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1. Introduction. The purpose of this paper is to review the progress 
made in the study of measurable and measure preserving transforma­
tions during the last 17 years. The interest of mathematicians in this 
subject was aroused at the end of 1931 by von Neumann's and Birk-
hofFs proofs of their respective versions of the ergodic theorem 
[8, 9, 101 J.1 I t was very quickly recognized that the proper general 
framework for von Neumann's mean ergodic theorem lay in the 
direction of Hubert spaces and Banach spaces, whereas the extent of 
generality suitable to BirkhofFs theorem was to be found in the con­
cept of a measure space. A measure space is a set possessing no in­
trinsic algebraic, analytic, or topological structure—all that is nec­
essary is that a concept of measurability and a numerical measure be 
denned in it. Perhaps the best known nontrivial example of a measure 
space is one which, to be sure, has many essential non measure theo­
retic properties, but which may, nevertheless, be considered typical 
of measure spaces in general—namely the closed unit interval 
X = [0, l ] . For the sake of definiteness I shall begin the discussion 
by considering a one-to-one transformation T of this space X onto 
itself, such that, for every measurable subset E of X, both TE and 
T~XE are measurable and ix(E)=fjL(TE)=^ix(T~lE) (where ju denotes 
Lebesgue measure in X) . In much of what follows the space X and 
the transformation T can be replaced by more general spaces and 
transformations respectively. I shall indicate some of these generaliza­
tions in what might be called the geometric direction (that is, gen­
eralizations that retain something like an underlying measure space 
and a transformation acting on it), but I shall not enter at all into the 
analytic generalizations which constitute the current theory of the 
mean ergodic theorem. 

2. Asymptotic properties. The problems that were first treated, and 
that are still of interest and importance, are connected with the be­
havior of the sequence {r*} of powers of T. One of the first results 
in this direction is the Poincaré recurrence theorem, which asserts 
that, for every measurable set E and for almost every point x in £ , 

An address delivered before the Chicago meeting of the Society on November 26, 
1948, by invitation of the Committee to Select Hour Speakers for Western Sectional 
Meetings; received by the editors November 26, 1948. 

1 Bold face numerals refer to the bibliography at the end. 

1015 



1016 P. R. HALMOS [November 

there are an infinite number of positive values of n such that Tnx(EzE 
[18, 79]. An equivalent way of phrasing this assertion, in terms of 
the characteristic function %E of E, is to say that for every measurable 
set E the series ^2n~oXE(Tnx) diverges for almost every point x in E. 
A related result, proved by Hopf [67], is that if ƒ is any positive meas­
urable function, then the series J^n=nf(Tnx) diverges for almost every 
point x in X. From the Poincaré recurrence theorem it follows easily 
that if E is any measurable set of positive measure, then there are 
an infinite number of positive values of n such that ix(Er\TnE)>0, 
and, conversely, this formulation of Poincaré's theorem implies the 
original one. In this direction the result has been strengthened by 
Khintchine who showed that if E is any measurable set of positive 
measure and if e is any positive number, then the set of values of n for 
which 

n(EC\T«E) > (n(E)y-e 

is relatively dense in the sense of Bohr [90, 126]. 
BirkhofFs ergodic theorem may also be viewed as a statement con­

cerning the recurrence properties of { Tn}. In its most primitive form 
the ergodic theorem says that if E is any measurable set and if, for 
each positive integer n and for every point x in X, sn(x) is the number 
of values of i for which T{xÇ:Ef 0?ii^n — 1, then Km (l/n)sn(x) 
= s*(x) exists almost everywhere and, moreover, fs*(x)dfi(x)=n(E). 
If the discrete parameter n is interpreted as time, then s*(x) is the rel­
ative amount of time (time of sojourn) that x spends in E, and the as­
sertion is that the mean sojourn time is almost everywhere defined and 
that its value depends in an obvious way on the size of E. In terms of 
characteristic functions the statement of the ergodic theorem con­
cerns the existence almost everywhere of lim (1/n) y^Â^ixE(T*x) and 
the value of the integral of the limit function. A more general state­
ment asserts that, for any integrable function/, lim (1/n) ^2iIof(Tlx) 
=ƒ*(#) exists almost everywhere and that, moreover, Jf*(x)dix(x) 
=ff(x)dii(x). 

3. Generalizations. The first attempts to generalize the ergodic 
theorem consisted of replacing the underlying space X by abstract 
measure spaces [88] and dropping the hypothesis fx(X) < <*> [57, 122]. 
A slightly more interesting generalization was given by Khintchine 
[89] who proved that if ƒ is any integrable function on X and g is 
any periodic function of n, then lim (1/n) J^Zlnfi T{x) g (i) exists al­
most everywhere. The most powerful result in this direction is due to 
Wiener and Wintner [129] who proved that, if ƒ is, as before, an 
integrable function, then not only does lim (1/n) Yl"-oe2iriXjf(T3x) 
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exist almost everywhere for each real number X (here i = ( —1)1/2), 
but in fact the exceptional set of measure zero can be chosen to be 
independent of X. 

The ergodic theorem is a statement about a space, a function, and 
a transformation. In the preceding paragraph I mentioned the possi­
bility of generalizing the space and the function; there remains the 
possibility of generalizing the transformation. What, for instance, can 
be said if the transformation is not necessarily one-to-one, but is 
still, in one sense or another, measure preserving? Suppose, for the 
sake of definiteness, that T is a transformation of X onto itself such 
that the inverse image of every measurable set is a measurable set of 
the same measure. (A nontrivial example of such a transformation T 
is defined in the unit interval by Tx = 2x [mod l] .) If 7" is such a 
transformation, if ƒ is any measurable function, and if gn(x) =f(Tnx)f 

n — 0j 1, 2, • • • , then the sequence {gn} has the homogeneity prop­
erty that the joint ^-dimensional distribution of any k of its terms 
depends only on the relative distances between the indices and not 
on their values. More precisely, it is true that if A is any Borel set 
in ^-dimensional space, and if (#i, • • • , w*) is any &-tuple of distinct 
non-negative integers, then 

/ * ( { * : (g»i+m(*), ' • • , gnk+m(x)) G A)) 

is independent of m. I t is a nontrivial extension of the ergodic theo­
rem to say that for any sequence {gn\ of integrable functions with 
this homogeneity property lim (1/n) 22"Zogi(x) exists almost every­
where—this extension is due to Doob [24]. 

The final generalization that will be mentioned here is one in 
which the transformation is not required to be measure preserving. 
The first significant result here was obtained by Hurewicz [73]. I 
shall state a special case of Hurewicz's theorem—a special case 
which, however, is typical of the general case and from which, in 
fact, the general case can easily be derived. Suppose that the trans­
formation T is a one-to-one transformation of a measure space X 
onto itself such that, for every measurable subset E of X, both TE 
and T~~lE are measurable and such that if ju(E)=0, then JJL(TE) 
=/X(7 , _ ~ 1 JE)=0 . Suppose moreover that T is incompressible in the 
sense that, for every measurable set E, EC.TE implies /z(E — TE) = 0. 
I t follows from the Radon-Nikodym theorem that, for each integer 
nf there exists a positive measurable function œn such that jj,(TnE) 
=fEO>ndfJL for every measurable set E. In the notation so established 
Hurewicz's ergodic theorem says that, for any integrable function ƒ, 
the weighted averages 
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(Z/ (r**M*)) / (z «<(*)) 
converge to a finite limit almost everywhere [42], 

4. Indecomposability. If the interval X is the union of two disjoint 
measurable sets E and F of positive measure, each of which is invari­
ant under the measure preserving transformation T, then the study 
of any property of T on X reduces to the separate studies of the cor­
responding property of T on E and T on F. In such a situation the 
transformation T may be called decomposable. The most significant 
transformations are the indecomposable ones—they are usually called 
metrically transitive [7] or ergodic. In the early days of the theory 
many special examples of indecomposable transformations were pre­
sented in the literature—they occur in fields as apparently diverse as 
geometry [51, 52, 53, 54, 55, 56, 66, 69, 70, 71,100, 120, 121, 123, 124, 
125], probability [22, 74], and topological groups [39]. 

For indecomposable transformations the statement of the ergodic 
theorem can be strengthened by adjoining to it a description of the 
limit function. Precisely speaking, if ƒ is an integrable function, if 
/*(#)=l im (1/n) X^oVX^O» a n d ^ the measure preserving trans­
formation T is indecomposable, then f*(x) is equal almost everywhere 
to a constant, and the value of that constant is ffdfx. This assertion is 
at the basis of the celebrated and sometimes misunderstood inter-
changeability of time means and phase means. It is of interest to ob­
serve that the principle of interchangeability is in fact equivalent to 
indecomposability for measure-preserving transformations on a finite 
measure space; if, in other words, for each integrable function ƒ,ƒ* is 
equal almost everywhere to a finite constant, then T is indecomposa­
ble [103]. 

A question might be raised as to the extent to which Birkhoff's 
theorem could be extended to functions which are not necessarily 
integrable. I t is clear that if a transformation is sufficiently decom­
posable (meaning that there exists a disjoint infinite sequence of 
measurable invariant sets of positive measure), then the conclusion 
of Birkhoff's theorem is true for many non integrable functions. The 
identity transformation is from this point of view the extreme case— 
if T is the identity, then the conclusion of Birkhoff's theorem is true 
for every function. For indecomposable transformations T, on the 
other hand, it can be proved that if ƒ is a non-negative measurable 
function, or, more generally, a measurable function with the property 
that either its positive part or its negative part is integrable, and if 
lim (1/n) ^ilofi^x) exists and is finite almost everywhere, then ƒ 
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must be integrable. M. Gerstenhaber has recently shown me an 
example which proves that for arbitrary measurable functions this 
result is not necessarily true. 

5. Decompositions. A natural problem in connection with the con­
cept of indecomposability is whether or not every measure preserving 
transformation may be decomposed into indecomposable compo­
nents. In order to clarify the question and motivate the answer it is 
helpful to consider an example. Suppose that the measure space X is 
the unit square in the Cartesian plane, and that the measure pre­
serving transformation T on X has the property that it leaves un­
altered the first coordinate of each point. This implies that every 
subset E of X which depends on the first coordinate alone, that is, 
every set E which is the union of a class of vertical segments, is in­
variant under T. Suppose moreover that the invariant sets so ob­
tained exhaust essentially all possibilities—that is, that every meas­
urable invariant set is, modulo sets of measure zero, a union of verti­
cal segments. Since each vertical segment may be considered as a 
measure space on its own right (with linear Lebesgue measure) and 
since, in the presence of the conditions described above, the trans­
formation T is indecomposable on each such segment, this situation 
is an example of a decomposable transformation which is in a certain 
intuitively obvious sense made up of many little indecomposable com­
ponents. 

The general situation exemplified by the preceding paragraph may 
be described as follows. Suppose that to each point x of a measure 
space X (with measure fi) there corresponds a measure space Yx 

(with measure JJLX) SO that the spaces corresponding to distinct points 
are disjoint. Suppose that a concept of measurability and a numerical 
measure X are introduced into the set Z of all those pairs (x, y) for 
which xÇ.X and j G Yx, in such a way that whenever A is a measura­
ble subset of X} then the set A* = {(#, y) : XÇLA } is a measurable sub­
set of Z. If, for every measurable subset E of Z, 

X(£) = f p9(Ef\Yx)dv{x), 
J x 

then the measure space Z (with measure X) is called a direct sum of 
the measure spaces Yx with respect to the measure space X. The best 
possible theorem on the decomposability of a measure preserving 
transformation T on a measure space Z would presumably assert that 
Z may be represented as a direct sum in such a way that the class 
of measurable invariant sets coincides, except possibly for sets of 
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measure zero, with the class of all sets of the form A*; this would 
imply that the transformation T on Yx is indecomposable for almost 
every x in X. The first theorem of this type (in case Z is a complete 
metric space) was proved by von Neumann [103] ; extensions to more 
general spaces were later given by Dieudonné [2l] and myself [36, 
44]. 

6. Density and category theorems. How likely is a measure pre­
serving transformation to be indecomposable? Birkhoff conjectured 
that in some sense the indecomposable case is the general case. One 
possible way of establishing this conjecture was to introduce a suita­
ble metric or topology into the set T of all measure preserving trans­
formations (after identifying two transformations which differ only 
on a set of measure zero) and then to show that the subset D of de­
composable transformations is of the first category. This was first 
done by Oxtoby and Ulam for measure preserving homeomorphisms 
of certain subsets of Euclidean spaces and later by me for arbitrary 
measure preserving transformations [40, 107]. These topological in­
vestigations had some interesting byproducts of which at least one is 
worth mentioning. A class of particularly simple measure preserving 
transformations of the interval is obtained by dividing the interval 
into a finite number of subintervals of equal length and sending each 
such interval into another such interval by translation. The assertion 
concerning the class P of transformations so obtained is that it is 
everywhere dense in T—in other words every measure preserving 
transformation is the limit of a sequence of permutations of intervals. 

7. Strong mixing. I t is possible to define the concept of indecom-
posability of a transformation T in terms of the asymptotic behavior 
of the sequence of powers of T. I t is in fact an easy consequence of the 
ergodic theorem that if T is indecomposable, then 

(*) lim — £ n(E r\ TV) = n(E)ix(F) 
n t==0 

for every pair of measurable sets E and F and that, conversely, the 
validity of this relation for every pair of measurable sets implies that 
T is indecomposable. Since the condition fi(Er\F) = fi(E)fx(F) is the 
usual requirement in the definition of independence in the sense of 
the theory of probability, the equation (*) may be viewed as asserting 
tha t asymptotically, in the sense of Cesaro convergence, any two 
measurable sets, of which one is held fixed and the other is allowed to 
move under the influence of the transformation T, tend to become 
independent of each other. 
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The equation (*) has another natural physical interpretation. Sup­
pose that the transformation T is visualized as a particular way of 
stirring a container (of total volume 1) full of an incompressible fluid 
which may be thought of as 99.44 per cent water and .56 per cent red 
ink. If F is the region occupied by the red ink, then, for any part E 
of the container, the relative amount of red ink in E, after n repeti­
tions of the act of stirring, is given by ii{Er\TnF)/ix(E). The inde-
composability of the transformation T implies therefore that on the 
average this relative amount of redness is exactly equal to .56. In 
general, in physical situations like this one, one expects to be justified 
in making a much stronger statement, namely that, after the liquid 
has been stirred sufficiently often, every part E of the container 
will contain approximately .56 per cent red ink. In mathematical 
language this pious hope amounts to replacing Cesaro convergence 
by ordinary convergence, that is, replacing (*) by 

(**) Km n(E H TnF) = n(E)ii(F). 

Transformations T satisfying (**) for every pair E and F of measur­
able sets are called strongly mixing. 

I t may be worth while to give an example of a strongly mixing 
transformation on the interval X. The definition of such a trans­
formation is surprisingly simple. For each x in X, let x = ]C£»i #*/2* 
be the binary expansion of x, and let p be a cyclic permutation of the 
set of all positive integers ; for instance p may be defined by 

p(l) = 2, p(2n) = In + 2, and p{ln + 1) = In - 1, 

n = 1, 2, • • • . 

If S is defined by Sx= ^2%Li ap(i)/2\ then, except for some easily 
rectifiable trouble caused by the non uniqueness of the binary expan­
sion, it follows that 5 is one-to-one from X onto X and measure 
preserving. Strongly mixing transformations similar to this one occur 
frequently in probability theory. 

8. Weak mixing. Between indecomposable transformations and 
strongly mixing transformations there is room for another concept— 
the concept of a weakly mixing transformation. This apparently arti­
ficial concept is of great technical significance. A measure preserving 
transformation T is, by definition, weakly mixing if 

1 n~1 

(***) lim — X) | n(E r\ T'F) - »(E)n(F) | = 0 
n ^o 

for every pair E and F of measurable sets. In mathematical language, 
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the definition of weak mixing substitutes strong Cesaro convergence 
for the Cesaro convergence occurring in the definition of indecom-
posability and for the ordinary convergence occurring in the defini­
tion of strong mixing. It is an analytic exercise to show that (***) is 
satisfied if and only if there exists a set N of positive integers such that 
N has density zero and such that 

lim n(EC\ TnF) = /i(E)/x(F). 

If indecomposability is expressed by saying that on the average E is 
.56 per cent red, and if strong mixing is expressed by saying that after 
a while E will be .56 per cent red, then weak mixing can be expressed 
by saying that after a while E will be .56 per cent red, with the 
exception of a few rare instants during which it may be either too 
scarlet or else too pale a pink. 

For any two measure preserving transformations 5 and Ty the 
direct product S XT is defined as that transformation on the Car­
tesian product of the space X with itself which sends each point (xf y) 
into (Sx, Ty). The first indication that weak mixing is more than an 
analytic artificiality is in the assertion that T is weakly mixing if and 
only if its direct product with itself is indecomposable [65, 83, 84], 

The physical intuition which motivated the conjecture that in 
general a measure preserving transformation is indecomposable 
seems also to indicate that in general a measure preserving trans­
formation is weakly and even strongly mixing. With the usual (cate­
gory) interpretation of the phrase "in general," I proved that this 
conjecture is right for weak mixing [41 ]. In a recent paper Rokhlin 
[115] showed, by a very simple and elegant argument, that for 
strong mixing on the other hand the conjecture is just as wrong as it 
can be, and that, in fact the set S of strongly mixing transformations 
is a set of the first category in the set T of all measure preserving 
transformations. 

9. Automorphisms and unitary operators. A measure preserving 
transformation T on a measure space X induces in an obvious way 
an automorphism of the measure algebra of measurable sets modulo 
sets of measure zero, or, in other words, a set transformation which 
assigns to each class of sets, any two members of which differ only 
on a set of measure zero, another such class. The question of whether 
or not the converse is true has received some attention [38, 102]. 
The answer is yes except in pathological measure spaces. Since this 
pathology is not of very much interest from the point of view of this 
paper, I shall from now on require that the space X be non patho-
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logical in this sense. It has been proved that all the well known 
measure spaces satisfy this requirement, that is, that for them every 
automorphism of the measure algebra of measurable sets modulo 
sets of measure zero is indeed induced by a one-to-one measure 
preserving transformation of the space onto itself. 

Another, very similar, problem is suggested by the consideration 
of the complex Hilbert space L% If, for each ƒ in Z2, an element Uf 
in 1,2 is defined by (Uf)(x) =/(7Y), then the fact that T is measure 
preserving implies by an easy and familiar argument (proceeding 
through finite linear combinations of characteristic functions of 
measurable sets) that 

I N I 2 = ƒ I fiTx) \>d»(x) = ƒ I ƒ(*) \*drtx) = H/H2. 

Since the transformation U is a one-to-one linear transformation of 
£2 onto itself, the last written relation means that U is unitary [93, 
133]. In other words, to each measure preserving transformation T 
on X there corresponds a unitary operator U on L2; the first problem 
that has to be settled is the characterization of the unitary operators 
that can arise in this way. A more or less satisfactory answer is known : 
a unitary operator is induced by a measure preserving transformation 
T in the way just now outlined if and only if it sends each bounded 
measurable function into a bounded measurable function and is such 
that, for any two bounded measurable functions ƒ and g, U(fg) 
= Uf- Ug, where the indicated multiplications denote the pointwise 
product of the factors [103]. 

I t is natural to hope that at least some of the measure theoretic 
properties of T can be described in the language of Hilbert space and 
that, conversely, the ideas suggested by the Hilbert space point of 
view may have measure theoretic significance. There is a fact quite 
near the surface which seems at least partially to fulfill this hope: a 
necessary and sufficient condition that T be indecomposable is that 
the complex number 1 be a simple proper value of U [103]. (A proper 
function of proper value 1 is of course simply an invariant function. 
Each function in the one-dimensional family of constant functions 
is invariant; the theorem just stated characterizes indecomposability 
by the absence of any other invariant functions.) A considerably 
deeper fact, known as the mixing theorem, is that T is weakly mixing 
if and only if 1 is a simple proper value of U and moreover U has no 
other proper values [62, 63, 65, 94]. 

10. Isomorphism and pure point spectrum. A fundamental prob-
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lem of the theory of measurable transformations is the problem of 
isomorphism. Two measure preserving transformations Xi and T% are 
called isomorphic if there exists a measure preserving transformation 
T which carries Ti into T2, that is, for which TT\T~l = JH2. An obvious 
solution of the isomorphism problem is suggested by the first result 
mentioned in the preceding section—two measure preserving trans­
formations are isomorphic if and only if the automorphisms they 
induce are conjugate elements in the group T of all automorphisms. 

One might make the more promising and less trivial conjecture 
that all the measure theoretic properties of a transformation T are 
reflected by the operatorial properties of its unitary operator U, 
that is, that Tx and T2 are isomorphic if and only if the corresponding 
unitary operators U\ and U2 are spectrally equivalent, or, in other 
words, if and only if there exists a unitary operator U for which 
UUiU*=Ui. 

There is an interesting class of measure preserving transformations 
for which the conjecture expressed in the preceding paragraph is true. 
In order to motivate the introduction of this class, let the measure 
space X be a compact abelian group (with Haar measure) and let 
a be any fixed element of X. If T is defined, for every x in X, by 
Tx = x+a, then T is a measure preserving transformation of X onto 
itself. If 0 is any character of the group X, then the equation 4>(x+a) 
=4>(a)<l)(x) shows that <j> is a proper function of the unitary operator 
U corresponding to T, with proper value <j>(a). Since the set of all 
characters is a complete orthonormal set in £2, the transformation T 
is said to have pure point spectrum—the general definition of a meas­
ure preserving transformation with pure point spectrum is that the 
set of proper functions of its induced unitary operator is large 
enough to contain a complete orthonormal set. The conjecture con­
cerning the relation of isomorphism and spectral equivalence is true 
in this sense: two indecomposable measure preserving transforma­
tions with pure point spectrum are isomorphic if and only if their 
induced unitary operators are spectrally equivalent—this was proved 
by von Neumann [103]. In this connection it should also be men­
tioned that every indecomposable measure preserving transforma­
tion with pure point spectrum is known to be of the type described in 
the example above—that is, each such transformation is necessarily 
a translation by a suitable element in a suitable compact abelian 
group [38]. 

11. Isomorphism and mixed spectrum. The result of the preceding 
section is not true for arbitrary measure preserving transformations—-
it is possible, in other words, to construct an example of two measure 
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preserving transformations 7\ and Ti such that T\ and Ti are not 
isomorphic but such that the corresponding unitary operators are 
spectrally equivalent. This construction has not been published so 
far—it is the result of joint work by von Neumann and myself. I 
proceed to sketch the details of the theory behind the construction. 

With each measure preserving transformation T it is possible to 
associate a sequence { Gn} of classes of bounded measurable functions 
as follows. The initial class Go contains only the function which is 
identically equal to 1 ; for n ^ 1, the class Gn consists of those func­
tions ƒ which satisfy almost everywhere an equation of the form 
f(Tx)=g(x)f(x), with g g G n - i . The class Gi is then the class of in­
variant functions; if T is indecomposable, so that Gi is the class of 
constant functions, then G2 is the class of proper functions; for posi­
tive values of n the functions of Gn may be viewed as generalized 
proper functions belonging to proper values which instead of being 
necessarily constants are elements of Gw-i. I t may happen that, for 
a suitable positive integer n, G n =G n +i (and hence Gn=Gn+p for 
every positive integer p); the least positive integer for which this 
happens is then denoted by n(T). If for instance T is weakly mixing, 
then (since T is a fortiori indecomposable) Gi is the class of constant 
functions and therefore, by the mixing theorem, n(T) = 1. 

An example which shows that isomorphism is not the same as 
spectral equivalence is now easy to construct. Let the measure space 
be the torus represented as all pairs (x, y) of real numbers modulo 1. 
If Ti(x, y) = (x+a, y+x) [mod l ] , and if r2(#, y) = (x+a, Sy) 
[mod l ] , where a is an irrational number and S is the transforma­
tion described in §8 as an example of a strongly mixing transforma­
tion, then a reasonably straightforward calculation shows that the 
induced unitary operators are spectrally equivalent. The proof that, 
nevertheless, T\ and T% are not isomorphic leans on the concepts 
introduced in the preceding paragraph; it can in fact be shown that 
n(Ti) = 3 and n(T2) = 2 . 

12. Invariant measures. With the exception of the ergodic theorem, 
most of the considerations in the preceding sections deal with meas­
ure preserving transformations. How restrictive is the requirement 
that a transformation preserve some measure ? One of the best precise 
and non tri vial formulations of this question is the following one. 
Suppose that T is a one-to-one transformation of a measure space X 
onto itself such that for every measurable subset E of X both TE 
and T~XE are measurable and such that if /z(E)=0, then fx(TE) 
=/x(r_ 1E) = 0 ; does there then exist a measure X on the class of all 
measurable subsets of X such that X(E) vanishes if and only if ju(£) 
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vanishes, such that X is the union of countably many measurable 
sets on each of which X is finite, and such that \{TE) =\(E) for every 
measurable set E? 

An interesting necessary and sufficient condition for the existence 
of a finite X was given by Hopf [64]. In order to describe this condi­
tion it is necessary to introduce some new concepts. Two measurable 
sets E and F are primitively equivalent with respect to a transforma­
tion T if there exists an integer n such that TnE — F. Two measurable 
sets E and F are equivalent with respect to a transformation T if 
(after possibly omitting a set of measure zero from both of them) 
both E and F may be written as unions of disjoint sequences of 
measurable sets so that each term in the sequence representing E is 
primitively equivalent to the corresponding term in the sequence 
representing F. In imitation of Dedekind's definition of finiteness, it 
is customary to say that a measurable set E is bounded (or finite) 
with respect to T if whenever E is equivalent to a subset F of itself, 
then jj,(E — F)=0. Hopf s condition for the existence of a finite in­
variant measure is that X be bounded. 

The concept of boundedness, while it gives quite a bit of insight 
into the structure of measurable transformations, is not very easy 
to apply. Until recently, for example, it was not known whether or 
not the condition was vacuously satisfied, that is, whether or not 
there existed any transformations at all which did not satisfy it. 
In 1947 I succeeded in showing that such a transformation does exist 
and hence that the search for invariant measures must be conducted 
among measures which are allowed to take infinite values [43]. The 
proof is based on the fact that it is sufficient to exhibit an indecom­
posable measure preserving transformation on a non atomic measure 
space of infinite measure ; the first transformation with these proper­
ties was constructed by Oxtoby. The condition of Hopf has a natural 
extension to the infinite case, but is then even harder to apply [43, 
85]. While it seems plausible to conjecture that an invariant measure 
need not always exist, the question is still open. Either an example or, 
if the conjecture is wrong, a general existence theorem would be of 
considerable interest. In the meantime the theory of measurable but 
not necessarily measure preserving transformations deserves a little 
investigation. The first steps of such an investigation were carried 
out by Rademacher in 1916 [llO] and a few fragmentary results 
have been obtained since then [43, 46]. 

13. Flows. Virtually all the problems discussed above for a single 
transformation T and its iterates Tn> w = 0, ± 1 , ± 2 , • • • , make 
sense for a one-parameter family of transformation {Tt}, — <*> <t 
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<+<*>, which have the group property Tt+s — TtTs for all / and s. 
Such a family of measure preserving transformations is called a flow; 
a flow is called measurable if Ttx is a measurable function of (x, t). 
If sums are replaced by integrals and the problems of measurability 
receive a modicum of attention, then the ergodic theorem, the mixing 
theorem, the decomposition into indecomposable parts, and many 
other essential results can be extended from transformations to flows 
without any new conceptual difficulties. 

There is, however, at least one notion which is suggested by the 
study of flows and not by the automatic process of generalization. 
This is the concept of a flow built under a function. Suppose that ƒ 
is any positive measurable function on a measure space X and that T 
is any one-to-one measure preserving transformation of X onto it­
self. Let X be the ordinate set of/, that is, X is a subset of the product 
space of X with the real line and is defined by 

X = {(x,t):0£t< f(x)}. 

For convenience of language conceive X as a horizontal interval, and 
the parameter t as time; it will then make sense to speak of points 
of X going "up" with a certain "velocity." Let each point (x, t) of X 
move up, in this sense, with a uniform unit velocity, until it hits the 
"ceiling" ƒ(#); let it then be put back at the place (Tx, 0) and con­
tinue on up from there. This procedure defines a flow in X; the flow 
so defined is called the flow built on T under ƒ. The study of such a 
flow may obviously be reduced to the study of the transformation T 
and the function ƒ ; it is consequently a very useful thing to know 
that every measurable indecomposable flow is isomorphic to a flow 
built under a function. This result was proved by Ambrose [2] and 
later extended to all non pathological flows by Ambrose and Kakutani 
[3]. 

I t is interesting to observe that the concept of a flow built under 
a function has a discrete analogue which promises to be of interest 
even in the study of a single transformation. Let ƒ be a measurable 
function from a measure space X to the set of non-negative integers, 
and write JEW= {x:f(x)^n}, n = 0, 1, 2, • • • ..The set X of all pairs 
(x, n), where n = 0> 1, 2, • • • and # £ £ „ , is an analogue of what in 
the continuous case was called the ordinate set of ƒ. If T is a trans­
formation on X, then a transformation T may be defined on X by 
setting T(x> n) = (x, n-\-l) whenever # £ £ n + i and T(x, ^) = (7#, 0) 
otherwise. The example (mentioned in the preceding section) of a 
transformation which does not preserve any suitable finite measure 
was constructed with the aid of such methods; a systematic study of 
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the relation between T and T was recently begun by Kakutani [82]. 

14. Unsolved problems. In connection with the discussion above I 
have already had occasion to mention two or three unsolved prob­
lems. The most important one among these is the problem of the 
existence of invariant measures. In this section I shall mention a few 
more directions in which further progress would be desirable. 

Quite a few of the results discussed above, but by no means all, 
can be extended to measure spaces of not necessarily finite measure ; 
a systematic investigation of measure preserving transformations on 
infinite measure spaces is still lacking. Another obvious problem is to 
extend the ergodic theorem (known for the additive group of the 
integers and the additive group of the real numbers) to more general 
groups of transformations; some results in this direction are known 
for finite dimensional vector groups [109, 127, 128]. 

In order to state the next problem, it is convenient to introduce 
one more concept. If, for each of a countable set of indices i, X% is a 
measure space with measure m such that ya{Xi) = 1, then it is pos­
sible to make the Cartesian product X of all the Xi into a measure 
space in a way which is a natural extension of the concept of Car­
tesian product for a finite number of spaces. Such product spaces 
are well known in probability theory. Suppose in particular that the 
spaces Xi are all equal to a fixed space Xo and that the domain of 
the index i is the set of all integers. A point x of X is in this case a 
sequence, # = ( • • • , x_2, #-i, #o, #i, #2, • • • ), x»G^o. If a trans­
formation To is defined on X by Tox = ( • • • , y~2, y~i, 3>o, yi, y%, • • • ), 
yn = #n+i, then this coordinate shift T0 is a one-to-one measure pre­
serving transformation of X onto itself. If Xo is the real line (with a 
suitable measure JJLQ satisfying juo(Xo) = 1) and if the function ƒ o on X 
is defined by jfo(#)=#o, then results much more precise than the 
ergodic theorem are known about the asymptotic behavior of the 
sequence {fo{T^x)}. I t would be of interest to obtain analogues of 
these results (for example, the law of the iterated logarithm and the 
central limit theorem) for a wider class of transformations and func­
tions than the ones here described. 

An at tempt in this direction has been made by Izumi [75]. Mo­
tivated by the fact that (under a mild restriction on the measure JJL0) 
not only do the averages (1/n) X^o*IO(TQX) converge to zero almost 
everywhere but even the series ^^T-i (l/n)fo(T$x) is convergent 
almost everywhere, Izumi formulated a set of conditions on the meas­
ure preserving transformation T (and on the function ƒ) sufficient to 
ensure the convergence almost everywhere of ]Cn>-i (l/n)f(Tnx). 
Unfortunately Izumi's requirements turned out to be so stringent 
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that the only transformation which can satisfy them is the identity 
transformation on a measure space consisting of exactly one point 
[45]. 

In conclusion I emphasize again that the isomorphism problem 
is almost completely untouched in most nontrivial cases. I t is, of 
course, hard to formulate precisely what is meant by the injunction: 
"find necessary and sufficient conditions for the isomorphism of two 
measure preserving transformations." There are, however, many 
concrete examples of measure preserving transformations concerning 
which it is not known whether or not any two are isomorphic—the 
vague task of finding a complete set of invariants can at least at the 
beginning be replaced by the specific task of finding sufficiently many 
invariants to sort out into isomorphism classes these known examples 
[39]. If, for instance, the coordinate shift on the Cartesian product 
of countably many £-point spaces (in which each point has measure 
(1/k)) is denoted by Tkt then is T2 isomorphic to Tz or is it not? 
Nobody knows. 
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