SOME QUESTIONS CONCERNING ALTERNATIVE RINGS
M. F. SMILEY

1. Introduction. Our purpose is to summarize our present knowl-
edge of alternative rings in the case in which no a priori finiteness as-
sumptions are made and to indicate a number of problems in this
field. One defines an alternative ring by replacing the law a(bc) = (ab)c
in the definition of an associative ring by the laws a(ab) =a? and
(ab)b=ab? The name is derived from the fact that the associator
(a, b, ¢)=(ab)c—a(bc) is an alternating function of its arguments.
The name as well as much of our knowledge of the finite-dimensional
case is due to M. Zorn [52-55],! although N. Jacobson [25], A. A.
Albert [1], R. D. Schafer [41-43], and Dubisch and Perlis [19]
have also contributed.

We shall use the terms ring and algebra in place of nonassociative
ring and nonassociative algebra. If the nonzero elements of a ring form
a loop [4] under multiplication (that is, if each pair of elements in
the equation ab=c uniquely determines the remaining element and
a unit element 1 is present), we call the ring a division ring [cf. 2; 16].
The center [2; 26] of a ring A consists of those elements ¢ in 4 for
which cx=xc and (cx)y=c(xy) =x(cy) for every x and y in 4. When
the center of 4 is a division ring, then 4 is a vector space over its
center and we call the dimension of this vector space the dimension
of 4.

We divide our discussion into three parts wherein the primary
interest is geometric, algebraic, and topological, respectively.

2. Geometry. Ruth Moufang [33-38] was the first to derive the
geometric meaning of the alternative law as a weak form of De-
sargues’ Theorem in plane projective geometry. Marshall Hall, Jr.
[22-23] has given a new proof which is mainly algebraic and which
avoids assumptions concerning order or characteristic in the plane.
In its affine form, the theorem used by Hall merely asserts that 4f
corresponding vertices of two triangles are on parallel lines, while two
pairs of corresponding sides are parallel, then the remaining sides are
also parallel. The works of Moufang and of Hall suggest the following
questions.

1. Is there an ordered alternative division ring which is not asso-
ciative? (Moufang [38])
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2. Is every isotope [2] with unit of an alternative division ring
really an isomorph? (Hall [22])

3. Is there a division ring for which the identity a(eb) =a2b holds
but (ab)b=ab? fails?

These questions have been answered by Zorn [53], Schafer [41],
and Albert [9], respectively no, yes, and no,?in the finite-dimensional
case. R. H. Bruck has shown that a natural generalization of Hilbert's
procedure fails to answer the first question [16]. Albert? has remarked
that the analogous question for Jordan rings [6] has a very easy
answer for we may set 2(x-y) =xy-+yx in any ordered associative but
not commutative ring 4 to obtain an ordered Jordan ring 4., pro-
vided that the positive elements of 4. coincide with those of 4.

Since configuration theorems in plane projective geometry are re-
flected in algebraic identities in the codrdinate ring, we are led to
consider these next. Kaplansky [29] has given a sweeping gen-
eralization of a result of Hall [22] by showing that a primitive ring
[27] which satisfies a polynomial identity is finite-dimensional. An
important question (no. 4) is how this may be generalized to alterna-
tive rings. For the case of an alternative algebraic division algebra
of degree two, Albert [8] has given an affirmative answer. (As noted
by Jacobson [29], every alternative algebraic algebra of bounded
degree satisfies a polynomial identity.) We have given [49] an
independent proof of Albert’s result (including the case of character-
istic two, avoided by Albert), starting from the appropriate identity
[[x, ¥]2, 3]=0 of Hall [22]. The identity xy=yx in an alternative
division ring implies the associative law,* as Bruck has proved by a
simple algebraic argument [46], and whose geometric counterpart in
the form of the Theorem of Pappus and the weakened Desargues
Theorem seems to be well known [40]. In fact, a commutative
alternative ring with zero radical (see §3) is associative, but com-
mutative alternative but not associative rings exist [47]. Nothing
further seems to be known about this question. The identity at-
tributed by Kaplansky to Kolchin [29; cf. 51, p. 98] for associative
algebras of finite dimension applies to algebras if we use a fixed
association in each of its terms. This indicates that an algebra of
finite dimension is not completely nonassociative since, for example,

2 At least when the characteristic is zero.

8 This remark of Albert was mentioned by the discussant, Saunders MacLane.

4 It is interesting to note that M. H. A. Newman (4 characterization of Boolean
algebras and rings, J. London Math. Soc. vol. 16 (1941) pp. 256-272, and Relatively
complemented algebras, J. London Math. Soc. vol. 17 (1942) pp. 34-47) observed that
the rule (ab)b=a(bb) was sufficient to ensure the associativity of his generalized
Boolean rings.
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algebras of dimension two satisfy the identity x(yz)+vy(zx) +2(xy)
—x(2y) —y(x3) —2(yx) =0. A similar remark applies to an arbitrary
binary operation defined on a finite set.

Let us finally mention the following extension of a theorem of H.
Cartan [18] which is due to R. Brauer [12]. If B is a normal division
subring of a division ring A, then B=A or B is contained in the center
of A. We use the term normal as it applies to the subloop of nonzero
elements of B [4; 5; 11; 17; 21; 45] and center as defined in §1. The
additional® requirements on the elements of B, namely, that b(xy)
= (bx)y =y(by) for every x, yEA and b&EB when B4, are easily
proved using Brauer’s method. L. K. Hua [24] has also given an ele-
mentary proof of Cartan’s theorem which is not greatly different from
Brauer’s. However, it is interesting to observe that several of the
related results stated by Hua in [24] are also valid in alternative
division rings. In particular, the conjugates x *ax of an element a of an
alternative division ring A are all equal to a or they gemerate A. This
follows from Hua’s proof and the fact that 3(a, x, y)=(e, x, ¥)
—(x, @, y)+(x, v, a) =0 for every x, yE A4, provided that az=za for
every 3&A4. When 30, the center of 4 coincides with the set of all
a satisfying az=2a for every 2& 4. But when 3=0, this question is
unanswered, and we may assert Theorems 1-8 of Hua [24] for al-
ternative division rings only if we replace the word “center” by the
words “the set of elements a €4 for which az=za for every z&4.”

3. Algebra. The structure theory of associative rings presented® by
Jacobson [26-27; 10] is so elegant that its generalization to rings has
attracted the interest of several writers. In fact, Dubisch and Perlis
were aware in 1943 (prior to the publication of this theory) that the
set of all properly nilpotent elements of an alternative algebra (that
is, the radical in the sense of Zorn [55]) could be characterized as what
is now called the Perlis-Jacobson radical:?

R = [a; b € (a), implies that (1 — b)4 = A].

Our observation that the proof of Forsythe and McCoy [20] that an
associative regular ring without nonzero nilpotent elements is a sub-
direct sum [32] of associative division rings is easily extendable to
alternative rings [46] led us to study this problem and we were able
to show that the Perlis-Jacobson radical of an alternative ring is an

5 That is, those not already proved in [12].

¢ Cf. J. Dieudonné, Sur le socle d'un anneau et les anneaux simple infinis, Bull.
Soc. Math. France vol. 70 (1942) pp. 46-75.

7 Dubisch and Perlis [19]. In this section we shall use (a), and (a) to denote the
right ideal and the ideal, respectively, generated by a. We shall also use the abbrevia-
tion (1—b)4 for the set of elements [x—bx; xEA4].
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ideal [47]. Brown and McCoy offered a variant of the Perlis-Jacobson
radical [14] for associative rings which we have shown to be applica-
ble to arbitrary rings [48] and which reduces to Zorn’s radical of
an alternative ring when his chain conditions hold [55].

A connection of the Perlis-Jacobson radical of an alternative ring
with a subdirect decomposition [32] of the alternative ring is still
lacking in the general case, although we have succeeded in exhibiting
such a connection for an alternative ring A (which we call special)
in which the set (1—a)4 is a right ideal of 4 for every a in 4 [50].
Under this assumption, we may prove as in the associative case that
R=N(M:4), where M ranges over the modular® maximal right
ideals of 4 and (M:A4)=[a; xaEI for every xEA] is the quotient
tdeal of M. To secure R<N(M:4), we consider an element a not in
N(M:4) and hence not in some modular maximal right ideal M.
Then 4 is the sum of M and (e).. In particular, the left unit e of 4
modulo M has the form e=m-+b, with m in M and b in (e),. But
then (1-d)x=x—(e—m)x=x—ex-+mx is in M for every x in 4 and
a cannot be in R. Thus R=0 entails N(M:4)=0 and a consequent
representation of 4 as a subdirect sum of special alternative rings
which are primitive in Jacobson’s sense; each summand possesses a
modular maximal right ideal whose quotient ideal is zero. One may
easily prove the converse statement that a subdirect sum of primitive
special alternative rings has zero Perlis-Jacobson radical.

Brown and McCoy have discovered a generalization of the Perlis-
Jacobson radical which applies to arbitrary rings [15] and which
Brown has associated with a subdirect decomposition of the ring?
[13]. They define N, as the set of all elements a of a ring 4 for which
every element b in (a) is such that the right ideal generated by the
set (1—0)A is A. They then show that N, is an ideal of 4. Brown
[13] replaces Jacobon’s quotient (I:4) of a right ideal I of 4 by the
largest ideal I’ contained in 4. It should be noted that for a modular
right ideal I, we have I’=(I:4) provided that (I:4) is an ideal of
4. Brown then proves that N,=NM' as M ranges over the modular
maximal right ideals of 4 by a slight modification of the argument of
the preceding paragraph. This argument yields another proof that N,
is an ideal. The result also shows that R= N, for special alternative
rings, but the question of the validity of this equation for arbitrary
alternative rings is open. When N,=0, we see that 4 is a subdirect

8 A right ideal I is modular in case there is an element e€& 4 such that (1—e)4 <1,
that is, e is a left unit for 4 modulo I. Segal [44] uses the term regular, but we prefer
the present terminology of Jacobson.

® We are indebted to Brown and to McCoy for a stimulating correspondence in
the source of which we were informed of some of their most recent results.
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sum of rings each of which is (right-) primitive in the sense that it
contains a modular maximal right ideal M with M’=0. The duality
of the Perlis-Jacobson radical of an alternative ring with respect to
interchange of right and left multiplications is lost in this process
of generalization as a simple example shows. By use of the theory of
normal subloops of a loop [5; 11; 17; 45], we may dispense with the
associativity (as well as the commutativity) of addition!® provided
that we interpret (1 —5)4 as the set [x+by; xE 4, x+y=0]. The dis-
tributive laws and associativity of addition enforce, however, the
commutativity of addition when N,=0. It is possible to phrase this
theory of Brown and McCoy in the setting of groups with operators
[15]. A consequence of this more general formulation is the fact,
proved by Brown and McCoy in [15], that every alternative ring has
a greatest regular ideal.!

The results of Brown and McCoy and of Brown suggest a host of
questions which will readily occur to the reader. One should note
especially that nil rings are automatically placed in the limbo of
radical rings. The vital question (no. 5) seems to be: “What is the
nature of primitive alternative rings?” For associative rings, Jacob-
son shows that a primitive ring is a dense ring of linear transforma-
tions in a vector space over a division ring. All that seems to be
known in the alternative case is that if the modular maximal right
ideal M contains every associator, then 4 is associative.

One of the main difficulties in the study of alternative rings is the
lack of some sort of representation closely connected with an associa-
tive ring. Saunders MacLane has suggested (in conversation) that
there is a cohomology theory of alternative rings (question no. 6)
and perhaps such a theory might be helpful in the study of primitive
alternative rings.

In concluding this section, we mention the so-called Theorem of
Artin which states that every two elements of an alternative ring
generate an associative subring [52]. R. Moufang proved a general-
ization for alternative division rings: if (e, b, ¢) =0, then a, b, ¢ gen-
erate an associative division subring [39]. The analogous statement is
true in an arbitrary alternative ring [47], and no doubt still more
general formulations are possible.!?

10 It is possible to have a finite system of this kind in which the nonzero elements
form a commutative group under multiplication but in which addition is not associa-
tive. (See Neofields by L. J. Paige, Duke Math. J. vol. 16 (1949) pp. 39-60.)

11 A subset S of an alternative ring 4 is regular (in von Neumann’s sense) in case
every a & S has the form axa with xE 4.

12 (Added July 12, 1950.) Since this was written, R. H. Bruck has shown by a
remarkably simple argument that a subset S of an alternative ring 4 which satisfies
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4. Topology. We turn finally to topology as a method of studying
alternative rings. Here the main results are those of Albert [7-8] and
of Jacobson and Taussky [28]. Albert assumes that his ring 4 is
algebraic relative to the real field and has a homogeneous valuation.
He then shows that 4 is alternative and applies his result, mentioned
in §2, to show that A4 is associative (and hence already characterized)
or the Cayley numbers. In his discussion of the results of Jacobson
and Taussky, Kaplansky [31] also obtains the Cayley numbers as
the only not associative alternative division ring which is both con-
nected and locally connected, and he conjectures that a similar result
holds in the totally disconnected, locally compact case. It seems likely
that topological methods will yield further results. In fact, many of
the preliminary results of Kaplansky in [30] are valid at least for spe-
cial alternative rings. A difficulty appears in the proof that group
neighborhoods contain ideal neighborhoods in the bounded case. We
may obtain this result if we strengthen the definition of (right-)
bounded ring 4 to: “For every neighborhood U of 0, there is a
neighborhood V such that Vp=< U for every product p of finitely
many right multiplications of 4.” (This is automatically satisfied
in a right bounded associative ring.) But then it seems difficult to
prove that a compact ring is bounded. However, we can show that
a compact and bounded alternative ring with sero Perlis-Jacobson radical
is 1somorphic and homeomorphic to a Cartesian direct sum of finite sim-
ple alternative rings. This subsumes the corresponding result of Ka-
plansky in [30]. By a result of Zorn [52], we see that the only not
associative summands permitted are merely finite Cayley-Dickson
algebras with divisors of zero.

Added in proof, (January 5, 1951). At the International Congress
of Mathematicians 1950, R. H. Bruck announced that he and Erwin
Kleinfeld have proved that an alternative division ring in which 230
is either associative or is a Cayley-Dickson algebra over its center.
This outstanding result answers a number of questions suggested in
this paper. Thus, aside from the limitation on the characteristic,
Questions 1 and 2, as well as the conjecture of Kaplansky mentioned
in §4, are settled.
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