + rh j = 1, 2, 

where M is the function which minimizes the integral fB\f(z)\2do) 
under the conditions ƒG«C2C#), ƒ(r) ==1 (dco is the volume element), 
and where M& is the function which minimizes the same integral 
under the conditions ƒ£«£*(.#), f(r) = 0 , df/dzj = lt df/dzi = 0 (i^j) 
atz = r. (We do not explicitly denote the dependence of the functions 
My Mf and M" upon r and upon the domain B.) 

A minimal or a representative domain does not have to be schlicht 
provided the point t does not lie on a branch manifold. Schiffer [l ] 
has given sufficient conditions for a minimal domain to be schlicht. 
Very little is known about the geometric shape of minimal or repre­
sentative domains; yet, since any domain which has a Bergman kernel 
function can be mapped pseudo-conformally onto them, knowledge 
of properties of these domains enables us to deduce various results 
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which are of interest in the theory of pseudo-conformal transforma­
tions, Bergman [5], Maschler [ l ] . 

Maschler [l ] has proved the following theorem. 
A necessary and sufficient condition for a domain D to be a minimal 

domain with respect to a point t as center is that its Bergman kernel 
function satisfy a relation Z D ( S , t) — const, for zÇzD. The value of this 
constant is the reciprocal of the volume of D. 

From this result Maschler has deduced other properties of minimal 
domains which give some information about their shape and also lead 
to distortion theorems. I t can be shown that Reinhardt circular do­
mains are both minimal and representative domains with their center 
at their center of gravity. Maschler has pointed out, however, that 
this phenomenon is not true in general. In fact he has obtained the 
following result, Maschler [2]: A necessary and sufficient condition f or 
a minimal domain D to be also a representative domain with the same 
center t is that dKn(z, t)/dtj = Aj(zi — ti)+Bj(z2-~t2), (j — 1 , 2), for 
zÇzD, where Aj and Bj are constants (Ai, B% are real; A2 = Bi and 
AiB2—A2Bi?*0). The kernel function of any domain A which can be 
mapped pseudo-conformally onto a domain D of this type such that the 
Jacobian of the transformation is regular and different from zero at r 
{the inverse image of t in A) has the property that its kernel function 
satisfies the following differential equation : 

1 
S(w; r) = — 

K K\ Kl 

Ki Kil Ru | = const. 

K2 K21 K22 

for w £ A , where the elements of the determinant are defined as follows: 

K = KA(w; r), Kj = dKA(w; f)/dwh 

Kj = dK&(w; œ)dô)j at co =» T 

and 

Kjù = Ô2KA(W; ô))/dWjdook) at œ = r, 

w = (wi, W2), w = (coi, C02). 

This identity yields information about the kernel function for the 
case W9^T. Since Bergman [3] has shown that the expression S(w; w) 
is invariant under pseudo-conformal transformations, the value of 
the constant can be computed. 

2. Distinguished boundary surfaces. 
A. Value distribution problems; examples. When we attempt to 

generalize the methods of the theory of functions of one complex 
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variable to the case of two variables the following class of domains 
plays an important role. On the (three-dimensional) boundary of a 
domain of this class lies a (not necessarily connected) two-dimen­
sional surface $ 2 such that every function regular in the closed do­
main assumes the maximum of its absolute value not only on the three-
dimensional boundary but even at a point of $2. (Superscripts denote 
the dimension of manifolds.) The surface g2 is denoted as the dis­
tinguished boundary surface of the domain under consideration. For 
instance, if the domain is bounded by finitely many segments of 
analytic hypersurfaces, then the sum of intersections of these hyper-
surfaces forms the distinguished boundary surface §2 . 

The Cauchy and Poisson formulas are important tools in investi­
gating functions of one complex variable. As has been shown, Berg­
man [ l ; 2; 12]; Weil [ l ; 2] there exists, for a large class of domains 
with distinguished boundary surfaces in several complex variables, 
an integral formula expressing the value of the function inside the 
domain in terms of its value on the distinguished boundary surface. 
This formula can be considered as a generalization of the Cauchy 
formula in one variable. However it has the disadvantage that in the 
case of more than one variable its kernel depends on the domain. Func­
tions which are orthogonal when integrated over the distinguished 
boundary surface are introduced in Bergman [3; 13; 16]; these gen­
eralize the functions introduced by Szegö [ l ] , which are orthogonal 
when integrated over the boundary curve of a domain in one variable. 
By using various positive weighting functions we then obtain various 
formulas expressing a function inside the domain in terms of its values 
on the distinguished boundary surface. 

We proceed now to the question of analogs of the Poisson formula 
and of their applications, in particular, applications to the question 
of value distributions of functions of two variables. Let us note that 
the situation in this case differs in many respects from that in one 
variable. A function of two variables vanishes on segments of ana­
lytic surfaces. One of the problems of the theory of functions of two 
complex variables is to associate with these segments certain func­
t i o n a l which characterize some properties of these segments and 
which on the other hand are connected with the growth of the func­
tion. We are, in particular, interested in determining functionals 
which can be considered as generalizations of such notions as 

Dx{a, r ) - 2 | ««(o) |~\ 

where zw(a) are roots oif(z) = a in the circle J sr| < r . In the case of one 
variable derivations of many results in this direction are based on the 
possibility of solving boundary value problems for harmonic func-
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tions. In the case of a domain with a distinguished boundary surface, 
the boundary value problem for J3-harmonic functions, (i.e., for the 
real parts of analytic functions of two complex variables) with arbi­
trary values prescribed on this surface does not always have a solu­
tion. In Bergman [ l ; 6; 16], Bergman and Schiffer [ l ] and Bremer-
mann [5] various types oi f unctions of extended class are introduced. 
Using these we can always solve the boundary value problem men­
tioned above and generalize potential-theoretic methods (in particu­
lar those of Nevanlinna and Ahlfors) to the case of two variables. 

EXAMPLE 1. Consider the 2-parameter family of closed surfaces 
g2(r, s) in («i, z2) -space defined by 

g2(r, s) - {(zh sa) | | *21 =* r, zx = h(z2, t, Î), \t\ = s), 

where h(z2l t, t) is a single-valued analytic function of z2l t, t. For any 
conveniently chosen real function s — s{p), the set ^ = Uro^p^r 52(P> 

s{p)) is a segment of the hypersurface ^8 = limrH-oo $?• Then for an en­
tire or meromorphic function/(si, z2) the set 

P(a, r) = « * n {(«i, z2) | /(si, z2) = a} , 

will be one-dimensional and will have a parametric representation 

si « zi(#, a), 22 = *«(¥, a), | z21 < r 

(with the parameter >£). The integral 

(3) 5x(o, r) = — f | *i(*, a) |~M* 

can be considered as a generalization of the quantity D\(a, r) in one 
variable. Generalizing the theorems of Hadamard and Borel it is pos­
sible to show that 

lim B\(a, r) 
r—*«o 

exists if and only if X is larger than a quantity connected with 
the growth of f(zi, z2) on S3. (See Bergman [14; 16], Bergman and 
Schiffer [l ] and references to earlier papers of Bergman cited there.) 

EXAMPLE 2. Since in pseudo-conformal transformations a pair of 
functions of two variables plays the same role as one function of one 
variable in conformai transformations, it is of interest to consider 
functionals connected with a pair of functions. 

Let SDÎ4 be a domain in (zif 22)-space bounded by a3U6 s , where 

û5 = {{zu z2) | z2 = exp (iX), O ^ X g 2TT}, 

b* - {(«i, z2) | zx - h(\, z2), 0 £ X â 2*9 | sil £ l l , 
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and having distinguished boundary surface %2~a*r^bz. For each 
1221 < 1 we form the function w{zi1 z%) mapping the set 

S8%2) =2 t t 4 n {(*i,s,) I * , - 22}, 

which is assumed to be simply connected, onto the unit disk. For a 
pair of analytic functions (ƒ1, ƒ2), let P\(z%) and P2632) be the products 
of the C(S82) distances between every zero of f\ and every zero and 
pole respectively of ƒ2 on B2(z%)\ here by the C(332) distance between 
two points (zi, s2) and (z{, 2°) is meant the quantity 

1 - w{zh z°2)w(z{, z°2) 

Similarly Pz{^2) and PA(ZI) are defined by replacing the zeros of/i by 
poles of fu 

The first functional to be considered is 5frfi(P), the average of the 
generalized Blaschke products 

Pi(z2)PA(z2) 

P2(22)P3fe) 

over the circle |2fe| < 1 , from which have been removed circles of 
radius P around certain exceptional points (such as the projections 
of the points of intersection of pole and zero surfaces of ƒ1 with pole 
and zero surfaces of ƒ2). A second functional 5W2(P) is introduced 
similarly. 

In Bergman [ l l ] an upper bound is derived for %(P)+2tf2(P) in 
the following manner: we draw in M4 tubes ^p of radius p around seg­
ments of zero-surfaces 2tii~ [si—0^1(22)] a n d pole-surfaces Slj^—I^i 
=^2(22)] of fk, k~l, 2. Upper bounds for | (si— akr(z2))Tfk\"

1 and 
I ö [(21 — oLhriz^Yficl/dzi) I in ttp are denoted by Bk and Dk respectively, 
while Ak and Ck are the respective bounds for \fk\ and |3/fc/d2i| in 
the complementary part MA — X)C °f -^4- (T = 1 ̂  ƒ* n a s a pole, r = — 1 
iifk has a zero.) The upper bound for % ( P ) + % ( P ) is given in the form 
Si+£2 where S\ depends essentially upon P, p, Aky Bky Ckl Dky k = 1, 2, 
the area of the above mentioned segments 2lL and the volume of Af4. 
5*2 depends essentially, in addition to the previously mentioned con­
stants, also on the upper bounds Lk of | {z^—yk2(\))dfk/dzi\ in tubes 
of radius p around the intersection lines [z2=Tfc2(X)] of bz with the 
surfaces (ô/fc/d^) = °° and on the upper bounds Mk of |d/*/3s2| in 
the complementary part of b3. Further, 52 depends also upon the 
length of the lines b8H [ƒ* = ()], bzr\[fk~ 00 ]. 
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EXAMPLE 3. See Bergman [7, pp. 170 ff.]. We note that in this case 
topological methods can be used, in particular Morse l theory of 
critical points. 

B. Poisson formulas in several variables. The boundary value prob­
lem for the real parts of analytic functions of several complex vari­
ables (polyharmonic functions) in a domain D with a distinguished 
boundary surface B is in general insolvable. We may ask then for a 
polyharmonic function in D whose boundary values on B give a best 
approximation in Z,2-norm to a prescribed set of values on B. A natu­
ral approach is to introduce a Bergman kernel function with respect 
to the distinguished boundary surface, Bergman [3]. However an 
approach based on Fourier series and integrals, Bochner [2], Bochner 
and Martin [ l ] , will give an effective method of calculation in some 
special but interesting cases ; only the results of this approach will be 
mentioned here. 

Any polycylindrical domain may be transformed by a pseudo-con-
formal map onto a circular polycylinder 

D: \zj\ < 1 (1 S i g n ) , 

with distinguished boundary surface 

B: | f , | = 1 ( l ^ i ^ n ) . 

For any continuous distribution #(fi, • • • , fn) on B, Gunning has 
shown that the solution to this weak boundary value problem is given 
by: 

J /* lie /*2ir 

. h A —*^i£—1 _ A^... ^ 
l L(n - Zl) • • • (fn - *n)J J 

where ft = e** (l^j^n). 
The space of n2 complex variables may be represented as the space 

of nXn complex matrices z = (zij); this representation imposes a ring 
structure on the argument z, in terms of which some of the approaches 
used in the case of functions of one variable may be extended to yield 
similar formulas for matrices. Replace the unit disk by the generalized 
unit sphere 

where I is the unit matrix and the ordering u<v means v-~ u is posi­
tive definite. The distinguished boundary surface of D is the set 
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B= {r|r-'f = / } , 

the unitary group of nXn matrices. The equivalent of the angular 
measure d<j> on the circle is the group-invariant measure d\x on the 
unitary group. Then for a continuous function u(£) on B vanishing 
at—J, Gunning has shown that the weak boundary value problem has 
the solution 

J r det (ƒ + s)-det(f) ln 

«(f) M ï-~— ^ — d». 
B l d e t ( / + f ) - d e t ( f - « ) J 

3. Projective models for fields of automorphic functions. 
A. Mappings and imbeddings. We would like to state, in a special 

case, some results on analytic mappings in several complex variables 
recently worked out in some degree of completeness by Cartan [l ; 2] 
(but which in principle go back at least as far as Osgood [l]) and to 
indicate their applications to a global imbedding theorem recently 
proved by Baily [l ]. The problem in general with which these results 
deal is as follows: 

Given analytic functions/i, • • • , fm at the origin a of the space of 
n complex variables Cn such that f\ (a) = • • • =ƒ»*(#) = 0 and a small 
neighborhood V of a, what does the image $ ( V) look like at the origin 
c of O , where <f>(z) = (/i(s), • • • , fm(z))? Osgood [ l ] proved a theo­
rem which in part can be stated thus: If m~n and a is an isolated 
point of the set of common zeros of fu • • • , fm, then <& is an open map­
ping in some neighborhood V of a, and with an appropriate choice of V, 
3> represents V as a ramified N-fold covering of $(V), where N is some 
integer. More recently Cartan [ l ; 2] has obtained somewhat more 
general results which are formulated in terms of the notion of a germ 
of a general analytic space. Though space is lacking to develop the 
latter concept, part of Cartan's results can be stated as they apply 
to our problem thus: 

If a is an isolated point of the common zeros of fi, • • • , fmy then 
every holomorphic function g at a satisfies a distinguished polynomial 
relation of the form 

gN + alg
N~l + - • • + aN = 0 

in some small neighborhood of a, where a\y • • • , ajv belong to the ring 
of holomorphic functions analytically generated by fi, • • • , fm; more­
over, $ ( F ) is an irreducible analytic variety at a (in the sense of being 
the set of common zeros of analytic functions). 

These results have an application to the problem : If H is a finite 
subgroup of the general complex linear group in n variables, and V is a 
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small neighborhood of the origin a of Cn stable under H, how may V/H 
be regarded as an analytic variety? Cartan has shown, on the basis of 
results related to those stated previously, that if J is the ring of 
holomorphic functions at a invariant under H and / i , • • • , fm gener­
ate 7 analytically (so that a is automatically an isolated point of the 
set of their common zeros), then, for a sufficiently small neighborhood 
V of a, $(V) is an irreducible variety at $>(a) and its local ring there 
is naturally isomorphic to I; since it is easily seen that / is integrally 
closed in its quotient field, this means that $ ( F) is analytically nor­
mal at $(a). This result has been used by Baily in examining the na­
ture of the quotient space of an analytic manifold D by a discrete 
group G of analytic self-homeomorphisms in case D/G is compact and 
there exists a positive G-complex line bundle over D, Baily [ l ] . In 
this case he has shown that D/G can be regarded as an algebraic 
variety, which is locally analytically normal. A similar result has also 
been obtained by Cartan and Serre, see Cartan [l ; 2] , in the special 
case when D is a bounded domain in Cn. 

B. Automorphic varieties. Consider a bounded domain D in the 
space of n complex variables zi, • • • , zn, and let T be a group of 
analytic homeomorphisms y:D—>D. The elementary properties of T 
are established by means of Cauchy's integral theorem, (a) If we 
assume T is discontinuous at some point of D, then it is countable 
and is totally discontinuous in D. (b) Let the elements of T be 70, 
71, 72, etc., where 70 is the identity, and let Jv(z) denote the Jacobian 

3(7*1, • - - , 7,*n) 
Jv(z) = —— — {v = 0, 1, 2, • • • ). 

d(zh • • - , * » ) 
Then, under our assumption, the series 

Z IM*) I2 

v 

is majorized on every closed subset of D by a convergent series of 
constants. 

Therefore, if H{z) is bounded and holomorphic in D, the Poincaré 
0-series 

0 

represents a holomorphic function in D for any integral k*£2. â(z) 
satisfies the relation 

û(y,z) «*(*)•[/,(*)]-*. 
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A key result, Giraud [l] concerning 0-series is the following: If 
points ai, • • • , ar are selected in D, none of which is a fixed point of 
any 7 in T other than 70, and if values for $(z) and its partial deriva­
tives of order g m (m fixed) are specified at the points ai, • • • , ar, 
then for all suitably large weights k there exist 0-series â(z) which, 
with their partial derivatives of orders ^m, assume at au • • • , ar 

the prescribed values within any prescribed error e>0. 
For simplicity we suppose now that T has no maps other than 70 

which have fixed points in D. The space M = D (mod T) can always 
be regarded as a complex manifold, and we further assume that T is 
such that M is compact. 

Quotients of 0-series of the same weight k define meromorphic func­
tions on M, and it is easily shown by the above result that the field 
J of meromorphic functions on M has transcendance degree n over 
the complex numbers. Moreover, the functions of J separate points 
of M. From the lemma, Sampson [l ] has established that the dimen­
sion pk of the linear space of holomorphic densities of weight k on 
M tends to infinity with k, and from this that M admits only finitely 
many analytic self-homeomorphisms. Hawley [l] obtains this result 
from his theory of Picard domains. 

In an oral communication to Sampson, G. Washnitzer has indi­
cated how the holomorphic densities on M can be used to obtain a 
nonsingular imbedding of M in complex projective space, whence, 
by Chow's theorem, Chow [l] , M is algebraic. 

4. Domains of holomorphy; plurisubharmonic functions and Oka's 
lemma. 

1. A real valued function V is called plurisubharmonic in a domain 
DQMn (Mn a complex manifold) if and only if the following condi­
tions hold: (a) — 00 g V< 00 ; (b) V is upper semi-continuous; and 
(c) d2V(z+\a)/d\d%^0 (defined as a distribution) holds for all 
2+XaG Ui and all Ui, where { Ui\ is a covering of D, the z's are local 
coordinates in Ui, X is a complex number, and a s ^ , • . . , an)GCn 

(the space of n complex variables). 
There are equivalent definitions (see Lelong [l; 4] and Bremer-

mann [l]). In a schlicht space condition (c) means that the function 
V is subharmonic in the intersection of any one-dimensional analytic 
plane with D. This definition can be used for Banach spaces, see 
Bremermann [8]. The plurisubharmonic functions are a proper sub­
class of the subharmonic functions of In real variables for n > 1 ; for 
n = 1 they coincide. 

2. The functions built up from log | / | , ƒ holomorphic in D, by 
addition, multiplication with positive (real) numbers, taking upper 
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envelopes, and a closure operation are called Hartogs functions, 
Bochner-Martin [ l ] . Every (upper semi-continuous) Hartogs func­
tion is a plurisubharmonic function. If D is a domain of holomorphy 
the converse is true. This is a consequence of Oka's lemma (see 
Bremermann [7]). Bremermann has shown that the converse is not 
true if D is not a domain of holomorphy. In this case every Hartogs 
function has a "Hartogs continuation" into the envelope of holo­
morphy of D, but by the use of tube domains, Bochner [ l ] , Bremer­
mann has shown that plurisubharmonic functions can be constructed 
which do not possess a plurisubharmonic continuation, Bremermann 
[6]. This disproves the conjecture by Bochner-Martin [ l ] that the 
plurisubharmonic functions and the Hartogs functions coincide. This 
conjecture has been investigated by Lelong [2] and Hitotumatu [ l ] . 

3. LetP={z\zGDAlog \fi(z)\ < 0 A • • • Alog \fk(z)\ <0},where 
fit • • • » fk are holomorphic in D. Let the closure P of P be contained 
in £>, PCD* Then P is called an analytic polyhedron, and 
£ = {z\ze?Alog \Mz)\ = 0 A • • • Alog | ƒ*(*)! = 0 } its distinguished 
boundary surface. Given continuous boundary values on 5 , take the 
class of all functions plurisubharmonic in P and less than or equal to 
the given boundary values on B. Bremermann has shown that the 
envelope of this class exists, is plurisubharmonic, and assumes the 
boundary values. The upper envelope function is different from Berg­
man's "function of the extended class" for the same domain P but 
serves the same purpose, Bergman [ó] (and references cited there); 
Bremermann [7]. 

4. Plurisubharmonic functions generate metric forms since 
2D^- i (d2V/dz^dzv)dzlidzv (defined as current) is positive semidefin-

ite. Also several exterior differential forms are connected with pluri­
subharmonic functions, Lelong [4]. In particular: Let Wp be an ana­
lytic set in D of pure complex dimension p. Let { Uk} be a covering 
of D. In each Uk, Wp can be represented as the intersection of the 
zero manifolds of n—p functions ƒƒ holomorphic in ET*. Let Vs 

= log \fs\ and dzdzVs = ]C!U-i (d2V/dzlldzv)dzliAdzp. Then the cur­
rent ®k = (i/T)n~pdzdzViA • • - AdzdzVn-p is defined in £7*. Then 
© =©& defines a closed current in D. For the integral over Wp of a p-
form with compact support in D we have ©(<£) = fw*<t>, Lelong [4]. 

5. Given a domain D in a metric space, then we define: 

ôD(z) = sup r 3 {z' I J z' - z I <r} CD; 

8D(Z) is the distance of the point z from the boundary of D. 8D(Z) is 
continuous for any domain. A domain D in a complex Banach space 
is called "pseudo-convex" if and only if —log 80(2) is plurisubhar-
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monic in D. The definition of convex functions can be made com­
pletely analogous to the definition of the plurisubharmonic functions. 
(We could call convex functions for one real variable "sublinear" 
and for several real variables "plurisublinear.") Bremermann [5] has 
proved that a domain is convex if and only if —log 5D(X) is a convex 
function in D, and he [8] has proved the same result for real Banach 
spaces. "Complex convexity" (as we denote pseudo-convex domains 
and plurisubharmonic functions together) is the extension of the 
notion of convexity from real to complex spaces. The theories can 
be developed in parallel. One example: Let SV1 So be domains on 
one-dimensional analytic surfaces, Tvy T0 the boundaries, and 
lim^oo Tv = To and lim,,.^ S„ = So. If for any such sequence for which 
5„, Tv and ToQD also SoGD, then we say "the theorem of continuity 
holds for D." D is pseudo-convex if and only if the theorem of con­
tinuity holds for D. (Bremermann [ l ] , Lelong [3].) From this fol­
lows: D is pseudo-convex if and only if a function V, plurisubhar­
monic in D, exists such that for all real M the closure of {z\ V(z) <M} 
is contained in £>, in other words if and only if a plurisubharmonic 
function exists that becomes infinite everywhere at the boundary of 
D. The same theorem holds for convex domains, if we replace "one-
dimensional analytic surfaces" by straight lines, and the plurisub­
harmonic functions by convex functions. 

6. A domain is called a "tube" domain if and only if it is of the 
form { JS |X£J5 , y arbitrary} (x real part, y imaginary part), Bochner 
[ l ] ; Bochner-Martin [ l ] . A tube domain is pseudo-convex if and 
only if B is convex. A function defined in a tube domain and not de­
pending on the imaginary parts is plurisubharmonic if and only if 
its restriction to B is convex in B. Therefore one obtains for every 
theorem on plurisubharmonic functions and pseudo-convex domains 
(that does not involve "existence") by specialization to tube domains 
a corresponding theorem on convex functions and domains. The con­
verse is not true, of course. However, to every convexity theorem we 
have the problem: does the corresponding theorem on complex con­
vexity hold? Bremermann [5]. 

7. Oka's lemma states: A schlicht and finite domain is a domain of 
holomorphy if and only if it is a pseudo-convex domain. The lemma 
solves a problem established 1910 by E. E. Levi [ l ] (compare 
Behnke-Thullen [ l ] ; and Behnke-Stein [2]). The lemma was proved 
for two variables by Oka [2] and for n variables by Norguet [ l ] and 
Bremermann [4]. Recently a new proof for arbitrary n and for a 
certain class of complex manifolds was given by Oka [S]. The proof 
of the main part "if pseudo-convex, then domain of holomorphy" is 
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too involved to be sketched here. The other part can be proved in an 
easy way from the theorem: Let D be a domain of holomorphy and 
S, T sets such that SKJTC.D, 5, open and for any function ƒ(0) holo-
morphic in D assume that sup^surl/O3)! =sup*£:r|/0s)|. Let g(z) be 
holomorphic in D. Then mfM^s\jT ôi>(z)\eo(z)\—mîgçzT öi>(s)|ea(l!)|. 
Also the holomorph-convexity (in the sense of Cartan-Thullen [l]) 
follows from this theorem immediately with g(z)^Of Bremermann 
[5]. 

PROBLEMS: 1. To find a substitute for SD(Z) on complex manifolds. 
2. To study pseudo-convex domains on complex manifolds. As a 

definition the following could be used: A domain D is called pseudo-
convex if and only if there exists a function V, plurisubharmonic 
in D, such that the closure of {z\ V(z) <M} is contained in D for all 
real M. 

3. Prove Oka's lemma for arbitrary complex manifolds. 
4. Study the sheaf of germs of plurisubharmonic functions. 
5. Functions on algebras. 
A. Functions on a Clifford algebra. This is a report on functions of 

a hypercomplex variable, extensive work on which has been carried 
out by R. Fueter [l] at the University of Zurich, and his school in­
cluding H. G. Haefeli [l] in this country. 

Let C be a Clifford Algebra of order 2n~~1 with the basis 
0i, • • • e»_i 

and the relations 
2 

(1) ek = — 1 (elliptic case) 
and 
(2) ehek = — ekeh for h ^ h, 

and let ^ b e a module in C with the basis 60, 61, • • • , en~i, where 
eo = l denotes the principal unit. A variable #£-C is defined 
# = ]C*-o Xkejc, where the x's are real variables, and a function w£.£ 
as a mapping from «£ into itself w = ]Ct-o u^ where the u's are real 
functions of the n variables. One requires that all these functions are 
defined and possess continuous first partial derivatives in all variables 
in a region R of the w-dimensional euclidean space En. If D denotes 

(3) £ = £ — ek, 
fc«0 OXk 

a function w is called right- or left-analytic in J?, if 

(4) wD = 0 or Dw » 0 holds in R. 
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These are two systems of linear partial differential equations and 
they can be considered as extensions of the Cauchy-Riemann equa­
tions; they are equivalent to (w2—w+2)/2 real conditions. This 
choice of definition of analyticity is not a formal one, but originates 
from the desire to generalize Cauchy's integral theorem. Indeed, if 
RiCGR, the integral 

(5) I wdX = 0 if and only if wD = 0. 
J BdRi 

Let 25= X)t-o (d/dxk)êk with êQ = e0 and £*=—0* for ky^O; then 
DD—A is the Laplacian in n variables and wD = 0 implies 

(6) Aw = 0 

and this implies Aw = 0. The components of w are again harmonic 
functions as in the classical case. Analogously to Cauchy's formula 
it is also possible to express the value of w at a point xÇzR, by means 
of the values of w on the boundary of Ri : 

J £ - x 
wi&d'S, • 

BdRl n{$ - x)n'2 

From this it is possible for even n to obtain a development of an 
analytic function around a regular point in a series of orthogonal, 
homogeneous polynomials. 

Instead of the conditions (1) one can take 

eu = 1 for k = 1, • • • , m and 
(10 2 

eu = — 1 for k = m + 1, • • • , n — 1. 

Analytic functions are defined as in (4), and (5) holds; but (6) is now 
a hyperbolic partial differential equation of second order and (7) be­
comes an integral equation, which has been solved for special cases 
with the partie finie méthode. 

One may take the variable x and the function w in two different 
modules or algebras, as long as the second is invariant by left multi­
plication with elements from the first. xG-C1 an (^ W&C2> °OöG=:aC2 

and DÇL/^I. For particular choice of «£i and «£2, (4) gives the Dirac 
equations and (6) the wave equation; (7) reduces to an integration 
over the intersection of BdR\ with the characteristic cone through x, 
and the resulting integral equation has been solved. 

If one takes instead of ^ a product system P = [l, en] [l , ei, • • • , 
0w-i] and identifies en = i with the ordinary complex unit, one obtains 
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a class of analytic functions, which contains as special subclass the 
complex analytic functions 

(8) W = / o + fiei + • • • / n - l ^ n - l , 

where fk(zi, %2, • • * , zn) are analytic functions of ^-complex variables. 
(5) holds again and gives for the subclass the first rigorous proof of 
Hartogs' theorem on analytic continuation of/*. (7) holds only for 
the subclass, from which one concludes that ƒ& can be approximated 
with rational functions in P . 

For n = 2 one obtains the algebra of the quaternions. (5), (6) and 
(7) and Runge's approximation theorem hold without exceptions. 
Around an isolated singularity there exists a Laurent expansion and 
one defines nonessential and essential singularities. The first need not 
be poles and one has essential singularities along curves and surfaces, 
in the neighborhood of which the function can be expressed with the 
help of a Stieltjes integral. Analytic continuation and first attempts 
to define generalized Riemann surfaces have been made. Also quad-
ruply periodic functions and applications to the theory of numbers 
have been studied. 

PROBLEMS: 1. For what Clifford Algebras does (7) hold without 
restrictions? Conjecture of Fueter: If the absolute term in the char­
acteristic equation has no zero divisor. 

2. What are the different systems of linear partial differential equa­
tions (4) which imply the same partial differential equation of second 
order (6)? (elliptic and hyperbolic case). 

3. When does there exist for a system of linear partial differential 
equations an algebra such that (4) implies (5) ? 

4. Can every schlicht region be the domain of definition for an 
analytic quaternion function? 

5. Is a product representation of an analytic quaternion function 
possible? 

6. What is the behavior of an analytic quaternion function around 
an isolated essential singularity? 

B. Functions on a complex algebra. Let E denote the algebra defined 
on pairs (xi, #2) of complex numbers by the multiplication rule 
(#1, #2) • (3>i, ^2) = (xiyi—Xiy%y xiy^x^yi) and the addition rule (x\, X2) 
+ (̂ i» 3 )̂ = (xi+yiy ^2+^2). This algebra is commutative, associative, 
and has no nilpotent elements. Hawley has developed a theory of 
.E-valued functions on E which very closely parallels the classical 
theory of functions of one complex variable. 

This £-function theory has Cauchy-Riemann equations, a Cauchy's 
theorem, and formula, calculus of residues, Taylor's and Laurent's 
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expansions, etc. Let X = (xit X2) and Y=(yi, 3/2), then the functions 
Y~f(X) considered are those such that yi=ui(xi, x2), 3̂2 = ^2(^1, #2) 
satisfy dui/dxi=du2/dx2 and duz/dxi— — dui/dx2, i.e. a very special 
class of mappings in two complex variables. The property of being 
an E-iunction, or ^-analytic, is not invariant under arbitrary pseudo-
conformal mappings. This last fact ultimately proves to be of great 
advantage, bringing within the scope of the .E-theory a much larger 
class of analytic mappings than is apparent at first. A proper change 
of coordinates may reduce a quite general analytic mapping to an 
E-function. Partial differential equations (but not a unique set of 
them) for the new coordinates can be given. Of course, all of this is 
quite local. 

Hawley has also developed a theory of conformai mapping in two 
complex variables on the basis of this JB-function theory. Thus if 
C\ and C2 are two complex curves, they have a complex angle between 
them which is preserved by elements of E4unction theory just as the 
real angle is preserved in ordinary conformai mappings. 

Of course, the parallelism of the £-theory to the classical theory 
becomes less satisfactory the deeper we go. For the most part, anal­
ogies to existence theorems and boundary properties break down. Its 
strength lies in special cases, not generality. 

Analogues to the theory of algebraic curves have been developed 
and one obtains a special class of algebraic surfaces for which one has 
an extended set of methods for investigating. 

There are certain obvious extensions to more than two complex 
variables, but these will not be discussed here. 

PROBLEM: "Characterise" a complex manifold which is complex 
analytically homeomorphic to a bounded domain in a space of several 
complex variables. 

As a special case of this problem, consider the simply connected 
Picard domains. (For definition see Hawley [l, p. 638].) The Picard 
domains are a generalization from one to several variables of the 
domains possessing at least two boundary points. In the case of one 
variable it is trivial to prove that a simply connected Picard domain 
is analytically homeomorphic to a bounded domain. Is this proposi­
tion true for more variables ? 

6. Operators transforming functions of complex variables into 
solutions of linear partial differential equations. By the relation 
\t" == [g(z) +g(z) ]/2 the linear space of harmonic functions St' is mapped 
onto the algebra of analytic functions of one complex variable. Here 
z and z are complex conjugates, z — x+iy, z — x — iy, and x and y axe 
real. If the function SP" is continued to complex values of x, y the 
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variables z, z become two independent complex variables. If we con­
sider the harmonic function ^ in a neighborhood of a given point P 
with coordinates Zo=Xo+iyo, then the associated analytic function g 
satisfies the relation g{z) = 2 ^ ( z , £0) — f (so), and thus we note that the 
associate g changes by a constant when the point P varies. 

Bergman has generalized this mapping to the case of linear partial 
differential equations 

(1) L(¥) s *zi + aftz + a*, + c* = 0 

whose coefficients are entire functions. In this case we have the relation 

(2) * - [p(g)+Hi)]/2 

where p(g)^p[g(z), P] is Bergman's integral operator of the first 
kind. As in the harmonic case, the function g which we associate 
with a given solution St of (1) depends upon the point P in the 
neighborhood of which the relation (2) is defined. This relation is 
initially defined in a sufficiently small neighborhood of the point P . 
Bergman has shown however that it can be continued so that it holds 
in the large. For example, it holds in the domain of regularity of g 
if this domain is simply connected. 

If P is the origin 0 the functional p(g) of (2) can be expressed 
in the form 

#k(*),0] 

*\d*\\g{z) + èr<»>(«, *)ƒ"(* - f)^(r)^] 

where the TM are functions of z, z which depend only on equation 
(1) and possess the property that Tin)(z, 0 ) = 0 . Bergman [4; 9] . 
I t should be noted, however, that due to the fact that integrals ap­
pear in (3) certain complications arise when the solutions SP" defined 
in the small are continued in the large. 

In this theory it is of basic importance that various relations be­
tween g and ^ are independent of the coefficients a, c occurring in the 
operator i , or that various other relations depend only upon certain 
properties of these coefficients. As an example for this fact one sees 
from (2) and (3) that the relation 

*(*, 0) = y [«CO + exp ( - ƒ 0(«, 0)dz\g(0) 

eolds. 
The use of the integral operator of the first kind shows that most 

(3) 
= exp 
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of the results of the theory of functions of one complex variable can be 
interpreted as theorems on real solutions of the differential equation (1) 
(and not merely as theorems on harmonic functions). A survey of 
some of the results in this direction (with bibliographical data) can 
be found in Bergman [8, p. 38 ff.], and in Bergman [9] where multi­
valued solutions "$f are considered. 

The theory of integral operators has been generalized in two direc­
tions: (1) the case when the coefficients a, c have singularities of cer­
tain types; and (2) the case of harmonic and more general equations 
in three variables as well as the case of certain systems of linear partial 
differential equations. See Bergman [9; 10 ]. As Bergman has pointed 
out, while investigations of flows of incompressible fluids lead to the 
theory of harmonic functions of two variables, the case of compres­
sible fluids, when the hodograph method is used, introduces problems 
in the theory of a class of equations of the type described in (1). 
Further, as Bergman [14] and Kreysig [ l ] pointed out, special inte­
gral operators are useful for characterizing solutions of partial differ­
ential equations using the theory of ordinary differential equations. 

In the remainder of this section we consider only the case (2). I t 
seems natural that harmonic functions of three variables have to be 
mapped onto analytic functions of two complex variables. Bergman 
(see [4; 9; 10 ] and earlier references cited there) has introduced the 
operator 

H(X) = C,(ft P) 
(4)

 s ± f C\u,<LW,2g(uriT\uç{i- m \ dTit 
ici J ifi_iJ o du f 

where 

(5) X = (*, Z, Z*) m (*, (z + iy)/2, - (s - t , ) /2) , 

u = % + zr + z*r\ 
and he has shown that (4) transforms analytic functions g of two 
complex variables into harmonic functions H{X) of three variables 
x, yy z. He has further considered, Bergman [lO], integral operators 

PZ{G, P) = G{X) + f M{r\ <r*)G(X<r*)da 

which transform harmonic functions G{X) of three variables into 
solutions of the equation 

A(*) s A3* + CV = 0 
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where C is an entire function of r2=x2+y2+z2^x2 — £ZZ*. The in­
verse of pz[Cz(g, P ) ] , g(Z, Z*) = ^[2(ZZ*)1 / 2 , Z, Z*], is independent 
of the coefficient C of the equation A (SF) =0 . In Bergman [9] solutions 
of A(^) = 0 are investigated, whose associates g=gi + (ZZ*)1/2g2 have 
the property that gi, g2 are rational or algebraic functions of Z, Z*. 
In his lectures Bergman showed that various theorems in the theory 
of functions of two complex variables can be interpreted as theorems 
on solutions of A(^) = 0 , theorems on more general differential equa­
tions in three variables, theorems on harmonic vectors, Bergman 
[9], and theorems on certain differential equations in four variables. 

In this section we have discussed only very special integral opera­
tors, mapping functions of complex variables into solutions of linear 
differential equations and systems of such equations. To every differ­
ential equation there exist infinitely many such operators, and the 
question of determining and classifying them is of great interest. In 
particular the investigation of how different operators permit us to 
use the theory of analytic functions for the study of solutions of 
differential equations (for real and complex values of the arguments) 
represents an interesting task. 
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W. T. MARTIN 

PART II . COMPLEX MANIFOLDS1 

The notion of a complex manifold is a natural outgrowth of that 
of a differentiable manifold. Its importance lies to a large extent in 
the fact that it includes as special cases the complex algebraic varie­
ties and the Riemann surfaces and furnishes the geometrical basis for 
functions of several complex variables. Its development has led to 
clarifications of classical algebraic geometry and to new results and 
problems. Two notions from algebraic topology have so far played 
an essential rôle: sheaves (faisceaux) and fiber bundles. But the 
deeper problems on complex manifolds are not entirely topological. 

1. Topology of complex manifolds. From the point of view of topol­
ogy a fundamental problem would be to characterize the orientable 
manifolds of even dimension 2n which can be given a complex struc­
ture. But this is too difficult and, at least at the present moment, one 

1 Acknowledgement. §4 on Stein manifolds is based on material prepared by Baily, 
Bremermann, and Gunning for Part I, later transferred to this part for the sake of 
harmony. N. Hawley prepared a summary of Ativan's work on projective bundles. 
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