
COMPLEXES AND HOMOTOPY CHAINS 

KURT REIDEMEISTER 

The theory I have to speak about is a chapter of the algebraic 
topology of complexes. Its definition parallels the classical homology 
theory. 

Let A be a complex with the oriented cells af, where k is the dimen­
sion number. Then the homology theory starts with the free Abelian 
groups of chains 

c*= E * * * . teN,a*eA, 

generated by the aj (N is the set of the integers) and the boundary 
homomorphism of chains 

(c*y = £ «a»)" 
where 

k y-y k ft-1 

is the boundary chain of the oriented cell &J, the p% being the inci­
dence numbers of the cells a\, a j ~ \ These chains and boundary 
matrices change by subdivision of the complex A, and the homology 
groups are the invariants with regard to this process. 

The chains and boundary matrices which I introduce are defined 
for complexes U with an adjoined group G of mappings 7 of U in 
itself, tha t is, of mappings 

yuh = üh 

of the cells uk of U preserving the dimension, the orientation, and the 
incidence relations of cells. The subdivision of the euclidean plane in 
squares, which is mapped in itself by the group of translations 
with integer coefficients, is an example for a complex U. 

The mappings y of the cells induce automorphisms y of the chains 
of U, 

yck = T]C &h = Jl f(7«*), 
and these automorphisms commute with the boundary homo­
morphism; for 
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(Y**)' = Œ *Y«*)' » E*(7«*)-, 

and the equation (yukY = 7(wfc)' holds, because y preserves the in­
cidence relations. 

So we can describe these chains with operators and their boundary 
homomorphisms by taking the elements 

of the group ring GN of G as coefficients of chains. Because 

is denned, we can speak of the chains 

>r-> k 

generated by the chains 4 and of relations 

X) %iCi = 0 

between the c\. And because the equation 

(xchy = x(cky 
holds, we can compute the boundary chains of the generated chains 
by the boundary chains of the generators. 

If the mappings y 5*1 (the identity) have no fixed elements, then 
there exists a fundamental region F of U modulo G, namely a subset 
F of cells uh, so that 

k k 

yUi with 7 £ G, Ui £ F 

represent uniquely the cells of U. And in this case we see the groups of 
chains of U with operators are free groups with a set F of free 
generators u\. Indeed the 

c = 2-, XiUi = 2w ?<i7i«< 

represent uniquely the chains of U because y^ represent uniquely 
the cells of U. And the boundary homomorphism is described by a 
set of matrices r\ with coefficients in GN, namely the coefficients of 
the boundary chains of the generators expressed in these generators 
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For the subdivision of the euclidean plane in squares we have in a 
fundamental region one vertex u°, one square w2, and two edges u\, u\, 
which represent two vectors of unit length, orthogonal one to the 
other. The group G is generated by the translations <ri, a2 determined 
by these vectors and we can take F so that we get 

(Ui) = — U + <7iU , 

( V ° L ° 
(u2) = — u + a2u , 
\U ) = U\ - j - (T1W2 ~ 0"2^1 ~ %2. 

Now remember a classical theorem. To every connected complex 
A there exists a universal covering complex U with a group G of 
mappings 7 of U in itself, the structure of which is uniquely de­
termined by A. The group G of U is isomorphic to the fundamental 
group G1 of A defined by the homotopy classes of the paths of A. 
The mappings 7 are the deck transformations of the covering com­
plex. Tha t means: if T is the projection of U in A, which gives for 
every cell uk of U the cell ak of A which is covered by uk, then we 
have: yu = ü implies ir(ü) =7T(W) and ir(ü) =7r(w) implies the existence 
of a 7 with ü = yu. And because IT has to be faithful in the small, it 
follows that yu = u implies 7 = 1. 

So we can define: the system of homotopy chains of the complex A 
is the system of the chains of the universal covering complex U of A 
with the operators induced by the deck transformations of U. And 
we have the theorem: If the u* are a fundamental region of U modulo Gy 

then the u* are free generators of the system of homotopy chains and 
there exists a uniquely determined set of matrices r\ with elements in 
the group ring GN defining the boundary homomorphism of the chains in 
the chosen generators. 

The square net of the euclidean plane is the universal covering 
complex of a torus A, the edges a\, a\ of which are singular ones be­
ginning and ending a t the same point a0. The chains of the square 
net are the homotopy chains of A. 

To finish the exposition of the theory we have to characterize alge­
braically the topological invariants of the matrices r\. 

We can change the fundamental region F in F by 

k k 
üi = yikUi, y G G, 
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and A may change by subdivision. Then U is also changed by a set 
of induced subdivisions. This step is equivalent to a set of uni-
modular transformations of the generators and to the introduction 
of new pairs of generators uk, uh~l with the boundary relation 

(«*)• - uh~\ (u*-1)- = 0. 

So we have three ways to change the set of generators. The first and 
the second type preserve the number of generators and by iteration 
of these steps we get a group of linear transformations T> the basis 
transformations, with coefficients in the group ring GN which is 
determined in the same way for all group rings and is uniquely de­
termined by GN and the number of generators. 

And the theorem holds: 
If A is a complex, which is equivalent to A by subdivision, then the set 

of the homotopy boundary matrices f\ of A is equivalent to r% of A by 
basis transformations and introduction of new pairs of generators uk> 
uk-l w{lh 

{uky = uk~\ (u*-1)- = 0. 

Now we have to ask how to solve the equivalence problem for 
homotopy chain systems, and clearly the parallelism to the homology 
theory, which is so obvious by the definition of the equivalence, does 
not hold for its solution a t all. There is little hope to get a method to 
decide if the homotopy systems of two complexes A, A are equivalent 
or not. For, in order to compute the boundary matrices r£, we need 
to know the fundamental group G1; G1 is given by generators and de­
fining relations and there exists no method to decide if two systems 
of generators and relations define isomorphic groups. But there 
exists a method to get invariants. 

To be clear I define this method at first in a purely algebraic way. 
Let M be a ring with elements y which is homomorphic to GN and 

let 

4>x = y 

be a homomorphism of GN onto M. Then we get by 

k k 

fan = hi 

a set of matrices with elements in M. We define the Af-chains of A by 
k yç-\ k 
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the number of the v\ being the same as the number of the ul
iy and the 

boundary homomorphism by 

k. yr-\ „k k—> 1 

(Vi)' = LuTifli . 

This ilf-chain system with its boundary operator is homomorphic 
to the homotopy chain system. Indeed the projection 

is a homomorphism of the free homotopy chain groups in the free 
Af-chain groups and <f> commutes with the boundary operator, be­
cause the equation 

(*«**)• = <f)(uk)' 

holds. 
By projection of the basis transformation T we get the trans­

formation <j>T for iW-chain basis and an equivalence relation for M-
chain systems and we see that the equivalence classes of ikf-chain 
systems correspond to those of the homotopy chains. 

Now we may look for invariants of the ikf-chain system. 
Following the classical way we define the homology group Hk. 

Let 2k be the groups of the cycles, that is, of the chains zk with (zk)' 
= 0 and Bk the group of the bounding chains bk

y that is, of the chains 
for which exist a chain bk+1 with (bk+iy = bk. Then (bk)' = 0 , ÊkCZk. 
And the Hk are defined as the factor group 2k/Bk, all these groups 
being groups with operators in M. 

Observe further that the projection <j>ck defines a characteristic 
subgroup in Hk. Namely if zk is a homotopy chain with (zk)' = 0 , then 
<j)Zk is an ikf-chain with (<j>zky = 0 because <t> commutes with the 
boundary operator, and thus we get by projection of the group Zk 

of the homotopy cycles a subgroup </>Zk of 2k and, because <l>Bk~Ëk, 
a subgroup of Hk. The Hk with these characteristic subgroups <j>Zk/Bk 

are invariants of the homotopy system. 
The geometrical meaning of this algebraic construction is easy to 

realize for special rings M. 
If M=GN, the I P are the homology groups of the universal covering 

complex with operators induced by the deck transformations. If 
M = N, and <j> ] C £ Y = ]Cf> t n e Hk are the homology groups of A. The 
example of the torus shows that the homology groups of the complex 
U (M—GN) may vanish without the homology groups of a homo-
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morphic chain system doing the same. If M is a group ring of a factor 
group G* of G and </> is defined by a homomorphism <j>G~G*, then Ëk 

are the homology groups of a regular covering complex U* of A with 
operators induced by the deck transformations of Z7*. All these 
groups Hk are well known invariants of A, invariant also under con­
tinuous mappings of the point set complex A. 

The characteristic subgroup <j>Zk is of algebraic and geometric 
interest for M=N, k = 2. The existence of this group gives the argu­
ment for the remarkable theorem of Hopf that the second homology 
group H2 of a complex is homomorphic to a group H2{Gl), which is 
determined by the fundamental group Gl ol A. We have seen that 
Ë2 = 22/B2 is homomorphic to 22/<t>Z2 and the theorem will be proved 
if we show that 22/<j>Z2 is determined only by G1. Now 22, Z2 are de­
termined by the 2-dimensional subcomplex U2 of £/, and the U2 is 
essentially determined by the generators and defining relations of the 
fundamental group G1. 

Without loss of generality we may assume that A has only one 
vertex a0. Our torus complex gives an example for such a complex A. 
Then the 1-dimensional cells a\ represent closed paths cr*, which 
generate the free group S of paths. 

Every 2-dimensional cell a | has a boundary path pj(a), and the set 
Pj(a) is the set of the defining relations of G1 in the generators a^ 

Otherwise if we have these generators and defining relations we 
can construct A2 and with help of A2 in the usual way the universal 
covering complex U2 of A2. The complex U2 is the Dehn group image 
of G1 with the given generators and defining relations. And we see 
that 22/(f>Z2 is defined for every Dehn group image of G1. It is easy to 
realize that 22/<f>Z2 does not change if we change the generators or 
the defining relations and so the theorem of Hopf is proved. 

The cycles z2 may be characterized as chains induced by spheres, 
as Hurewicz has shown, and as chains induced by identities of de­
fining relations, that is, products of relations XpX"1, which equal 1 in 
the free group 5, as R. Peiffer has shown, and so we may under­
stand the formal definition of the group IPifi1) both geometrically 
and algebraically. 

We may compute the boundary matrices of the 2-dimensional 
homotopy chain system of a group with generators and defining 
relations directly, without constructing U2 and R. Fox has shown 
that a process of partial derivation defined for group rings of free 
groups is helpful for this task. He gets the boundary matrices r% as 
the "Jacobian" 
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2 dpi(<r) 
rH — 0 — > 

OCTj 

<j> being the projection of the free ring in the group ring of Gl. 
Following Hopf, we can extend the construction of homotopy chain 

systems of a group without using a complex U in higher dimension. 
Let C3 be the group of the 

c = ] £ XiVif Xi 6 GN, 

where the 
3 2 2 2 

(»<)' = Zi, ZiÇzZ , 

are a set of generators of Z2. Then there exists a subgroup Z3 of rela­
tions zz in the generators vz or of cycles with (z3)' = 0 and the process 
can be iterated. 

The homotopy chain systems of dimension n of group G1, which we 
get in that way, choosing successively sets of generators vk, are 
equivalent up to the dimension n~l. So the groups 

2k/4>Zh 

are the same for all homotopy chain systems of G1 and define homol­
ogy groups iJ^G1) of higher dimension adjoined to G1. 

The homotopy chain systems of Gl are characterized as acyclic 
systems up to the dimension n~ 1, that means systems in which 
every cycle bounds or in which the bounding cycles generate the 
groups of cycles. And so we get the theorem of Hurewicz, that the 
homology groups of a complex A are determined by its fundamental 
group G1 up to the dimension n — l, if the universal covering complex 
U is acyclic up to the dimension n — 1. 

Hurewicz has proved this theorem with the methods of his 
homotopy theory. Another interesting approach in a combinatorial 
way is made by Eilenberg and MacLane and a little later by Eck-
mann, who adjoin directly to a group a combinatorial complex U 
with a group G of mappings of U in itself, namely the complexes of 
ordered simplices the vertices of which are the group elements. 

About If-chain systems of a group which are defined by a homo-
morphism <j>G = G*, I mention that they give a natural approach 
to the metabelian groups and to the argument for the Haupt ideal 
theorem of the number theory; although this result of Schumann 
is not a new one, it may be of interest to see this connection be­
tween the chain systems and the groups themselves. 
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Now let us go back to the if-chain systems of a complex 17. 
If M is not a group ring we get a new type of chains, which we may 

define otherwise using locally groups of cells. Steenrod has extended 
this definition to singular chains using locally groups of points and 
has proved that the groups Ëk also for this kind of chain are invariant 
under topological mappings. 

But the homology groups do not characterize the equivalence 
classes of ikf-chain systems. There exists an invariant of certain M-
chain systems, the torsion r, which is not determined by its homology 
groups. We do not know if the torsion is invariant by topological 
mappings although we know that it is not a property of the homotopy 
classes of complexes. But you see the answer will be of interest in 
any case. And the classical question, if two complexes, which are 
topologically equivalent, are also equivalent by subdivision, will be 
answered in a negative sense, if the torsion is not a topological in­
variant. The torsion is defined, if M is a subring of a field. We get 
such rings if we map the element 7 by 0 in roots of the unit 

07 is a so-called character of G and M a subring of a cyclotomic 
number field. The basis transformations <f>T are linear transforma­
tions the determinant of which also equals a root unity, and we may 
ask for invariants of the boundary matrices if we admit all linear 
transformations of the field the determinant of which equals a root 
unity. Then we have to admit also new chains, namely chains with 
coefficients in the field and a boundary operator which commutes 
with the multiplication in the field. The homology groups of these 
chains "with division" are free groups and the torsion equals zero if 
one of these groups is not the identity. 

If all homology groups equal the identity, then there exists a cer­
tain set of subdeterminants dk of the boundary matrices which are 
not equal to zero, and the torsion is defined by 

and we have the theorem of Franz: Two systems of boundary 
matrices of a field are equivalent if and only if the torsion of the 
two systems is the same modulo a factor of a root unity. 

These algebraic calculi get geometrical interest by the fact that 
the torsion gives a classification of the so-called lens spaces, which 
are useful to show that the classical topological invariants do not 
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give a full classification of complexes. The lens spaces are defined as 
fundamental regions of a rotation y of finite order ju which maps a 
sphere of dimension 2^+1 in itself. 

Let 

y = £ + iy, y = S - «? 

be complex numbers, so we get the (2p+l)-sphere by the equation 

V 

X y*yh - i 

and a rotation y of order ju. by 

yi » 6****1^*, (Xfc, M) = 1. 

Then there exists a subdivision £7 of the sphere, which is mapped 
by 7 in itself, and U defines by projection a complex A for which U 
is the universal covering complex. Then A is a complex of a lens space. 

The fundamental group G1 = G of A is the cyclic group of order fi 
and we get a homomorphism of the group ring GN in a ring Af of a 
number field by 

«7 = e2W'"o, Mo |/*, Mo> 2. 

The torsion of this ikf-chain system of A is 

T(A, MO) = I I (1 - e2^kl^)e2viX^o 

and we get a purely arithmetical problem, namely to consider the 
multiplication groups of numbers generated by 

1 _ 62riX//*0> ± 62*iX/M0> (X, Mo) s 1, 

and to determine the representations of the unit in these genera­
tors. 

If ix is a prime number, this question is answered by the theorem 
that the circle units of Hubert generate a free group. If /x is not a prime 
number we have to argue (following Franz) a generalization of this 
theorem using the i-series L(s, <f>y) adjoined to the characters <f>y. 
In both cases we realize that if the equation 

T(A, MO) = T(A', HO) 

holds, the two sets of numbers (±X*), (±X£) are the same. 
But then we go from A' to A, changing the enumerating of the X 

(or the 3O and changing some X in — X (or some y in y), and so it fol-
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lows tha t lens spaces with the same torsion are equivalent under sub­
division. 

The fact that r is not a property of the homotopy classes follows 
from the homology classification of the lens spaces, which L. W. 
Franz, J. H. C. Whitehead and Olum have given, the latter using a 
homotopy invariant defined by Eilenberg and MacLane. 

You may foresee that it is possible to combine the notions of inter­
section, of cohomology and products of chains and cochains with the 
operator process 7. The development of the operator calculus in this 
direction given by Burger, Eckmann, Eilenberg, MacLane, Steenrod, 
I can only mention. Computing the duality properties of homotopy 
chain systems, we get for 3-dimensional manifolds a condition for the 
fundamental group G1; if G1 is abelian, Gl is either cyclic or the free 
abelian group with 3 generators. Last but not least we can adjoin to a 
m a p p i n g / : A—+A a class of mappings fu' U—*U and then a set of 
linear transformations of the homotopy chains. Thus we get a gen­
eralized Lefschetz trace formula and Wecken has proved that this 
trace invariant gives the exact minimal number of fixed points of a 
deformation class of the mappings / : A-+A, if the dimension of A is 
greater than 2. 
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