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1. Introduction. The classical groups referred to here are the full 
linear, symplectict orthogonal, and unitary groups. These are groups of 
linear transformations operating on a finite-dimensional linear vector 
space over a (commutative) field. In order to save time, we shall not 
repeat the usual definitions of the groups but shall proceed directly 
to definitions1 which are meaningful for the infinite- as well as the 
finite-dimensional case. At the same time, the condition that the co­
efficient domain be commutative will be relaxed and semi-linear as 
well as linear transformations will be admitted. 

The main objectives in this address are to describe the structure of 
isomorphisms between two such generalized classical groups and to 
outline some of the methods used in studying these isomorphisms. 
It turns out that the isomorphisms are, roughly speaking, induced by 
isomorphisms between the underlying vector spaces on which the 
transformations act. 

In the case of the full linear group in finite dimensions, this prob­
lem (for automorphisms) has been considered by Schreier and van 
der Waerden [ l2] 2 when the coefficient domain is commutative, and 
by Dieudonné [2] when the coefficient domain is not commutative. 
Dieudonné has also considered the other classical groups in the 
finite-dimensional case. Mackey [9] has considered the problem for 
the multiplicative group of all bounded linear transformations with 
bounded inverses on an infinite-dimensional real normed linear space. 
The case studied by Mackey is included in our generalization of the 
full linear group. 

The method of attack employed here is the standard one of in­
vestigating the way in which involutions are transformed by the 
isomorphisms plus an application of the fundamental theorem of 
projective geometry. However the special methods used in the in­
vestigation are refinements of methods introduced by Mackey in 
the paper mentioned above. The main results outlined are discussed 
in detail for linear transformations in [lO] for the full linear case 

An invited addressed delivered before the New York meeting of the Society, 
October 28,1950, by invitation of the Committee to Select Hour Speakers for Eastern 
Sectional Meetings; received by the editors August 6, 1951. 

1 These definitions are given in the next section. 
2 Numbers in brackets refer to the bibliography at the end of the paper. 
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and in [ l l ] for the other cases.8 The extension to semi-linear trans­
formations is sketched here for the first time. 

2. Definitions. We consider first the notion of dual linear vector 
spaces as introduced by Dieudonné [é] and Jacobson [8]. Let 36 and 
£* be left and right linear vector spaces respectively over a division 
ring (skew field or sfield) V. Assume given a bilinear functional 
(x, x*) defined on 36X36* to D which is nondegenerate in the sense 
tha t (x, x*) = 0 for all x (resp. all x*) implies x* = 0 (resp. x = 0) ; then 
36 and 36* are said to be dual relative to (x, x*). If 36 denotes the right 
vector space of all linear functionals on 3c and if (x, x) denotes the 
value of the functional x a t x, then 36 and 36 are evidently dual rela­
tive to (x, x). In general, if 3Ê and 9£* are dual relative to (x, x*), then 
(x, x*), for fixed x*, defines a linear functional on 36. Hence 36* can 
be regarded as a subspace of 36. Similarly, 36 can be regarded as a 
subspace of 36*. In case 36 is finite-dimensional, we necessarily have 
X*=f. 

Let 96 be a left linear vector space over D and let T be a trans­
formation defined on 36 to 36. The transformation T is said to be semi-
linear provided it is additive and there exists an automorphism 
a-^aT of O such that (ax)T = aT(xT) for all « G O and x(536. Now, if 
36* is dual to 36 relative to (x, x*), then (xT, x*)7""1 defines, for fixed x*, 
a linear functional on 36. If for every x* there exists y* in 36* such 
that (xT, x*)T - 1 = (x, 3/*), then x*T*=y* defines a semi-linear trans­
formation r * on 36* with associated automorphism r" 1 of D. When T* 
exists, it is uniquely determined and is called the adjoint of T. Simi­
larly, T is called the adjoint of T* and we write T— (T*)*. If T and 
5 are semi-linear on 36 with associated automorphisms r and a of D, 
then TS is a semi-linear transformation on 36 with automorphism ra. 
Also, if r * and 5* exist, then (T\S)* exists and is equal to 5*2"*. If 
J1* exists and T has an inverse T~l, then (T""1)* exists and is equal to 
( r * ) _ 1 . We can therefore consider the multiplicative group 
o£(36, D, 36*) of all semi-linear transformations on 36 which have ad-
joints as well as multiplicative inverses.4 These groups and certain 
subgroups of them provide us with our desired generalizations of the 
full linear group. Included here will be the group of all linear trans­
formations in *£(3£, D, 36*). The latter group obviously reduces to the 

3 In the papers [10, 11 ], the group operation is taken as the circle operation, 
A o J3 = A-\-B-ABy instead of multiplication as is done here. However, the two 
groups obtained are isomorphic under the mapping A->I—A, where I is the identity 
transformation. 

4 Strictly speaking, the notation « (̂36, 0,36*) should exhibit the bilinear functional 

file://-/-B-ABy
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classical full linear group if 3£ is finite-dimensional and D is a field. 
For want of a better terminology we shall refer to the groups con­
sidered here as "full linear groups," although they may contain semi-
linear transformations and need not exhaust <£(36, £>, 36*). 

Next we consider the notion of a self-dual linear vector space. 
Again let 36 be a left linear vector space over the division ring D. 
Furthermore, assume given an involution a—»ce* (that is, an anti-
automorphism of period two) in V and a functional (x, y) defined 
on 9ÊX36 to O and called a scalar product with the following properties: 
(1) (x, y) is linear in x for each y. (2) (x, y) = 0 for all y implies x = 0. 
(3) (x, y) =e(y, x)*9 where €= ± 1 is a constant independent of x and 
y. Under these conditions 36 is said to be self-dual. In fact, if X* 
denotes a right linear vector space over D which is identical with 
36 except with right multiplication by scalars defined by xa = a*x, then 
H and 36* are dual relative to (x, y). Two vectors x, y in 36 are said to 
be orthogonal, written xl.y> provided (x, y) = 0. If 9ft is a subspace of 
36, then 9ftx will denote the set of all vectors in 36 each of which is 
orthogonal to every vector in 9ft. Evidently 9ftx is a linear subspace 
of 36 and is called the orthogonal complement of 9ft. A subspace 9ft 
is said to be isotropic provided 9ftO9ft-V(0). If gftcgft-1-, then 9ft is 
said to be totally isotropic. The maximum possible dimension for a 
totally isotropic subspace of 36 is called the index of 36. A vector x 
such that (x, x) = 0 is called an isotropic vector. In general, even when 
a subspace 9ft is nonisotropic (that is, 9ftn9ftJ- = (0)), we do not 
have 36 = 9ft©9ft±. On the other hand, if 9ft is finite-dimensional and 
nonisotropic, it is true that 36 = 9ft©9ftx [ l l , Lemma 1.1 ]. 

Self-dual spaces fall naturally into two classes. In the first, every 
vector is isotropic, which implies that D must be a field with identity 
mapping as involution and € = — 1. These spaces are called symplectic. 
On the other hand, if there exist nonisotropic vectors in the space, a 
trivial modification of the involution and scalar product yields € = 1. 
In this case the space is called unitary. I t will be assumed hereafter 
that the self-dual spaces considered are either symplectic or unitary 
(that is, if 36 is not symplectic, then € = 1). 

Now let T be a semi-linear transformation on the self-dual space 36 
with r as the associated automorphism of €>. It is natural to call a 
second transformation T* on 36 the adjoint of T provided {xT, y) 
= (x, yT*)T for all x and y [7]. If T* exists, then it is unique and is a 
semi-linear transformation with a—»a*T_1* as the associated auto­
morphism of D. Suppose in addition that IT has the property T* = T~l. 
Since T~l is a semi-linear transformation with automorphism r_ 1 , it 
follows that r""1 = *r~"1*, or what amounts to the same thing, r com-
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mutes with the involution (a T *=a* r , for all a). Furthermore, 
(xT> yT) = (x, y)r for all x and y. The set of all semi-linear transforma­
tions on 36 such that T* = T~l constitutes a group under multiplication 
which will be denoted by «£*(3£, D), in the general self-dual case, and 
by o£s(#f £*) o r <Cu(%> O) according as 36 is symplectic or unitary. 
These groups and certain subgroups of them constitute the desired 
generalizations of the classical symplectic and unitary groups. In the 
unitary case when O is a field with involution a*^a, we obtain 
generalizations of the classical orthogonal groups which may be 
denoted by </jo(%, D). Thus, for our purposes, the orthogonal 
groups are included among the unitary groups so do not require 
separate treatment. 

In order to simplify our discussion, we shall assume throughout that 
the vector spaces involved are infinite-dimensional, although every­
thing goes through without change for sufficiently large finite 
dimensions. I t will also be necessary for us to restrict attention to 
characteristic different from two and, in the unitary case when the 
index is not zero, to avoid the finite fields GF(3) and GF{9) as coeffi­
cients. If the groups considered contain only linear transformations, 
then the exclusion of the field GF{9) in the unitary case can be 
dropped. These are the only restrictions imposed in the discussion 
which follows. 

3. Involutions. Let ï be a left linear vector space over the division 
ring D and let T be a semi-linear transformation on 36 for which 
T2 = I. Such transformations are called involutions and play an im­
portant role in the proofs of the isomorphism theorems to be stated 
below. Observe that the automorphism r of D associated with an in­
volution T is of period two (T2 = 1). Since X is not of characteristic two, 
every involution T determines a unique direct sum decomposition 
36 = 9ft©9t of the additive group of 36 such that xT~x for x in 9ft and 
xT = —x for x in 9Ï; that is, J" coincides with the identity transforma­
tion I on 9ft and with — I on 31. The components 9ft and 91 are called 
the subspaces of T although they are linear subspaces in H if, and 
only if, T is a linear transformation. Observe that 9ft = 36(J+jT) and 
9ï = £(I—T) and, for x in X, the decomposition x — m+n with m in 
9ft and n in % is given by m — (x+xT)/2 and n = (x — xT)/2. I t is 
easy to verify that an arbitrary additive transformation Z commutes 
with the involution T if, and only if, 2KZcg» and WZQW. 

Let T be a linear involution with subspaces 93Î and 5ft. Then T is 
called minimal if 9Î is one-dimensional, maximal if 9ft is one-dimen­
sional, and extremal if either 9ft or 5ft is one-dimensional. Note that T is 
maximal if, and only if, — T is minimal. A linear involution belongs 
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to <£(#, O, 36*) and is minimal if, and only if, it has the form xT 
= x — 2(x, v*)u, where wEX, z>*EX*, and (u, v*) = 1. The one-dimen­
sional subspace6of Tis [u] and the other subspace of T is a maximal 
linear subspace of 36 equal to the zero manifold of the functional v* 
and is thus determined uniquely by the one-dimensional subspace 
[v*] of 36*. In this way there is associated with each extremal involu­
tion in «£(36, ©, 36*) a pair of one-dimensional subspaces [u] in 36 
and [z;*] in 36* such that (u, u*) = l. Conversely, to each such pair 
[w], [z>*] there corresponds two extremal involutions (a minimal in­
volution and its negative) in «£($, D, 36*) having [w] and the zero 
manifold of v* as subspaces. Evidently there are many extremal in­
volutions having a common subspace; however two such involutions 
commute if, and only if, they have the same subspaces and are thus 
equal except for sign. 

If % is a self-dual space and T is a linear involution such that 
T*=*T9 then T is in o£*(36, O) and the corresponding decomposition 
of H has the form Ï = SDÎ09ÎÎ-L. Conversely, if X = 9ft 09ft1 and T is 
an involution with subspaces 9ft and 9KX, then T is in o£*(3Ê, D). I t is 
obvious that the subspaces associated with a linear involution in 
*£*(36, D) must be nonisotropic. An involution in -£*(£, D) is minimal 
if, and only if, it has the form xT~x — 2(x, u)(u, u)~xu, where u is a 
fixed element of 36. Hence c£s(36, V) contains no extremal involutions 
according to our definition. On the other hand, although a sym-
plectic space contains no one-dimensional nonisotropic subspaces, it 
is true that there exist many two-dimensional subspaces which are 
nonisotropic. In fact, every isotropic vector in an arbitrary self-dual 
space can be embedded in a nonisotropic two-dimensional subspace. 
Since 36 = 9ft ©9ft1, for 9ft a finite-dimensional nonisotropic sub-
space of 9£, it follows that «£s(36, O) contains linear involutions with 
two-dimensional subspaces. Therefore, if T is a linear involution in 
o£s(3£, O) with subspaces 9ft and 9ftx (xT = x for #£9ft and xT= —x 
for xÇz<$lL), then it is appropriate to define T to be maximal or 
minimal according as 9ft or 9ft1 is two-dimensional and extremal in 
either case. 

In order to handle nonlinear involutions a reduction, which is sug­
gested by an argument used by Dieudonné [2, p. 9] in a slightly dif­
ferent situation, is required. Let 36 be a left linear vector space over £> 
and let T be a nonlinear involution in 36 with associated automorphism 
r o f D ; then T J ^ I and r2 = 1. Define D r as the set of all £ in O such 
that £r = £ and ©T' as the set of all rj in D such that r; r= — 77. I t is 

5 The one-dimensional subspace of 36 which contains a nonzero vector u will be 
denoted by [«]. 
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obvious that VT is a division subring of V and that D T n © / =(0) . 
Also D = D T 0D T ' ; in fact, for every a in O, a = £+?7, where § 
— (a:+aT) /2, 77 = (a —a r) /2, £ is in DT, and rç is in DT ' . If 77 is an arbi­
trary nonzero element of © / , then it is easy to see that D r ' = rjVr 
=0Trj which shows that O has (right and left) dimension two over DT. 
Now 36 can be regarded as a linear vector space over OT in which T 
becomes a linear involution. Hence the subspaces 5DÎ and 9? of T are 
linear subspaces of 36 over DT. Let 77 be a fixed nonzero element of D r ' . 
Then the mapping x—>rjx is a one-to-one mapping of $)? onto 9Î 
which is semi-linear with respect to DT. Thus 9K and $1 have the 
same dimension over DT, which is equal to the dimension of 36 over 
D. If 36 is self-dual and T is in £* (£ , D), then a*r = <*'*, for all a in 
©, so that © * = D r . In other words, £•—>§* is an involution in £)T. 
Moreover 36, as a linear vector space over DT, is self-dual relative to 
the new scalar product [x, y]~ [(x, j ) + (x, y)T]/2. Clearly T*( = T) 
is the adjoint of T with respect to the scalar product [x, y], which 
implies that 9t is the orthogonal complement of Wl in 36 with respect 
to [x, y]. Since (xT, yT) = (x, y)r for all x, 3/ in 36, it follows that (x, y)T 

= (x, y) for x, 3/ both in either 93Î or 9t. Hence the two scalar products 
(x, y) and [x, y] coincide in 9DÎ and Sft. The above discussion, in a 
sense, reduces the study of nonlinear involutions to the study of 
linear involutions and makes available methods based on linearity 
of the subspaces of the involution. 

The next problem here is to give a group theoretical characteriza­
tion of extremal involutions. First let ^ denote an arbitrary set of 
involutions in the group under consideration and denote by c(13) the 
set of all those involutions in the group which commute with each 
element of CB. Now let T be an arbitrary involution in the group and 
denote by VT the maximum number of elements which can occur in 
c(c(T, T')) where T' is any involution which commutes with T. 
Also denote by v the maximum value which VT can have. The follow­
ing lemma, whose proof will be omitted, enables one to evaluate the 
quantities v and VT. 

LEMMA 1. Let Ti be an involution with subspaces Wu ^Sl% ( ^ l , 2) 
and assume that Ti and T2 commute. Set ^ i = 3)îin$DÎ2, <$2 = $D?in9fl2, 
^ 3 = % n i 2 , ?4 = % n % . Observe that 36 = $ 1 0 ^ 2 ©$3 0 ^ 4 and de­
note by Pi the projection of 36 onto $»• determined by this decomposition 
of 36. Then every T in c(c(Th T2)) is of the form T= S € ^ * where 
each €»•= ± 1. 

If the Ti and T2 in Lemma 1 are linear involutions, then each tyi is 
a linear subspace of T£ and X) € ^ \ ' is a linear involution which belongs 
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to the group under consideration for every choice of €* = ± 1. If none 
of the Pi is zero, it follows in this case that the number of distinct 
elements in c(c(Ti} T2)) is equal to 16. It is not difficult to construct 
linear involutions 7\ and T2 in the group such that no Pt- is zero; 
hence we obtain p = 16. If either Ti or T2 is not linear, then in order 
for ^€iPi to be a semi-linear transformation the coefficients e* can 
no longer be independently chosen; in fact, it turns out that c(c(Ti, T2)) 
contains only the elements ± 7 , ± 7\, ± T2l ± 7\7Y This same result 
holds if either 7\ or T2 is extremal or if either T\ or T2 is equal to ± I. 
These remarks lead to the following lemma. 

LEMMA 2. (i) T linear but not extremal is equivalent to VT~V. (ii) 
T either extremal or nonlinear is equivalent to VT=V/2. (iii) T equal to 
± / is equivalent to VT — V/A. 

The above lemma gives a group-theoretic characterization of non-
trivial linear involutions which are not extremal but does not dis­
tinguish between extremal involutions and nonlinear involutions. On 
the other hand, it is not difficult to see that any extremal involu­
tion can be written as a product of two commuting linear non-ex­
tremal involutions. This remark plus Lemma 2 gives the desired char­
acterization of extremal involutions. 

LEMMA 3. An involution T is extremal if, and only if, VT = V/2 and 
there exist involutions T\ and T2j with J>T1 = PT2 — V, such that T=TiT2 

- r27v 
This criterion for extremal involutions is valid for any subgroups of 

-£(X, O, 3Ê*) or <£*(#, O) provided only that the subgroups contain 
all minimal involutions. Such subgroups need not contain — ƒ in 
which case it turns out that v = 8 instead of 16. Included here are the 
groups of linear transformations for which the above discussion be­
comes considerably simpler. The criterion also applies for finite 
dimensions at least equal to ten in the symplectic case and to five in 
the other cases. However, it breaks down for lower dimensions since 
an extremal involution can no longer be written as a product of non-
extremal linear involutions. On the other hand, if the groups contain 
only linear transformations, then Lemma 2 gives a criterion for ex­
tremal involutions which applies for dimensions greater than six in 
the symplectic case and greater than three in the other cases. For 
lower dimensions, the linear involutions are all extremal. 

We pass now to the isomorphism theorems and consider the full 
linear case first. 

4. The full linear case. Consider two groups of type «£(3Ê, D, 36*) 
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and £ ( 9 , £, §)*) and let Ç,X be subgroups of .£(.*. ° . 36*), «£($, 6, g)*) 
respectively which contain all minimal involutions in each case. Also 
assume given an isomorphic mapping G—>g{G) of Ç onto 3C and 
denote by £o the multiplicative group consisting of the nonzero 
elements of £. The following theorem gives the form of g in this 
situation. In order to state the theorem, some definitions are re­
quired. First, a one-to-one mapping $ of 36 onto §) is called an 
isomorphism of 36 onto g) if it is additive and there exists an iso­
morphism a-*a* of V onto £ such that (ax)$ =a*(x<&) for all a in D 
and x in 3E. Similarly, a one-to-one mapping * of 36 onto §)* is called 
an isomorphism of 36 <W/Ö 2)* if it is additive and there exists an anti-
isomorphism <j> of O onto 6 such that (ax)^ = (x^)a<t>. Next, a map­
ping G—*x(G) of (ƒ into £o is called a crossed character of Ç in £o [ l ] 
if there exists a homomorphism G-^a(G) of (^into the group of auto­
morphisms of £o such that x(GiG2) ~x(Giy(Gi)x(G2) for all Glf G2 in Ç. 
If cr(G) = 1 for all G, then x(G) is called a character of Ç in £0. 

THEOREM I. The isomorphism g tes, /#r all G in Ç, one of the two 
forms: (i) g(G) =x(G)$-lG®, (ii) g(G) = (*~1G*x(G))*, *tóm? 3> ** 
case (i) is an isomorphism of 36 0w/0 §) # ^ ^w £#se (ü) is an isomorphism 
of 36 onto §)* awd x(G) is a crossed character* of Ç in £0. 

COROLLARY. If the groups consist of linear transformations, then 
x(G) is a character of Ç in the center of £0. 

The proof of Theorem I is too long to be given in detail here;7 how­
ever it is possible to outline the main ideas which rely heavily on 
methods introduced by Mackey [9]. 

By the group-theoretic characterization of extremal involutions 
given in Lemma 3 of the preceding section, it follows that g estab­
lishes a one-to-one correspondence between extremal involutions in 
Ç and in 3C. In order to use this fact it is necessary to formulate a 
group-theoretic criterion for two (noncommutative) extremal involu­
tions to have a common subspace. This is given in the next lemma, 
whose proof will be omitted. 

LEMMA 4. Two noncommutative extremal involutions Ti and T2 have a 
common subspace if, and only if, c(c(Ti> T2)) =c(c(Ui, U2)) for every 
pair Uu U2 of noncommutative extremal involutions in c(c(Ti, T2)). 

Now let [x] be an arbitrary one-dimensional subspace of 36 and 
6 The homomorphism G-*<r(G) of Ç into the group of automorphisms of £0 is 

given by <r(G) «7 ' where 7' is the automorphism of £ associated with the semi-linear 
transformation g(G). 

7 See [lO] for a detailed proof in the case of groups of linear transformations. 
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consider two noncommutative extremal involutions Ti, T2 which 
have [x] as a common subspace. Then, by Lemma 4, the extremal 
involutions Q(TI), Q(T2) also have a common subspace which, however, 
may or may not be one-dimensional. On the other hand, it is pos­
sible to show that the subspace common to 0(^1) a n d Q(T2) is inde­
pendent of the choice of 7\, T2 and is, or is not, one-dimensional inde­
pendently of [x]. In case the subspace common to ö(Ti) and 0(^2) is 
one-dimensional, we denote it by [x]' and so obtain a one-to-one 
correspondence [#]<->[#]' between the one-dimensional subspaces of 
36 and those of g). In the other case, the subspace common to ô(Ti) 
and ô(T2) is a maximal subspace of §) which is the zero manifold of a 
linear functional 3/* in §f)*. In this case we define [#]'=[;y*] and 
obtain a one-to-one correspondence between the one-dimensional 
subspaces of 36 and those of §)*. Now an application of the funda­
mental theorem of projective geometry gives an isomorphism <ï>, of 
X onto §) in the first case and of 36 onto §)* in the second case, such that 
[x$] = [x]' for all x in 36. The isomorphism $ has the additional 
property that it maps the subspaces of an extremal involution T in 
Ç onto the subspaces of g(T) or ô(T)* according as $ maps 36 onto 
g) or §)*. I t follows that if T is an extremal involution, then g(!T) 
= ±$~1T$ in the first case and $(T) = ±($~1T$)* in the second. 
Thus Ö(JT) has the indicated form for extremal involutions. That 
g(G) has the desired form for all G is a consequence of the obvious 
fact that the minimal involutions constitute an invariant subset of 
*£(36, O, 36*). This can be seen in the following way for the case in 
which $ maps 36 onto $ . Define G<r = *g(G)*"1 . Then G-*G« is an 
isomorphism of Ç onto another subgroup of «£(36, D, 36*) such that 
Ta = ± T when T is a minimal involution. Furthermore, if T is 
minimal, then so also is GTG~~l for arbitrary G in *£(#, D, 36*). 
Hence G<rT(Gff)-1 = GTG~1 for all G in Ç. I t follows that xGT = xG 
if, and only if, xG<TT = xG*. On the other hand, if #1 and x2 are linearly 
independent elements of 36, then there exists a minimal involution 
T such that XiT = Xi and x2T^x2. Therefore xG* and xG are linearly 
dependent for all x. This implies that G* is equal to a scalar multiple 
of G. Returning to g(G), we obtain case (i) of the theorem. That %(G) 
is a crossed character in £0 is immediate from the fact that G—»g(G) 
is a group isomorphism. The case in which $ maps 36 onto §)* is 
treated similarly and leads to case (ii) of the theorem. 

The above theorem is true and the proof outlined here applies also 
in the finite-dimensional case provided only that the vector spaces 
have dimension at least equal to five. If the groups contain only 
linear transformations, then the minimum dimension five can be 
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replaced by three. The finite-dimensional case for groups of linear 
transformations is due essentially to Dieudonné [2, pp. 7, 15] who 
considered automorphisms rather than isomorphisms. Dieudonné also 
disposes of the case when the characteristic is equal to two. Hua 
[6, p. 101 ] extended the Dieudonné results to dimension two. When 
the coefficient domain is a (commutative) field, these cases follow 
from results of Schreier and van der Waerden [12] whose methods 
are quite different from those used here. The following infinite-
dimensional case has been considered by Mackey [9]. Let X be an 
infinite-dimensional real normed linear space and take the dual space 
36* as the space of all bounded linear functionals on 36. Then 
«£(36, O, 36*) is the group of all bounded linear transformations on 36 
which have inverses. Mackey [9] proved that isomorphism of two 
groups of this type implies isomorphism of the vector spaces but 
did not obtain the form of the group isomorphism in terms of the 
vector space isomorphism. Construction of the isomorphism of the 
vector space is, of course, the main part of the proof of Theorem I 
and the methods introduced by Mackey carry over without essential 
modification to the general case. As a matter of fact, Mackey had al­
ready observed [9] that his discussion could be applied to the group 
of all linear transformations in .£(36, D, X*) when <D is the real 
numbers. He calls the dual pair 36, 36* a linear system. 

5. The symplectic and unitary cases. Consider two groups of type 
«£*(ï, D) and -£*(§), £) both of which are either symplectic or uni­
tary and let Ç, 3C be subgroups of c£*(36, V), «£*(§), £) respectively 
which contain all of the minimal involutions in each case. Also 
assume given an isomorphic mapping G—>ü(G) of Ç onto 3C and 
denote by £* the multiplicative group of elements ju in £ such that 
/x/x* = 1. The following theorem gives the form of g in this situation. 

THEOREM II . The isomorphism Q has the form Q(G) = X(G)$~1G$, 

where <£ is an isomorphism of 36 onto §) and x(G) is a crossed character6 

of Ç in £*. If</> denotes the isomorphism of <D onto £ associated with <£>, 
then there exists a constant p in £ such that p* =p, a** =p~1a**p for all 
a in V, and (#i$, x2$) = (#i, x2)

(f,pfor all Xi, x2 in 36. 

COROLLARY. In the symplectic and orthogonal cases x(G) = ± 1 for 
each G. If Ç and 3C consist only of linear transformations, then x(G) is 
in the center of £ so that in case Ç also coincides with its commutator 
subgroup* we have x(G) = l. 

8 This is so, for example, for the finite-dimensional symplectic group of linear 
transformations [3, p. 12]. 
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We outline9 the proof of Theorem II which parallels that of 
Theorem I. The first step is to construct a one-to-one corrrespondence 
between the one-dimensional subspaces of 36 and of g). Since g estab­
lishes a one-to-one correspondence between extremal involutions in Q 
and 3C, one obtains immediately (in the unitary case) a one-to-one 
correspondence [#]<->[#]' between the nonisotropic one-dimensional 
subspaces of 36 and of §). When the index is zero, the first step is thus 
completed. On the other hand, if [x] is isotropic, choose nonisotropic 
two-dimensional subspaces 5D?i, Wl2 such that 9WiP\3W2= [x] and let 
Ti, T2 be involutions in Ç with Sfti, Wl2 as subspaces. In the symplectic 
case, Ti and T2 are extremal so that &(Ti) and ô(T2) are also extremal. 
Moreover the two-dimensional subspaces of ö(7\) and $(T2) inter­
sect in a one-dimensional subspace [x]'. This fact is ensured by the 
following lemma. 

LEMMA 5. Let T\ and T2 be extremal symplectic involutions. Then a 
necessary and sufficient condition for the two-dimensional subspaces of 
T\ and T2 to intersect in a one-dimensional subspace is that c(c(Ti, T2)) 
= c(c(Ui, U2)) for every pair Ui and U2 of noncommutative extremal 
involutions in c(c(Z\, T2)). 

It turns out that [x]' is independent of the choice of Ti, T2 so that 
[#]<-»[x]' gives the desired one-to-one correspondence in this case. In 
the unitary case, 7\ and T2 are not extremal but each can be written 
as a product of two extremal involutions. This implies that Q(JHI) and 
g(r2) each has a two-dimensional subspace and an additional argu­
ment shows that these two-dimensional subspaces intersect in an 
isotropic one-dimensional subspace [x]' which is independent of the 
choice of Sfti and SDÎ2- The resulting correspondence between isotropic 
one-dimensional subspaces plus that already obtained for the non­
isotropic one-dimensional subspaces provides us with the desired 
one-to-one correspondence [#]<->[#]' between one-dimensional sub-
spaces of 36 and of §). In both the symplectic and unitary cases it turns 
out that the correspondence [#]<-> [#]' preserves orthogonality. The 
fundamental theorem of projective geometry thus gives an ortho­
gonality preserving isomorphism <£ of 36 onto g) such that [x&] = [x]'. 
The fact that $ preserves orthogonality implies the properties 
mentioned in the last statement of the theorem. The representation 
of ö(C7) is obtained by an argument similar to that given in the full 
linear case. 

The above theorem is true and the proof outlined applies to the 
finite-dimensional case provided that the vector spaces have dimen-

9 See f 11 ] for a detailed proof for groups of linear transformations. 
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sions at least equal to ten. In the unitary case with zero index, it is 
enough to have the dimensions at least equal to five. If the groups 
contain only linear transformations, then these minimum dimen­
sions can be replaced by six and three respectively. For the finite-
dimensional symplectic case and automorphisms of groups of linear 
transformations, Hua [5] has proved the above theorem for dimen­
sions at least equal to two. Hua's result was extended by Dieudonné 
[2, p. 39] to include the case of characteristic two. Dieudonné [2, 
pp. 51, 79, 82] has also considered the finite-dimensional orthogonal 
and unitary cases (characteristic not equal to two) for automorphisms 
of groups of linear transformations when the dimension is at least 
equal to three and the index is different from zero. However, in the 
unitary case, he restricts the coefficient domain to the following two 
special instances: (1) the generalized quaternions (reflexive sfield 
[2, p. 81]) with involution equal to the conjugate and (2) a field 
f^ which is a separable extension of degree two over a field ^ 0 with 
involution in t^ equal to that automorphism of t^ over i^o different 
from the identity. In the latter instance, the cases Kjd = GF(3) or 
GF(5) are excluded for dimension three. The only case considered 
by Dieudonné for index zero is the orthogonal with dimension of the 
vector space equal to three [2, p. 52]. 

6. Remarks. The proofs outlined above give a relatively uniform 
treatment of all of the groups considered for infinite or sufficiently 
high dimensions. I t is worth noting the contrast with the proofs given 
by Dieudonné for the finite-dimensional cases. Dieudonné also makes 
some use of the methods introduced by Mackey as well as methods 
of Schreier and van der Waerden. However he relies heavily on 
structure theory [3] which leads to a great multiplicity of cases. This 
also explains his restriction to nonzero index in the orthogonal and 
unitary cases since the structure theory is not available here for index 
zero. I t also explains his restriction of the coefficient domain in the 
unitary case. Needless to say, there is practically no structure theory 
available in the infinite-dimensional cases. The proofs sketched in 
the preceding sections rely much more heavily on Mackey's methods 
and represent a fairly thorough exploitation of those methods. On 
the other hand, these methods break down for characteristic equal 
to two and extension of the isomorphism theorems to infinite dimen­
sions for characteristic two has yet to be done. Even in finite dimen­
sions only the full linear and symplectic groups have been con­
sidered for characteristic two [2, p. 93]. Hua, in his treatment of the 
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questions considered here, uses still other methods based on direct 
calculation with matrices which are quite effective for low dimen­
sions where the other methods run into difficulties. 

The projective group associated with a group Ç of linear trans­
formations may be defined as the group Ç modulo its center Z. If Ç 
is one of the classical groups, then Z reduces to scalar multiples óf the 
identity transformation where the scalars belong to the center of the 
coefficient ring. When the group Ç is allowed to contain semi-linear 
transformations, it is natural to take Z, instead of equal to the 
center of Ç, equal to the group of all scalar multiples of the identity 
which belong to Ç. I t would be desirable to extend the isomorphism 
theorems discussed above to the corresponding projective groups. 
This has been done by Dieudonné [2] for automorphisms of the 
linear groups in finite dimension,10 the main result being that an 
automorphism of the projective group is induced by an automorphism 
of the associated group of linear transformations (with exceptions, 
of course, among the low dimensions). A study of involutions in the 
projective group Ç/Z leads to consideration of "projective involu­
tions" in Ç; tha t is, transformations T in Ç such that r 2 = f I £ Z . 
The problem then is to characterize within the projective group 
Ç/Z those elements which are determined by extremal involutions in 
Ç. In other words, one has to distinguish, modulo Z, the extremal 
involutions from the other projective involutions in Ç. Once such a 
characterization of extremal involutions is obtained, the way is clear 
to apply the methods of the preceding sections to the projective 
groups. We are, as yet, unable to deal adequately with the projective 
groups in infinite dimensions but hope to return to this problem at 
another time. 

It seems probable that the isomorphism theorems can be obtained 
for certain coefficient domains more general than division rings. An 
interesting case would be that of an integral domain. As another 
example, consider an î^-module S (that is, 3 is an additive group 
which admits elements of the ring ^ as operators) and assume given 
an involution in ^ . In an obvious way, one can extend the notion 
of a self-dual vector space to this situation and so obtain generalized 
symplectic and unitary groups <£*(£, 21). The generalized unitary 
groups obtained in this way contain as special cases groups of the 
form c£(X, V, 36*). This fact suggests the possibility of an even more 
uniform treatment of the problems considered here. 

Schrier and van der Waerden also consider the projective group. 



448 C. E. RICKART 

BIBLIOGRAPHY 

1. R. Baer, A theory of crossed characters^ Trans. Amer. Math. Soc. vol. 54 (1943) 
pp. 103-170. 

2. J. Dieudonné, On the automorphisms of the classical groups, Memoirs of the 
American Mathematical Society, no. 2, 1950. 

3. , Sur les groupes classiques, Actualités Scientifiques et Industrielles, no. 
1040, 1948. 

4. , Sur le socle d'un anneau et les anneaux simples infinis, Bull. Soc. Math. 
France vol. 71 (1943) pp. 1-30. 

5. L. K. Hua, On the automorphisms of the symplectic group over any field, Ann. of 
Math. vol. 49 (1948) pp. 739-759. 

6. , Supplement to the paper of Dieudonné on the automorphisms of classical 
groups, Memoirs of the American Mathematical Society, no. 2, 1950. 

7. N. Jacobson, Normal semi-linear transformations, Amer. J. Math. vol. 61 (1939) 
pp. 45-58. 

8. , On the theory of primitive rings, Ann. of Math. vol. 48 (1947) pp. 8-21. 
9. G. Mackey, Isomorphisms of normed linear spaces, Ann. of Math. vol. 43 (1942) 

pp. 244-260. 
10. C. E. Rickart, Isomorphic groups of linear transformations, Amer. J. Math, 

vol. 72 (1950) pp. 451-464. 
11. , Isomorphic groups of linear transformations, II, Amer. J. Math. vol. 

73 (1951) pp. 697-716. 
12. O. Schreier and B. L. van der Waerden, Die Automorphismen der projektiven 

Gruppen, Abh. Math. Sem. Hamburgischen Univ. vol. 6 (1928) pp. 303-322. 

YALE UNIVERSITY 


