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Stochastic processes. By J. L. Doob. New York, Wiley, 1953. 8+654 
pp. $10.00. 
Chapter 1. Introduction and probability background (45 pages). 

The fundamental concepts of conditional probability and expecta
tion are generalized over and somewhat different from those defined 
in Kolmogorov's Grundbergriffe (1933). Let y be a random variable 
whose expectation exists: let J be a Borel field of measurable œ sets 
and J' its "completion." The conditional expectation of y relative 
to J , denoted by 2?{;y|7}, is any measurable J'y integrable co 
function which satisfies JxE{y\j)dP=JxydP for every A £ 7 - If J 
is the smallest Borel field <B(x*, tÇzT) with respect to which the xt's 
are measurable, the above definition specializes to the conditional 
expectation of y with respect to the Xt9s. The conditional probability 
of a measurable set M, denoted by P(M\j), is defined to be E{y\j\ 
where y (ca) is the characteristic function of M. An important ques
tion arises: Is it possible to define an M, co function P(M, co) such that 
(i) for every co, P ( •, co) is a probability measure of M and for every 
M, P(M, •) is measurable J ' ; (ii) for every M, P(M, - ) = ^ { ^ | 7 } 
with probability one. If such a P ( * , •) is defined for every M 
£<B(yi, • • • , yn), it is called the conditional probability distribution 
of the y/s relative to J. A related question is as follows. Let F denote 
a generic ^-dimensional Borel set. Is it possible to define a F, co func
tion p(Yj co) such that (i) for every co, £ ( • , co) is a probability meas
ure of Y and for every F, p(Y, •) is measurable J'; (ii) for every 
F, p{ F, co) = P{ [^i(co), • • • , 3>n(co) ] £ F} with probability one. If such 
a ƒ>( •, • ) exists, it is called the conditional probability distribution of 
yij ' • * » Jn in the wide sense relative to J, Now the main result is: 
while a conditional probability distribution in the wide sense always 
exists, a conditional probability distribution may fail to exist. The 
point is that an co set ilf £<B (yu • • • , yn) does not uniquely determine 
the Borel set F and if M = { [^i(co), • • • , y n (w)]£ F} is satisfied for 
F = Fi and also for Y= Y2 it does not necessarily follow that 
p(Yi, co)=£(F2 , co) with probability one. A sufficient condition for 
this, and so for the existence of a P(M, co), is e.g. that the range of 
[yi(co), • • • , 3>n(co)] be a Borel set; this condition is always satisfied 
if the y process is of "function space type" (see below). The lack of a 
conditional probability distribution however vitiates a couple of the 
author's more famous theorems (1938) (see the Bibliography for all 
references). A correct form of the extension theorem, due to Ionescu 
Tulcea, where the existence of conditional probability distributions is 
assumed, is given in the Appendix. Kolmogorov's version is not given 
explicitly but is implied by this theorem and the sufficient condition 
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stated above. The lack of a conditional probability distribution also 
necessitates a detour in proving certain results involving conditional 
expectations. One way is to use "representation theory. " This theory 
enables us, in the study of the family of (real) random variables 
xt, tÇzT, to replace the original basic space A by the space (of func
tion space type) 0 of all (real) functions of tÇzT. The point œ in 0 
ranges over all functions defined on T, and xt(o)) is mapped into 
xt(o>) which for & = £(•) has the value £(/). Thus xt(&) is a coordinate 
random variable in 0, namely "the tth coordinate of the point co." It 
is shown (in the Supplement) that such a measure-preserving trans
formation can be established, and we can therefore translate any 
problem involving co random variables into the corresponding one 
involving œ random variables. In the simplest case this amounts to 
e.g. considering two random variables x(œ) and y(o)) as the two co
ordinate random variables (of the basic point o) = (x, y)) in the 
Cartesian plane, thus substituting a 2-dimensional distribution func
tion for an abstract probability measure. Such an approach was in 
fact commonly used before the advent of the basic space 0, and has 
been tried again in a way by Cramer in his Mathematical methods of 
statistics (1945). Here it is treated as a device rather than the logical 
foundation. 

Chapter 2. Definition of a stochastic process—Principal classes 
(56 pages). A stochastic process is defined as any family of random 
variables Xt, t(~T. Let JV = ©(#*, MET) and J'T be its completion. If 
T is nondenumerable, many significant co sets, e.g. s u p ^ r #«(co)>X, 
in general do not belong to Jf

T. This circumstance was noted e.g. in 
Khintchine's Asymptotiscke Gesetze (1933) and called for a new 
foundation of the theory of stochastic processes beyond that given in 
Kolmogorov's Grundbegriffe. The author first gave such a theory in 
1937. He took £2 to be the space of all functions of tÇzT and his 
method was to enlarge Q by "adjoining" a set of outer measure one. 
This method is only briefly reviewed in the present book. The new 
method, first presented here, does not restrict 0 nor change JT\ 
instead the xt's are modified in such a way as to leave unaltered the 
probability of sets in JT and yet to acquire the desirable property of 
"separability. " Let QA be a system of linear Borel sets. The stochastic 
process is said to be separable relative to QA if there is a sequence tj 
of parameter values and an co set A of probability zero such that if 
-4E<i/f and if / is any open interval, the co sets {xtÇiA, tÇzIT} and 
{xtj(ui)ÇzA, tjGIT} differ by a subset of A. Two important cases are 
where zA is the set of all closed sets and where <zA is the set of all closed 
intervals; in the latter case the stochastic process is simply said to be 
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separable. Next, xt is called a standard modification of xt if for each 
t, the co set {#*(«) ^x*(co)} belongs to 7 r and has probability zero. 
Now the fundamental theorem (Theorem 2.4) is: Any stochastic 
process xt has a standard modification xt which is separable relative 
to the set of closed sets. (The xt's may take on the values ± <*>.) This 
new approach deprives the theory of some of its erstwhile measure-
theoretic halo. Thus, the proof of the above theorem depends on the 
clean-cut lemma: To each linear Borel set A there corresponds a finite 
or denumerable sequence tj such that P{#*n(co)G^4, n^l; xt(o))^A } 
= 0 for each J £ 7 \ Next the stochastic process xt is called measur
able if T is Lebesgue measurable, and xt(o)) considered as a (t, co) 
function is measurable in the product (/, co) measure. A simple suffi
cient condition is given for the measurability of a separable stochastic 
process. For a separable measurable stochastic process the probabil
ities of significant co sets such as the one mentioned above are de
fined and the integral fxt(o))dt may be interpreted as ordinary 
Lebesgue integrals of the sample functions, etc. In essence separabil
ity reduces the considerations of sample functions as to their bounded-
ness, continuity, etc. to those of their values on a denumerable set, 
and this will be repeatedly made use of throughout the book. The 
second half of Chapter 2 defines various stochastic processes to be 
discussed later together with their preliminary properties. Only one, 
the Gaussian process, is not discussed later for lack of further knowl
edge. I t is used to define "strict sense" and "wide sense" concepts. If 
a stochastic process has a certain property P in terms of means and 
covariances and if the corresponding Gaussian process with the same 
means and covariances has the corresponding but stronger property 
P' , then P ' and P are the corresponding strict and wide sense prop
erties. 

Chapter 3. Processes with mutually independent random variables 
(46 pages). This chapter belongs to the classical theory of probability 
and treats such familiar topics as the 0-1 law, convergence of series, 
the law of large numbers, infinitely divisible distributions, and the 
central limit theorem. The material is presented frequently with a 
view to later applications. The criterion for the convergence of a 
series of independent random variables is given not only in the 
Khintchine-Kolmogorov form known as the three-series theorem but 
also in Levy's form based on the idea of centering. In particular, con
vergence regardless of the order of terms is discussed, as will be 
needed later for processes with independent increments. Further 
criteria are given in terms of infinite products of characteristic func
tions, due to Wintner and others. The treatment of infinitely di-
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visible distributions is direct and deals immediately with com
ponents which are infinitesimal but not necessarily equi-distributed. 
The central limit theorem due to Feller and Levy is given in "finite 
terms," in the spirit of Levy. The crisp treatment of the last two 
topics is made possible by a deft use of certain inequalities which 
are implicit in previous work but carefully sifted and dispatched in 
Chapter 2. The chapter ends with the author's youthful (1936) dis
covery to the effect that if a gambler chooses his play (in a stationary 
sequence of independent games) without clairvoyance, his chances 
are unaffected. The formal proofs of such "obvious" statements seem 
to be a source of the author's inspirations. 

Chapter 4. Processes with mutually uncorrelated or orthogonal 
random variables (22 pages). There is a brief discussion of orthogonal 
series leading to Menshov's theorem. It is interesting to note that 
Menshov's condition for the strong law of large numbers of orthogonal 
random variables is within a factor of log2 n of Kolmogorov's for 
that of independent random variables. However, it should be pointed 
out that Menshov's condition is not sufficient for the convergence 
of the corresponding infinite series, as Kolmogorov's is. This can be 
shown by an example based on Menshov's own counterexample. 

Chapter 5. Markov processes—Discrete parameter (65 pages). The 
author defines a Markov chain to be a Markov process (discrete or 
continuous parameter) whose random variables assume values in a 
finite or denumerable set. Finite chains with stationary transition 
probabilities are first discussed. The ergodic properties are proved by 
studying the actual transitions, leading from various special cases to 
the general case. The choice of this method seems largely dictated by 
the generalization to the "general state space" which follows. This 
generalization is an exposition of Doeblin's Thesis (1937), fortified by 
measure theory, and strengthened and completed in important points. 
Here, as nowhere else in the book, the random variables assume 
values in an abstract space. (It is a tribute to the author's sense and 
conscience that he does not indulge in trivial generalizations.) Under 
an essential hypothesis (D), slightly generalized over Doeblin's, the 
decomposition of the space into a transient set and a finite number 
of ergodic sets each containing (possibly) cyclically moving subsets, 
and the convergence of the transition probabilities £(n)(?> •£)> uni
formly in £ and exponentially fast, are established. The main line of 
argument is an extension of the one used in the finite case, but it is 
considerably complicated by several measure-theoretic tricks and 
asides. While the tricks are Doeblin's, the asides, no less tricky to the 
average reader, are Doob's. Furthermore, the author adds a clarify-



194 BOOK REVIEWS [March 

ing discussion of the hypothesis (D). The details of all this are awe
some and smack of the ad hoc. I t may be wondered if there is a better 
approach. Doeblin in his last great paper on Markov processes (1940; 
listed in the book but not used) indeed treated a more general case1 

where (D) is not postulated and used an apparently more powerful 
method. However, to present this paper in a shape comparable to 
what is given here will undoubtedly require even more space and 
labor, and further work will be necessary to adduce a special case like 
that under (D). (The reviewer has attempted to do this, but is still 
far short of the goal.) The condition (D) is even sufficient for a central 
limit theorem (within a noncyclic ergodic set) for ]T)î f(xm) where 
{xny n^l} are the random variables of the Markov process, pro
vided that 2£[|/(#i) | 2 + 5 ] < oo for some positive S (Doeblin postulated 
a bounded/ . ) The proof of this old-fashioned theorem, in which the 
author does all the antics of a computationist, is one of the longest 
(11 pages) in the book. It depends on the exponential speed of the 
convergence of pin), and S. Bernstein's idea of grouping terms. It 
may be noted that the denumerable case is not treated separately 
but only by way of example under (D). As is well known there is a 
unified treatment of the finite and denumerable case, given by 
Kolmogorov in 1936 and now available in a somewhat different ver
sion in Feller's book. This treatment does not by itself yield the ex
ponential speed needed here for the central limit theorem, but in the 
denumerable case, there is a much simpler method (see Doeblin, 
Bull. Soc. Math. France vol. 66 (1938) pp. 210-220).2 

Chapter 6. Markov processes.—Continuous parameter (57 pages). 
Finite chains are treated first and a complete analysis of the be
havior of the (stationary) transition probabilities pa(t) at £ = 0 and 
t = oo is given. A description of the actual transitions follows, result
ing in the theorem that the sample functions of a separable chain 
satisfying lim^o Pa{t) — bij are almost all step functions. Next it is 
shown how to construct a chain with given p'it ( 0 + ) and py ( 0 + ) . 
In this chapter we miss more acutely the absence of a detailed discus
sion of the denumerable case. The fact is that in the continuous 
parameter case this already offers a great challenge. The recent work 
of Levy (1951) shows how much can be done, and how much remains 
to be done. A complete description of the sample functions becomes 

1 In a recent French book the authors stated to the effect that this extension pre
sents no "major difficulties" and that it is only short of being "absolutely immediate. " 
Anyone who reads the paper will see that these are gross understatements. 

2 Cf. a forthcoming paper by the reviewer, Contributions to the theory of Markov 
chains. II (to appear in Trans. Amer. Math. Soc.) 
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infinitely harder, but even a discussion of the simpler types along the 
lines of the author's 1942 and 1945 papers would have been valuable. 
In this connection it may be pointed out that a recent paper by 
Kolmogorov (Ucenye Zapiski (Matem.), Moskov. Gov. Univ. (4) 
vol. 148, pp. 53-59) completes certain points of the behavior of pa(t) 
at / = 0 (cf. Ex. 1, pp. 265 and 271 of the book); also the behavior of 
p%j(t) a t t= oo is established elegantly by Levy (1951), both for the 
denumerable case. The generalization to a continuous state space (a 
linear Borel set) is accomplished by Doeblin's method (1939), 
similar to the one used in the finite case. The material in §3 is the 
author's version of the Ito process, and is of very recent date. I t 
stems from the partial differential equations for the not necessarily 
stationary transition probabilities of Markov processes established 
by Kolmogorov in 1931 and studied by Feller (1936; 1945) and others. 
Ito was the first (1946; 1951) to show that these processes could be 
obtained constructively by solving the stochastic differential equa
tion (*) dx(f) = m [t, x{t) ]dt+cr [/, x{t) ]dy(t) where y(t) is the Brownian 
motion process with variance parameter one. This equation is inter
preted to mean x(t)'—x(a)=ft

am[s1 x(s)]ds+facr[sf x(s)] where the 
second integral (due to Ito) is defined in Chapter 9 of the book. I t is 
shown that under reasonable assumptions on m and a2 a separable 
Markov process x{t) exists whose sample functions are almost all 
continuous and which satisfies certain limit relations exhibiting m and 
cr2 as the instantaneous mean and variance. Conversely, given m and 
a*, if x(t) is a process whose sample functions are almost all continu» 
ous and which satisfies the stated limit relations, together with some 
auxiliary conditions, then x(t) is a Markov process and there exists 
(or can be adjoined) a Brownian motion process y(t) such that (*) 
is satisfied. This converse (Theorem 3.3) is new and made possible 
by the author's good work on martingales. 

Chapter 8. Martingales (99 pages). This is perhaps the most orig
inal chapter of the book, much of the material being published here 
for the first time. Levy in his 1937 book considered a class of de
pendent variables whose partial sums form a martingale, as a natural 
generalization of independent random variables in the sense that 
many classical limit theorems can be extended to them. (He discovered 
or anticipated a number of the results given here.) The name "martin
gale" was introduced by Ville (1939) who gave its present definition 
and obtained some preliminary results including the extension of 
Kolmogorov's inequality. I t was, however, the author, a little later 
and under the unprepossessing name "processes with the property £," 
who established martingale as a process per se, thus creating a new 
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branch of stochastic processes much as Wiener did with the Brownian 
motion process and Levy with the processes with independent incre
ments. A martingale is a stochastic process {xt, t(ET} such that 
E{\xt\ } <<*>, / £ T , and xtn = E{xtn+1\xtv • • • , xtn} with probabil
ity one whenever h< • • • <tn+i> If the = sign is replaced by ^ 
then it is called a semi-martingale. The success of martingale is 
rooted in its interpretation as a fair game: if xn is the gamblers 
fortune after the nth play, the above definition implies that his ex
pected fortune is always equal to his present one. This gambling in
terpretation brings with it the notion of a gambling system, greatly 
exploited here, which is fundamental to the theory and its applica
tion. The intuitive background is obvious: if the game is fair, then it 
remains so if the gambler examines his fortune only at certain mo
ments chosen without clairvoyance. Mathematically speaking, let 
Wi, ni2, • • • be a nondecreasing sequence of integer-valued random 
variables such that for every ju, the condition my=ju is a condition on 
the xt with / ^ ju. Let xy = xmy. Then the Xy process is said to be obtained 
from the Xy process by "optional sampling. " An important special 
case is that of "optional stopping": there is a random variable m such 
that my = Min (mtj). I t is intuitive that if Xy is a martingale (or semi-
martingale), then so is xy; it is, however, less intuitive that this is 
true only when certain conditions are imposed on x and/or m. In
deed were it not for the nuisance of such conditions a "winning sys
tem" would be possible and the author would have done better going 
to Las Vegas than writing this book. These conditions complicate the 
theorems which are often crammed (a style the author loves) but the 
reviewer will henceforth apply the excellent methods of optional 
sampling and skipping freely. The fundamental inequalities are the 
extension of Kolmogorov's mentioned above, and the following new 
one. Let Xy, 1 Sj^n, be a semi-martingale and let /3(co) be the number 
of times the sample sequence [xi(co), • • • , xw(w)] passes from below 
ri to above r2, then E(j*)^(r2-rù-1{E{\xn\} + \r1\). This result, 
due to Doob and Snell, is here proved neatly by "optional skipping" 
(skipping some of the differences xy — xy_i). All convergence theorems 
for semi-martingales follow from this inequality. For a forward semi-
martingale {xw, n^l} a condition is needed to ensure that lim^ooXn 
= Xoo exists (with probability one), and another to ensure that 
fxn, \SnS oo } is semi-martingale. For a backward semi-martingale 
{xn, n ^ — 1}, l ining x_n = x_oo exists always and {xn, — o o ^ w g - l } 
is a semi-martingale. (The connection of these results with the re
lated work of Andersen and Jessen is discussed in the Appendix.) 
Best illustrations of martingales are the conditional expectations 
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E{j3;|7n} f or a nondecreasing sequence of Borel fields Jn; in particu
lar £{s |y i , • • • , yn} and ^ { ^ | ^ n , yn+u • • • }, n^l. Various ap
plications are given: the 0-1 law; the theorem that for a series of 
independent random variables convergence with probability one is 
equivalent to convergence in probability; generalization of some in
equalities by Marcinkiewicz and Zygmund; theory of integration and 
differentiation; likelihood ratios; sequential analysis (WakTs equa
tion). But the most delightful one is undoubtedly a new proof of the 
strong law of large numbers. If y„ , n^l, are independent random 
variables, and yn = yi + * • • +yJi, this famous law follows from the 
fact that E{y{ \yn, yn+u • • • } is a (backward) martingale. The dis
cussion of continuous parameter martingales is partly straight
forward extensions of discrete parameter results and partly measure-
theoretic complications. The main theorem (Theorem 11.5) states 
that almost all sample functions of a separable semi-martingale xt, 
t&T, are bounded in [a, b]T if a, b^T; that they have finite left-
(right-) hand limits at every £ £ T which is a limit point of T from the 
left (right); and that their discontinuities are jumps except perhaps 
at the fixed points of discontinuity. This is proved by the two funda
mental inequalities mentioned above and has several applications in 
the book. The discussion of optional sampling is peculiarly Doobian 
and is an example of painstaking modern rigor in probability theory. 
The chapter ends with applications to sample function continuity of 
Markov processes and processes with independent increments, and 
an important theorem (originated with Levy) which states that if 
{xt} is a martingale whose sample functions are almost all continuous 
and such that {o$ —1\ is also a martingale, then the process is a 
Brownian motion process. This theorem is used in Chapter 9 in con
nection with the Ito process. 

Chapter 8. Processes with independent increments (34 pages). 
There is a brief discussion of Brownian motion process including the 
so-called "reflection principle," continuity of almost all sample func
tions and the expression of the variance as a stochastic limit (Levy). 
Tha t the author did not choose to enter into more details of this too, 
too popular process may be partly explained by the existence of a 
"profound study" in Levy's 1948 book. Some readers will however 
miss the inclusion of material from the author's 1942 paper on the 
Ornstein-Uhlenbeck process rather than the desultory §3, obviously 
a concession to custom. There is a discussion of several useful formula
tions of the Poisson process and an application to the macroscopic 
equilibrium of molecular and stellar phenomena. (We hope physicists 
will appreciate the neat and yet rigorous derivation there!) The rest 
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of the chapter is the author's version of what has been variously 
called "differential process," "additive process" and "integral with 
independent random elements," and is now renamed as given in the 
title. This theory, one of the crowning achievements in modern prob
ability, is a natural generalization of the "addition of independent 
random variables" from the discrete to the continuous parameter case. 
I t received its definitive form in the hands of Levy (1934) and was 
further developed in his 1937 book. The re-discretization of this 
process, begun by Khintchine and carried on mainly by the Russian 
school, led to the ramified theory of infinitely divisible distributions. 
This latter theory, though of great importance in itself, must be re
garded as a step toward retrenchment from the standpoint of sto
chastic processes. I t is clear from Levy's writing that he has always 
regarded the subject as one belonging to a (continuous-parameter) 
process and it was under this guidance that he was led by his extraor
dinary intuition to the discovery of all the main facts of the theory. 
That Khintchine and later authors chose the more formal analytical 
approach must be partly due to the fact that at the time the founda
tions of stochastic processes were hardly laid (cf. the last-mentioned 
dates with that of Khintchine's book cited in paragraph 2 above), 
and that mathematicians endowed with less intuition feared to tread 
the ground broken by Levy. Thus we should indeed be grateful to the 
author for this account of Levy's theory, taken strictly in the spirit 
of its creator, and embellished with the author's own reflections. Such 
is e.g. his construction of a process whose (almost all) sample func
tions have prescribed fixed points of discontinuity but are otherwise 
continuous. There is also a detailed discussion of the centering tech
nique based on the results of Chapter 3. The final characterization of 
the sample functions of a separable centered process is obtained as 
a fast application of martingale theory, by noting that %% 
= ein(xt-xa) J £ |eiM(*r-*0)J i s a martingale. Hence they have the same 
continuity properties as those of a martingale given in the preceding 
paragraph. 

Chapter 9. Processes with orthogonal increments (27 pages). Inte
grals of the form fA$(t)dty(t), where {y(t), tÇ.T) is a process with 
orthogonal increments and A £ 7\ are defined. I t is followed by a dis
cussion of processes which are Fourier transforms of each other, a 
subject which has been much blown up by "abstract" people. A more 
general integral of the form / ^ $ ( / , o))dy(t) is defined where the inte
grand now depends also on œ and y(t) is a martingale, under appro
priate conditions. These definitions specialize to Ito's if y{t) is a 
Brownian motion process. The extension to a martingale y(t) carries 
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with it a closure property in the sense that the indefinite integral 
x(t) ~fa$(s, o))dy(s) is then also a martingale and we can consider 
integrals of the form ƒ*(/ , co) dx(t). Furthermore the x(t) process has 
nice properties, in particular, its sample functions are almost all con
tinuous if those of the y(t) process are. If so and if roughly speaking 
the variance checks, then the y(s) process in the integral representa
tion of x{t) may be taken to be the Brownian motion process. These 
results are used in the discussion of the Ito process in Chapter 6. 

Chapter 10. Stationary processes—discrete parameter (55 pages); 
Chapter 11. Stationary processes—continuous parameter (53 pages). 
I t is well known that the theory of strict sense (wide sense) stationary 
processes is equivalent to that of measure preserving (isometric, uni
tary) transformations. A detailed discussion is given to clarify the 
various notions of point, set, and random variable transformations in 
order to make this equivalence exact. G. D. BirkhofFs ergodic theo
rem thus becomes the strong law of large numbers for strictly sta
tionary processes and is proved by F. Riesz's method. The usual corol
laries are given. Turning to the wide sense stationary processes there 
is the inevitable identification of covariance function with positive 
definite function (Herglotz, Bochner, Khintchine) followed by spe
cific examples of such processes to show the various possibilities. The 
spectral representation of the process (corresponding to the Hubert 
space theory of von Neumann-Wintner and Stone) is given by 
Cramer's elegant method of setting up a distance preserving cor
respondence between the xn's (the random variables of the process) 
and the numerical functions e2rinX. von Neumann's ergodic theorem, 
namely the law of large numbers in Z,2, is now proved easily by this 
representation. A form of the strong law of large numbers (con
vergence with probability one), due to Loève and others, is proved 
under an order restriction. The author adds his own theorem on the 
convergence of (n + 1)"1 X)?-o %v+j%j to the covarience R(v), and re
lated things. There are sections on "moving averages," "linear opera
tions" (in the continuous parameter case they include differentiation 
and integration in L2) and rational spectral densities in e2*a. The 
continuous parameter case of these results is pretty much the same 
and both the reader and the reviewer, though not the author, may be 
spared the repetitious details. §11 in Chapter 11, on processes with 
stationary (wide sense) increments, is an exposition of Kolmogorov's 
theory on "curves in Hubert space." The material in these two 
chapters, hallowed by tradition, somehow wears a worn look. The 
next generation of students of probability, who will read this prob
ability version before its traditional counterpart, will probably find 
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it more refreshing. 
Chapter 12. Linear least squares prediction—stationary (wide sense) 

processes (39 pages). This chapter "is somewhat out of place in the 
book, since it discusses a rather specialized problem." The object of 
study is the wide sense conditional expectation E{xn+*>| • • • , 
Xn-i, ocn}, and is seen to reduce to linear approximations in L2 with an 
arbitrary weighting function FÇK), the spectral distribution function 
of the process. The corresponding analytic problem was discovered 
by Szegö in 1920; and the subject was treated by Wold and Kolmo-
gorov before Wiener rediscovered and popularized it in this country. 
The present exposition claims to have made the material readily 
available to the American reader, in the usual language of probability. 

The Supplement (24 pages) includes a "treatment of various as
pects of measure theory with which the ordinary reader may not be 
familiar." The section headings are: fields of point sets; set functions; 
measure-preserving transformations. An Appendix (13 pages) col
lects references to the literature and historical remarks. A Bibliog
raphy (8 pages) collects the articles and books referred to in the Ap
pendix. Relevance rather than excellence seems to be the criterion for 
inclusion there. There is a subject index at the end. 

The following is a general appraisal of the book. The foundation of 
the theory of stochastic processes is largely the author's own contribu
tion, some of which is published here for the first time. For the last 
IS years the author has been almost alone in the treatment of 
stochastic processes from the purely probability or measure theory 
point of view, as distinct from the Laplace-Fourier-transform, or dif
ferential-integral-equation, or Hilbert-Banach-space standpoints. For 
him the study of a stochastic process is the study of its sample func
tions in their own right, not as the shadows behind analytical expres
sions nor in their weak-topological collectivizations. This book is an 
eloquent testimony to the success of this direct approach and will 
doubtless inspire and guide its further development. 

Although much of the material on special processes is in the litera
ture, the author's accounts of the results of Levy, Doeblin, and others 
are far from being routine expositions. Indeed, the mathematical 
world is indebted to a man of the author's stature for rendering such 
unenviable services. He is apparently as willing to interpret the work 
of others as to give his own. This modesty is refreshing, although the 
reader may have been thereby deprived of some more thorough-going 
measure theory and several other interesting topics of the author's 
own which have been alluded to in the preceding paragraphs. 

A few words must now be said of the style, inasmuch as the author 
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enjoys, justly or not, a reputation on it. In judging the readability of 
this book, it must be borne in mind that it is frequently the sub
stance rather than the form which makes for difficulty. It seems true 
that the author has been somewhat lax in allowing for human weak
nesses on the part of the reader in his early writings, but in this book 
he seems to have made a sincere effort to be more accommodating. 
An example is his considerable pains in handling sets of measure zero, 
putting the horse before the cart in phrasing them and showing their 
dependence sometimes (cf. Theorem 3.1 of his 1937 paper). There is 
also a minimum amount of handwaving except that he occasionally 
refuses to be drawn out on measure theory. An instance where this 
seems unwarranted is as follows. On p. 51 a most trivial sort of 
example is mentioned but the reader is immediately waved off to the 
end of that section for further enlightenment. When he finally reaches 
p. 70 after a rugged 20 pages, or even if he turns at once to the 
promised place as this reviewer did, he finds only a number of state
ments of the "it-is-easy-to-see" type. Admittedly they are easy 
enough if the reader knows what's going on, but this is precisely 
what he (the average one!) does not at this stage of the game. E.g. 
it would take only half a page to substantiate the statement on p. 70 
that "If X contains a second point, the xt process is neither separable 
nor measurable," but this the author steadfastly refused to do. In
deed nowhere in the discussion did he ever indicate a proof (of the 
type attributed to Halmos) that a certain co set may not be measur
able. Such trivial omissions may cause some readers a disproportion
ate amount of labor (and complaint). However, let it be stated that 
this book should on the whole be quite accessible to a determined 
reader. 

No serious error has been found by this reviewer, but there are 
some minor errors and a number of misprints. We mention only the 
following: p. 54, The last line is incorrect; part (ii) of Theorem 2.2 is 
proved only if "in probability" is substituted for "with probability 
one" in line 20 (noted by J. G. Wendel); p. 64, line 10: another term 
like 2ôf$b~a\f(t) | at is needed at the end; p. 285, line 2 and later refer
ence to the formula: read h2 for Â3/2; p. 357, the statement "If 
tÇîTi(n) • • • " needs minor fixing. A longer list has been turned over 
to the author. 

Finally, this is an honest mathematics book. It is not designed to 
sell stochastic processes cheap. I t takes all sorts to make stochastic 
processes, but let Mr. Doob write only for the sake of mathematics. 
He has done it. 

K. L. CHUNG 


