
THE ASYMPTOTIC DENSITY OF SEQUENCES 

IVAN NIVEN 

1. Introduction. Our purpose is to outline the recent work on the 
asymptotic or limit density of sets of positive integers, and to give 
further details of some recently announced results [45; 46].* §§2-7 
are concerned with the first objective, and §§8-12 with the second. 
The related concept of Schnirelmann density is touched upon, but 
we mention only the high spots of work on this topic, including basic 
sequences and essential components. 

In the case of many sequences, much more than the mere density 
is known. The prime number theorem, for example, implies that the 
set of primes has density zero, but it tells much more. However, 
asymptotic estimates are not available for many sequences, and for 
these it is of interest to know the density. In selecting examples of 
sequences of density zero in §11, as applications of the results of §8, 
we have tried to choose sets for which analytic estimates are not at 
present known. We are indebted to H. S. Zuckerman for valuable 
suggestions concerning the formulations in §8. 

2. Definitions. The sequence A of positive integers ai<a2< • • • 
has lower density ôi(A) and upper density 82(A) defined by 

A(n) A(n) 
(1) 8i(A) = lim inf > ô2(A) = lim sup > 

n->w fl n->oo n 

where A(n) denotes the number of integers of A which are not 
greater than n. The value h\{A) has been referred to variously as the 
asymptotic density, limit density, or density of A. In this paper, how­
ever, we shall say that A has a density h(A) only if h(A) = ô2(A), in 
which case we can write 

A(n) 
(2) à(A) = lim — — • 

«->oo fl 

This is sometimes called the natural density of A. The assertion 
that almost all positive integers have a certain property P means 
that S(^4) = 1, where A is the set of integers having the property P. 
I t can be established that for infinite sequences §i{A) =lim inf n/an, 
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ô2(A) =l im sup n/an, so that 8(A) =l im n/an if this limit exists. 
The Schnirelmann density d(A) of the sequence A is defined by 

A(n) 
(3) d(A) = g.l.b. - ^ - • 

n 

I t can be easily proved [53, p. 202] that d(A) > 0 if and only if Si(A) 
> 0 and 1GA. 

We shall not concern ourselves here with other definitions of 
density, such as the variation of Schnirelmann density employed by 
Besicovitch [ó], or the maximum and minimum densities of Pólya 
[51]. 

3. The sum of sets. The sum A+B of two sequences is defined as 
the set of all integers of the form a, &, or a+b where aÇ^A and 6 £ 5 . 
The conjecture of Khintchine [36] that d(A+B)^d(A)+d(B) or 
d(A+B) = 1 was proved by Mann [41 ] ; in fact Mann proved some­
what more than this. Other formulations of Mann's proof and 
generalizations of his result have been given by Artin and Scherk 
[ l ] , Dyson [18], and van der Corput [13]. Cheo [lO] has given an 
example to show that the extension of the Mann theorem to higher 
dimensions (for example, the two-dimensional Gaussian integers) 
fails. Details concerning the history of this so-called ce+/3 problem, 
and references to earlier work, can be found in various expository 
papers [30; 48; 53]. 

I t is readily proved [53, p. 206] that if d(A)+d(B)^l then 
d(A+B) = l; the analogous theorem [53, p. 207] for lower density 
is tha t if ôi(A) + Si(B) = 1, then there exists an integer m such that 
nÇzA+B \în>m. Suppose that we are given non-negative real num­
bers a, j3, and y satisfying 0 g a + j S ^ Y ^ l ; the question arises 
whether there exist sets A and B such that d(A) =a, d(B) =/3, and 
d(A+B)=y. This has been answered affirmatively in recent work 
[9; 39; 50 ]. As yet unsolved is the corresponding problem for lower 
density, which can be formulated as follows: for sets A of lower 
density ce, B of lower density /3, what is the range of possible values 
of ôi(A+B)l Certain inequalities have been obtained, as we now 
indicate. 

The analogue of the <x+j3 theorem of Mann for lower density is 
false. We formulate the known results in terms of the set C of all ele­
ments of the form a+b with a £-4 , &£23. Admit 0 as a possible ele­
ment of any set A, but do not count it in A(n). Thus C — A+B if 
0GA and 0 G 5 . Erdös [27] proved that Ôl(C)^ôi(A) + ôl(B)/2 under 
the hypotheses 0 £ 4 , 0, 1 G 5 , 5i(5)â8i( i4) , and &i(A) + ii(B)£l9 
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generalizing an earlier result [26] for the case A=B. Shapiro [6l] 
removed the hypothesis di(B)^ôi(A) by use of the Mann theorem. 
Ostmann [49] also removed this asymmetric hypothesis, and, replac­
ing the hypothesis 0, 1 £ 5 by the assumption that B contain k 
consecutive integers, established the generalization Ôi(C)^Ôi(A) 
+ (1 — kr^ôifô). Mann [42] has recently obtained an inequality con­
necting the lower densities of B and C and a modified Schnirelmann 
density of A. 

4. Basic sequences, essential components, and the primes. A basic 
sequence A is one for which there exists a fixed integer h such that 
every positive integer is a sum of at most h elements of A. A sequence 
A is called an essential component if, for every sequence B with 
l>d(B)=p>0, d(A+B)^p+<t>(p) where </>(p) depends only on 0. 
Erdös [22; or 38, Theorem 96] has proved that every basic sequence 
is an essential component. The converse of this is false, by an example 
of Linnik [40]. Schnirelmann [58; or 38, Theorem 91] has proved 
that the sequence P consisting of 1 and all primes is basic, in fact 
t h a t < Z ( P + P ) > 0 . 

Let K be the collection of feth powers of the positive integers for a 
fixed integer k>l, so that d ( i£ )=0 . Romanoff [54; or 38, Theorem 
103] proved that d(K+P)>0, and Davenport and Heilbronn [ l7 ] 
showed that 8 ( i£+P) = l . Next let H be the set of non-negative 
powers of a fixed integer h. Romanoff [54; or 38, Theorem 106] 
established that d(H+P)>0. Write r(h) for &x(H+P); Landau [37] 
proved that l i n u ^ r(h) log h = l. In the case h = 2, van der Corput 
[14] showed that 52(H+P) < 1 . 

5. Sequences without progressions. Various writers have discussed 
sequences no one of whose members is divisible by any other; let 
G—{gi} denote such a set. Behrend [3] obtained an asymptotic 
bound for the partial sums of 22&"1* I t had been conjectured that 
any such set would have density zero, but Besicovitch [5] con­
structed a set Gi with S 2 (Gi)>l /4 and Si(Gi)=0. Erdös [24] gen­
eralized a result of Besicovitch, and proved [2l] that any G sequence 
must have lower density zero, tha t is, oi(G)=0. More recently 
Erdös [28] established a necessary and sufficient condition on the 
elements of G such that d(H) exists, H being the set of all multiples 
of the integers of G. 

Let / be a sequence no three of whose terms are in arithmetric pro­
gression. I t had been conjectured that J(n)**0(na) for some a < l , 
but Salem and Spencer [56] disproved this, later adding a sequel 
[57]. Their inequality on J(n) was improved by Behrend [4], who 
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constructed a sequence / for which 
J(n) > wi-'/(iogn)i/2 a s n _ > oo # 

Erdös and Turân [3l] proved that any J sequence must satisfy 
J(n) <(3/S+e)n for n>n(e)y and Moser [44] improved this to 
J(n)<5+4:n/ll for all n. Whether every / sequence must have 
density zero, or even lower density zero, is an unsolved problem. 

6. Other special sequences. Let Ai be the set of abundant num­
bers, that is, positive integers n satisfying a(n)^2nf a(n) being the 
sum of all divisors of n. Behrend [2] showed that .241<Si(i4i) 
^82(Ai) <.332. Davenport [lS] proved that ô(Ai) exists, as did also 
Chowla [H] and Erdös [19]. The integer n is said to be ^-abundant 
if a(n) *zkn. Davenport [lS] established that the density of &-abun-
dant numbers exists and is a continuous function of the real number 
fc = l. 

Denoting the number of divisors of m by o*o(w), let A 2 be the se­
quence of integers m for which ao(m+l)>(To(m). Erdös [23] proved 
Chowla's conjecture that S(Ai) =1/2, and that integers of the form 
Pl-^rpl—pl—pl have positive lower density [25], the pi being primes. 

The set A% of integers not divisible by any of the nonzero integers 
ai, a2, • • • , am has density 

KAz) = 1 - Z - + E T^—T ~ ^ 7—"—T+ • * • 
i di »<ƒ [di, dj\ K«h La*» ah ak\ 

[ah a2, • • • , am] 

where the brackets denote least common multiple. Heilbronn [34] 
and Rohrbach [52 ] proved that 

m 

KAz) ê I I (i - or1). 

Consider a fixed integer m—pilp22 • • • p?r with every a<> 1, the pi 
being different primes. Let Bm denote the sequence of integers n 
such that n/m is a square-free integer that is relatively prime to m. 
Define B\ to be the square-free integers. Schoenberg [59], studying 
the Fourier transforms of distribution functions, proved that 

5(iu = —711(1 + - ) , 
mr2 <_i\ pi/ 

and indicated that this gave another method to obtain a result of 
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Feller and Tornier [32], that the density of integers which are di­
visible by an even number of squares of different primes is 

y+|f[(l-2^), 

the product being over all primes. The Schoenberg result for 8(Bi) 
is the well known value 6/7T2 for the density of the square-free inte­
gers. Details and references concerning density theorems obtained 
by analytic study of distribution problems of additive arithmetic 
functions can be found in an expository paper by Kac [35]. 

Fogels [33 ] proved that the (rational) integers which are uniquely 
factorable (apart from units and the order of the factors) in the 
quadratic field R(( — 5)1/2), have density zero. A natural density can 
be defined for a set of quadratic integers of 2?(( •— 5)1/2), using the norm 
to get a counting device. Then the uniquely factorable integers of 
this particular quadratic field have zero density. 

For nonzero integers #i, a2, • • • , am, say that n^Ai provided that 
alloîn2+ai,n2+a2, • • • , n2+am are square-free. Mirsky [43] proved 
that either A± is empty or ôi(^44)>0. S. Selberg [60] showed that 
integers of the form ax2+by2-{-cz have positive lower density, where 
a, by and c>l are positive. 

Let p(n) denote the greatest prime factor of n. Chowla and Todd 
[12] have discussed the sequence A$ of integers n for which p(n) 
Kin112, and more generally the sequence A§ for which p(n)>cna with 
c>\ and 1 / 2 ^ a < l . They prove that S(̂ 45) = 1 — log 2, and indicate 
that the same technique yields ô(-46) = —log a. 

Davenport and Erdös [ l6] have related the lower density and 
the logarithmic density limn^oo { 2)«t^n <hx} fiog w of a sequence 
whose terms are divisible by at least one integer from a fixed se­
quence. Erdös [20] gave some results on the existence of natural 
densities of certain sequences defined in terms of additive and multi­
plicative functions. 

Salem and Spencer [55] proved theorems concerning the density of 
sequences having gaps defined by certain analytic conditions. 

7. Measure. None of the densities 5, Si, or S2 is a measure. Disjoint 
sequences A and B can be readily constructed so that bi(A\JB) 
^b1(A) + 51(B) and ô2(A\JB)^ô2(A) + ô2(B); for example let A be 
any set not having a density, and let B be the complement of A. As 
to the density ô, sequences A and B can be constructed [7, p. 571] so 
that 5(il) and 0(B) exist but d(A\JB) and ô(AC\B) do not. 

R. C. Buck [7] has formulated a measure and a class of measur-
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able sequences, and later added a sequel [8] with E. F. Buck. Let 
Do denote the class of sequences which are unions of a finite number 
of arithmetic progressions, or which differ from some such union by 
a finite set. Clearly any set in Do has a density. For any sequence 5, 
define /x(S)=lim inf 0(A) for all A<E<D0 such that ADS. The class 
DM of measurable sets is defined as all sets 5 such that JJL(S) +fi(S') = 1, 
where S' denotes the complement of S. The class D0 is a proper sub­
set of DM, which in turn is a proper subset of the class of sequences 
possessing a density. The measure of any set is its natural density: 
if SGDM , t h e n / i ( 5 ) = 5(5). 

Buck proved that D 0 is a proper subset of DM by exhibiting infinite 
sequences, for example {n2}, which have measure zero but which do 
not belong to Do. From a number theoretic point of view, it would 
be of interest to know whether some of the nontrivial sets having 
positive density are members of DM. 

8. Upper density. For any prime p let Ap denote the subset of 
integers n of A for which p\n but p2\n. 

THEOREM 1. If {pi} is a set of primes such that ^PT1— <*>, then 
82(A) ^ ^282(APi) for any sequence A. 

PROOF. Let I denote the set of all positive integers, and let Br be 
the complement of the set 

Thus Br is the set of all integers except those n for which p\ n but pl\n 
for at least one of the primes pi, p2, • • • , pr. Now the number Br(x) 
of integers in Br which do not exceed x can be seen by induction on 
r to be 

E (_l)<*l+«2+•••+«,- I 
V x) I a\ «2 . «r > 

L^l p2 ' * * pr J 

where the sum extends over the 3r terms obtained by taking each ai 
equal to 0, 1, or 2. The removal of the brackets changes the value 
of each term by something less than 1, so we have 

Br(x) < 3r+ J2 (-l)«1+a2+--.+«r 
pi pi 

or 

Br(x) 3 r * 

(5) —— < - + II (i - pr1 + pr2). 
X X t = l 
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Now the divergence of X)#"* implies the divergence of X^ (pil—p^2), 
and thus we can choose r sufficiently large so that 

(6) II (1 ~ PT1 + PT2) < ~ 

for any specified e > 0. Next choose N sufficiently large that 3r/x <e /2 
for x^N. Hence (4), (5), and (6) imply that 

A(x) B*(x) ' APi(x) ' APi(x) 
g 1- 2., < e+ 2s > 

X X ,-»i ff <«i # 

from which the theorem follows. 

COROLLARY 1. If fora set of primes {pi} we have S(APi) =0for every 
i, and if X)pr1==: °° » then 8(A) = 0. 

Feller and Tornier [32, p. 216] have proved the related result tha t 
if X ^ r 1 — °°> then the sequence of integers divisible by at most k 
of these primes has density zero, for fixed k. This is implied by Corol­
lary 1 ; in fact, we have the following slightly stronger formulation. 

COROLLARY 2. For any fixed k, if {pi} is a set of primes f or which 
2^r1== oo 9 and if A is any sequence whose members are divisible by 
at most k of these primes to the first degree, then S (A) = 0. 

PROOF. We use induction on k, assuming the truth of the result in 
the case k — 1. Denote the set {pi} by P . Then the set APi has density 
zero because its members are divisible by a t most k — l primes to the 
first degree chosen from the set P—pi (set theoretic subtraction). 
Thus 5(A) = 0 by Corollary 1. 

COROLLARY 3. Let {pi} be a set of primes f or which X ^ r 1 = a °°. If 
h2(A) ^ 0 , then X X i S2(APi) = oo. 

PROOF. If X X i h(APi)9^ oo, then for any given e > 0 there exists 
an m such that XX™ ^(APi) <e. But XX™ P71 diverges, so by 
Theorem 1 we have S2(A) <e. Hence 52(A) = 0, contrary to hypothesis. 

9. Lower density. We now show that the results of the last section 
are false for lower density, by exhibiting a set A for which Si (A) 
= 1/2 but Si(Ap) = 0 for every prime p. Let p* denote the &th prime, 
& = 1, 2, • • • . Now any positive integer n can be located between 
successive binomial coefficients as follows: C(m, 2)^n<C(m+l, 2). 
Define the positive integer ƒ = ƒ (n) = n+1 — C(m, 2), so that ƒ is a single-
valued function of n, whereas to each value of ƒ there correspond in­
finitely many values of n. For any positive integer n, define Sn as 
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the set of integers x satisfying the inequality n\^x<(n+l)l Define 
Tn as the set Sn with any integer deleted if it is divisible by p/, where 
ƒ =/(w) as just defined. Finally, define A as the set obtained by tak­
ing the union of the Tn, thus 

To evaluate 5i(A), we note that Sn is a finite set of (n+l)l~n\ 
integers, that not more than half of these integers are deleted from Sn 

to obtain Tn, so that Tn contains a t least {(n + i)l — n\}/2 integers. 
Also the Sn are disjoint and exhaust J, so that di(A) è 1/2. In case n 
is of the form C(m, 2) we have / = / ( w ) = l , and Tn has exactly 
{(» + l ) ! - » ! } / 2 integers. Thus SX(A) = 1/2. 

On the other hand, for any prime p/ we consider the sets Tn for 
each of the infinite number of values of n for which f—fin) as de­
fined above. Such sets Tn consist of those integers x in the range 
n\^x<(n+l)l for which p/l[x. Hence we have 

i l p / ( ( » + l ) ! ) - i 4 p / ( n O » O f 

A„{{n+1)\) ^A„{n\) 1 

(n + 1)! n\ » + 1 

from which it follows that h{APf) = 0. 

10. The hypothesis of Theorem 1. For any set of primes {pi} for 
which X ^ r 1 converges, we now exhibit a set A such that &(AP{) = 0 
for all i, but S2(A) > 0 , so that 5(^4) > 0 if it exists. Thus the hypothesis 
2pJ" 1 = = °° is essential in Theorem 1 and its corollaries. Define A as 
the sequence of all integers except those divisible by at least one of 
the set of primes {pi}, so that S(APi) = 0 for all i. We may presume 
that the set {pi} is infinite, since otherwise it is clear that S2(-4)>0. 

Since X)^i" Converges, so the product H ( l — PT1) converges, say 
to a value k>0. Choose r sufficiently large so that ]Ci"r+i P71<k/4: 
and then choose m sufficiently large so that 2r/tn<k/4. Then for 
any n^m we have 

Ain) è E (-l)^^-^r J 1 - t \^\, 
Lpl p2 • • • pt J t«.r+l L pi J 

where the first sum ranges over the 2r terms obtained by taking each 
ai equal to 0 or 1. Thus we have, on removal of brackets, 

«r-, fl J^ ft 

A(n) > - 2' + £ ( - l ) -^-H--+-r — — _ - £ -> 
pi pt ' • • pr «W+l pi 
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A{n) 2r ' « 

n n i^i i^r+i 

R R R 

> +k - — , 
4 4 2 

for all n^m. Thus S2(,4)>Jfe/2>0. 

11. Sets of density zero. 

THEOREM 2. The multinomial coefficients 
n\ 

(7) > 
#i!a2! • • • ar\ 

where w= ]Cï-i aî an^ each Q>j<n — \y have density zero. 

PROOF. The restriction aj<n — 1 is needed, for otherwise any 
integer n can be put in form (7) by choosing r = 2, #1 = 1, a2 = w — 1 . 
There is no loss of generality in assuming that 

01 =3 #2 =^ • • • — af 

We give two lemmas, in which pm denotes the rath prime and C(n9 r) 
the binomial coefficients. 

LEMMA 1. If 2^r^n — r, there exist positive constants N and c<\ 
such that 

(8) C(n, r) > cprpn-r for all n, C(n, r) > prpn-r for n > N. 

PROOF. We prove that C(n, r)>prpn-r for n sufficiently large. Let 
k be a constant such that pm<km log m for all m. In case SSrSn— r 
we have for n sufficiently large, 

C(n, r) ^ n(n - 1)(» - 2)/6 > n(n - 1)(* log n)2 

> krlogr-k(n — r) log (n — r) > prpn-r. 

In case r = 2 we have for n sufficiently large, 

C(n, r) = 3n(n — l ) /6 > 3n(k log n) > 3pn > p2pn-2, 

which completes the proof of the lemma. 

LEMMA 2. If a\ = a2 = • • • = a8-i = 1 and a8>l, then (7) is greater than 

(9) I? Pl H'pa» 

wAere /&e dasfe on the product indicates that the first and last terms, pa. 
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and par, are not squared. 

PROOF. In case a\> 1 so that 5 = 1, we write (7) in the form 

C(n, ar)C(n — ar, ar-i)C(n — aT — 0r-i> ar_2) • • • Cl n — ]£) a,-, a2 )• 

By Lemma 1 this exceeds 

ParPn—arPar-.iPn--ar—ar~i ' ' * Pa^Pn — 252<jy 6 » 

since the constant c enters in at most N cases. This can be seen to 
be larger than (9), by replacing pn_«r by pa^v pn-ar-a^v by pa^v 

and so on. 
In case s>l, we write (7) in the form 

( » - 5 + 1)1 
*(» - 1) • • • ( » - $ + 2) 

which by the previous case exceeds 

,t 

»(» - 1) • • • (» - * + 2 ) / ! ! ^ , 
3=« 

and this is larger than (9), and so the lemma is proved. 
We now establish a one-to-one correspondence between the integers 

(7) and the integers 

(10) PVÙ'PX, 

with the conventions of notation as in Lemma 2. Different sets of 
values (ai, a2l • • • , ar) in (7) yield different integers (10), and the 
integers (10) have density zero by Corollary 2. Thus by Lemma 2 
we complete the proof of Theorem 2, since the cN factor in (9) is 
irrelevant, being independent of (7). 

THEOREM 3. The set A of integers <r9(n) for all s è 1 and all n^i has 
density zero, <r8(n) being the sum of the sth powers of all divisors of n. 

PROOF. We separate A into two possibly overlapping parts B and 
C, <r8(n) being put in B if n has more than k distinct prime factors, 
otherwise in C. We shall specify k in a moment. For any given € > 0 
we prove that A(m) <€m for all sufficiently large m. 

Any member of the set B satisfies the inequality 
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k 

*.(») è n'TL (1 + pf8) = »•<?., 

py being the jth prime. The last equality defines c8f a function of 5 and 
kt and we choose k so that ec\ > 4. Thus for fixed s the number of a8(m) 
counted by B(m) is not more than (w/c,)1/a, and hence 

B(m) S m/ci + (m/c2)
112 + • • • + (m/cr)

llr, 

where r^log2 m because for any larger value of rt <rr{2)>m. Now 
(m/c8)

lt9<ml/2 for s = 2, 3, • • • , r, and so we have 

(11) B(m) < m/d + m1'2 log2 m. 

Turning now to the set C, we observe that <r8(n) is counted by 
C(m) provided that n has k or fewer prime factors, and that <x8(n) ^m. 
Since <r8(n)*zna, this implies that na^m or nSml,a. Let F designate 
the sequence of integers having k or fewer prime factors. Thus we 
have 

C(m) £ Z W * ) , 
<c»l 

again with r âlog2 m. Now JP is a set of density zero (by Corollary 2, 
for example) so that there exists an n\ such that F(m) <em/2 for 
m>ni. Also F{mlla) ^w1 / 2 for 5 = 2, 3, • • • , r, and consequently 

C(m) < em/2 + m112 log2 w. 

This with (11) gives 

A(m) g J5(w) + C(m) < m/cx + em/2 + 2mx& log2 w, 

and A{m)/m <c1~
1+€/2 + 2ni~112 log2 m. The last factor is less than e/4 

for m>n2t say, so that for m>max (»i, n%) we have, recalling that 
€Ci>4, 

^4(w) € € € 

m 4 2 4 

But € is an arbitrary positive number, so A has density zero. 

THEOREM 4. For fixed k, the set A of integers n such that (n, <f>(n)) ^*k 
has density zero, where 4>{n) is the Euler function. 

PROOF. It clearly suffices to prove that the set B of integers n such 
that (n, 4>(n)) =fe has density zero, since the union of a finite number 
of sets of density zero also has density zero. Let {pi} be the set of 
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primes not dividing k, so that ^PT1— °°. Now any integer in BPi 

has the form tnpi, with (mt pi) — lf and furthermore (<l>(m)f pi) —I 
since otherwise pi\k. Hence m has no divisor of the form ypi+1. 
But the primes {&•} of this form have the property ^2qJls=s °°, so 
that by Corollary 1 the set of permissible values of m has density 
zero, so that 8(BPi) = 0. Applying Corollary 1 again, we get 8(B) =*0. 

For k = 1, the set A of Theorem 4 consists of those integers n with 
(n, <f>(n)) = 1, and has been studied by Erdös [29], who proved that 

A(n) = (1 + o(l))nerv(log log log n)~l. 

THEOREM 5. For fixed rn, the set A of integers a for which x2^m 
(mod a) is solvable has density zero if and only if m is not a perfect 
square. 

PROOF. If m is a perfect square, say ni~k2
t then x^k (mod a) is a 

solution of the quadratic congruence. If m is not a perfect square, 
then m must be a quadratic residue of any prime which divides a. 
But the Gaussian reciprocity law and the Dirichlet theorem imply 
the existence of infinitely many primes {pi} in an arithmetic progres­
sion, each prime having m as a quadratic nonresidue. In fact ^PT1 

diverges, so that 8(A) =0 by Corollary 1. 

12. A binary operation on sequences. If A and B denote sequences 
of integers {at} and {bi} respectively, we define the "product" AB 
to be the set {bai}. Under this operation, sets of integers form an 
associative, noncommutative groupoid. 

THEOREM 6. ô1(AB)^Ô1(A)bï(B). 

PROOF. We have 

bx(AB) = lim inf n/bUn è lim inf n/an-\im inf an/ban è Si(A)èi(B). 

In case the densities of A and B exist, then the above proof holds 
with equality signs throughout, so that b{AB) =3(^4) -5(J5). If i{A) 
= 0, then b{AB) = 0 for any set B ; likewise if h{B) = 0, then Ô(AB) « 0 
for any set A. 

THEOREM 7. If à(AB) exists, and if either h{A) or S(J5) exists and is 
positive, then the other one exists. 

PROOF. If 8(B) exists and is positive, then lim baJan exists as »—* «>, 
and by hypothesis lim n/bttn exists, and so lim n/an exists. On the 
other hand, if 8(A) exists and is positive, we denote AB by C and 
note that C(bn)=A(n). Thus w/Jn= {n/A(n)} • {C(bn)/bn}, and so 
lim n/bn exists. 
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THEOREM 8. For Schnirelmann density, d{AB) ^d(A)d(B). 

PROOF. Denote d(A) by a, d(B) by 0, and AB by C. We shall 
establish that C(x)^a^x for all integers x such that # + l £ C , and 
this implies the theorem. Thus we write 

*fcban - 1) < c*£(ôan - 1) « «(*» ~ 1) 

^ ^ K - 1) = n - 1 = C(ban - 1), 

and the proof is complete. 
Finally, we cite an example to show that inequalities cannot be re­

moved in Theorems 6 and 8. Let A consist of 1 and all integers x 
satisfying 2 w g x ^ 2 n + 2 n - 1 —1 for w è 2. Let B consist of 1 and all x 
satisfying 2 w + 2 n ~ 1 ^ x g 2 w + 1 —1 for n^2. Then AB consists of 1 and 
all x such that 3 - 2 w ^ x ^ 3 - 2 w + 2 n - 1 - l for n^2, and BA consists of 
1 and all x such that 5 • 2 w ^ x ^ 5 • 2 n + 2 w - 1 for n^l. Also ôi(A) = 1/2, 
5i(B) = l / 3 . Ô^AB) = 1/6, Ô^BA) = 1/5, d(A) = l/3, d(B) = 1/5, 
d(ilB) = 1/11, and d(Bil) = 1/9. 
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