
SOME GENERALIZATIONS OF HELLY'S THEOREM 
ON CONVEX SETS 

ALFRED HORN 

Helly's well known theorem on convex sets states that if F is a 
family of closed bounded convex sets in w-dimensional space such 
that every w + 1 members of F have a point in common, then there 
exists a point which belongs to all members of F. The interest of this 
theorem lies in the role played by the dimensionality of the contain­
ing space. If we are given that every k members of F have a point in 
common, where k<n+l, the conclusion is false. In this paper we 
shall show that significant conclusions can still be drawn in this case. 

Consider the case where the sets lie in the plane and every two 
have a point in common. If we project the members of F on a line L, 
we obtain a family of convex subsets of L to which the hypotheses of 
Helly's theorem apply. I t is an immediate consequence that in any 
direction there exists a line which intersects all members of F. Much 
less obvious is the statement that through every point there passes a 
line which intersects all members of F. This is the type of result 
which will be proved in §4 below. Instead of parallel projection, we 
shall project the members of F centrally on a circle (or a sphere, 
when the dimension of the containing space is greater than two). 
Then we shall apply, instead of Helly's theorem, a theorem proved 
below concerning "convex" sets (in the sense described in §1) lying on 
a circle (or sphere). Such sets (in a more restricted sense) were con­
sidered in a paper by C. V. Robinson [2].1 In that paper the author 
was interested in conditions on a family of "strictly convex" sets in 
order that they all have a point in common. Our interest however is 
in proving a theorem for an arbitrary family of "convex" subsets of a 
sphere with the only restriction being that every k members of the 
family have a point in common. This is carried out in §3. 

I wish to express my thanks to my colleague F. A. Valentine, with 
whom I had helpful discussions. A special case of Theorem 3 was 
proved in our joint paper [ l ] . 

1. Definitions and notation. We denote w-dimensional Euclidean 
space by En> and if x = (xi, • • • , xn) is a point of En, we write 

I i 2 2 1/2 

I * J = (*i + • • • + Xn) . 

Presented to the Society, November 27, 1948; received by the editors July 8, 1948. 
1 Numbers in brackets refer to the references cited at the end of the paper. 
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A subspace of En, that is, a hyperplane through the origin, is a sub­
set of En which is closed under addition and scalar multiplication. 

The surface of the unit sphere in En , that is, the set Ex(xÇ:En, 
\x\ = 1), will be denoted by Sn. A great ^-sphere Sk is the intersection 
of Sn with a ^-dimensional subspace of En. I t follows that a great 
0-sphere is the empty set, and a great 1-sphere is a pair of dia­
metrically opposite points of Sn. A great 2-sphere is also called a 
great circle. 

A major arc is a closed arc of a great circle which is greater than a 
semi-circle (this includes as a special case the whole great circle). A 
minor arc is a closed arc of a great circle which is smaller than a 
semi-circle. A semi-circle is neither a major nor a minor arc. If x 
and y are linearly independent points of Sn, the minor arc joining x 
and y is the set 

Et(z = ax + fiy/ \ ax + py |, a ^ 0, 0 è 0, a + /J > 0). 

The symbol [x, y] is reserved for the minor arc joining x and y. 
We shall use the term convex for subsets of Sn in a sense which is 

wider than that usually understood. 
DEFINITION 1. A subset A of Sn is convex if whenever x and y are 

linearly independent points of A, then either the minor or the major 
arc joining x and y lies entirely in A. 

I t follows that any set consisting of just two diametrically opposite 
points is convex, and that any subset of S\ is convex. 

DEFINITION 2. A subset A of Sn is strictly convex if whenever x and 
y are linearly independent points of A, then the minor arc [x, y] lies 
in A. 

If A and B are sets, we say that A intersects B if A -B 5*0. 

2. Convex sets which are not strictly convex. An immediate conse­
quence of definitions 1 and 2 is the following lemma. 

LEMMA I. If A and B are strictly convex subsets of Sn, then A-B is 
strictly convex. If A is a convex subset of Sn and Sk is a great k-sphere, 
then A • Sk is convex. 

LEMMA 2. Let A be a closed convex subset of S$ which contains a 
major arc M which is a proper subset of a great circle S2, and suppose 
-4—527^0. Then there exists a point z in A—Sz such that every great 
circle through z intersects A in a major arc. 

PROOF. I t will suffice to find an interior point z of A such that 
— s £ - 4 . Let x and y be the end points of M. If ô£ .4—5 2 , all the 
minor arcs joining b and points interior to [—x, ~y\ lie in -4, since 
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no point interior to [x, y] is in A. Hence A—S2 contains an interior 
point w. If — w is not in A, all the minor arcs joining w and points of 
M lie entirely in A. Letting H denote the hemisphere bounded by 52 
and containing w, it follows that A contains H minus the spherical 
triangle x, y, w. Now there exists a point p interior to [yt w] such 
that [p, x] is not in A, for A is closed and [x, y] is not in A. Since A 
is convex, the major arc joining p and x lies in A. Clearly, this major 
arc contains a point z^A H with the required properties. 

THEOREM 1. If A is a closed convex subset of Sn which is not strictly 
convex, and which is contained in no great n — 1-sphere, then A contains 
at least one of every pair of diametrically opposite points of Sn. 

PROOF. We proceed by induction on n. The cases w = l and w = 2 
are obvious. When n^3, A contains a major arc M which is a proper 
subset of a great circle S2. Let n = 3, and let z be as described in 
Lemma 2. If #££3— A, the opposite point —x must lie in A because 
the great circle through 0 and x intersects A in a major arc. Now 
suppose the theorem holds for n<m, m>3. Let Z\ and 02 be the end 
points of M. By Lemma 2, if p(EA — S2, we can find a point z in the 
great 3-sphere S3 through £2 and p such that every great circle on 
S3 through z intersects Aim. major arc. Let 23, • * • » zm be such that 
Si, • • • , 0w are linearly independent points of A, and such that every 
great circle joining Zi to a point of S2 intersects A in a major arc, 
3^i^m. Let y be in the interior of [01, 02]. Observe y is not in A. 
Now let x be any point of Sw. We have 

x = aiy + 0L2Z2 + • • • + amzm. 

If a3 = 0, x lies on the great ra —1-sphere containing M, 04, • • • , zm. 
By the induction hypothesis, it follows that either x or — x is in A. 
If Û:37^0, we have 

x = aiy + $w + atfi + • • • + amzmf 

where (3w = «202+^303, j8 = | Q ^ + O ^ I . Note that either w or — w is in 
A. Clearly, the points y, wf Z\, • • • , zm are linearly independent. The 
great ra — 1-sphere through y, w, 04, • • * , zm intersects A in a closed 
convex set 3 by Lemma 1. Also 5 contains a major arc which is a 
proper subset of the great circle through 04 and yt and JB contains 
ra — l linearly independent points — y, 04, • • • , 0m, ±w. Hence by 
the induction hypothesis, either x or — x is in B} and therefore in ^4. 

3. The main theorem. 

THEOREM 2. Z,e/ -F fo a family of closed convex subsets of Sn which is 
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such that every k members of F have a point in common, l^k^n. 
Then given any great n — k-sphere Sn-k, there is a great n — k + 1-sphere 
containing Sn-k and intersecting every member of F. 

As a noteworthy special case, we have the following theorem. 

THEOREM 3. Let F be a family of closed convex subsets of Sn which is 
such that every n members of F have a point in common. Then there 
exists a point x such that every member of F contains either x or —x. 

PROOF. If we denote the statement of Theorem 2 by T(n} k), then 
the statement of Theorem 3 is T(n} n). We are going to prove 
T(n, k) by induction on n. The statement JT(1, 1) is trivially true. 
The rest of the proof is divided into three parts. 

Part 1. If 1 ^k^n, T(k, k) implies T(n, k). 
PROOF. Let En-k be the subspace generated by Sn-k and let Ek be 

the subspace of points orthogonal to En-k- We may suppose that no 
member of F intersects Sn-*, for otherwise it would intersect every 
great n— & + l-sphere containing Sn-k- If xÇiEni let P(x) denote the 
projection of x on E, By our assumption, if x&A ÇE.F, then P(#)?^0. 
Let A' = E,(z = P(x)/\P(x)\, xGA), and F' = EB(B=A', A<EF). I t 
is easily seen that A ' is a convex subset of Sk = Sn- Ek, whenever AÇ.F. 
In fact, if z and z' are linearly independent points of A', that is, 
z = P{x)/\P{x)\, z'=P(x')/\P(x')\, where x and x' are linearly 
independent points of A', then whenever a2+a'2>0 

az + o Y _ P(fix + fi'x') _ P(fix + ft it 11 fix + fi'x' | ) 

| az + a'z' | ~ | P(fix + j3V) | ~ | P(px + fix'/ \ fix + ftot | ) | ' 

where fi = a/\P(x)\, (i' = a'/\P(x')\> Hence, whenever w is on the 
minor (or major) arc joining z and z\ it is the image of a point on the 
minor (or major) arc joining x and x'. Moreover A' is closed when­
ever A is closed. Furthermore every k members of F' have a point in 
common. By T(k, k) there is a point w such that every member of F' 
contains w or — w. But the statement ±wÇîA' is equivalent to 
P(x)/\P(x)\ = ± w for some x(~A, that is, P(x) is a multiple of w. 
Thus every member A of F contains a point in the subspace £«-*+! 
generated by En-k and w, and the great n — & + l-sphere Sn-En-k+i 
intersects every member of F, To complete the proof of Theorem 2, we 
need only show: 

Part 2. If n > l , r ( w - l , » - l ) implies T(n, n). 
PROOF. Let F be a family satisfying the hypotheses of T(n, n), and 

suppose T{n, n) is false. Then to each x(E.Sn, we can assign a member 
A(x) of F such that neither x nor — x belongs to A{x), Since A(x) is 
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closed, we can find a number S (x) such that neither z nor —z belongs 
to A(x) whenever \z—x\ <d(x). The sets J E ^ Z — # | <ô(x), z(ESn, 
xÇzSn) cover 5 n , and we may select a finite covering of Sn from these. 
Let the corresponding members of F be A(xi), • • • , A(xp). Then no 
point x is such that all of the sets A(X{) contain either x or — x. If we 
can prove T(n, n) for a finite family F, we shall have arrived at a con­
tradiction. Accordingly, we henceforth assume F is finite. 

Next we prove that T(n, n) is true if one of the members, say B, of 
F lies entirely on some great n — 1 -sphere Sn-i. Let A' =A*Sn-i 
for each A in F, and let F' be the family of sets A', AÇ.F. Every 
n — 1 members of F' have a point in common, since they have 
a point in common with B, Also by Lemma 1, every member of 
F' is a closed convex subset of Sn-i. An application of T(n — 1, n — 1) 
completes the proof. 

Accordingly, we assume that no member of the finite family F lies 
entirely on a great n — 1-sphere. By Theorem 1, we may assume that 
every member of F is strictly convex. 

To prove T(n, n) for a finite family of strictly convex closed sets, 
we proceed by induction on the number of members of F. T(n, n) 
being trivially true whenever F has at most n members, assume 
T(n, n) holds whenever F has fewer than r members, where r>n. 
Before completing the proof of part 2, we need the following result. 

Part 3. Suppose 7? has r members Ai, • • • , Ar, and suppose there 
is a point x such that xÇ_A\ Aa, and — x(EA8+i A8+t, 
where s > 0 , / ^ 0 , and s+t^r — 1. Then T(n — 1, n — 1) implies there 
exists a point y such that either 

(a) every member of F contains either y or —y, or 
(b) y belongs to 5 + 1 members of F, or 
(c) y belongs to 5 members of F and —y belongs to / + 1 other 

members of -F. 
PROOF. Every n — 1 members of the family {Ai-Ar, • • • , Ar-i'Ar} 

have a point in common. By Lemma 1, each of these sets is strictly 
convex. Since T(n — 1, n — 1) implies T(n, n — 1), there exists a 
great circle £2 containing x and —x which intersects all of these sets. 
Suppose neither x nor —x belongs to Ar. If Ar • S2 consists of a pair of 
diametrically opposite points y and —y, then ±.yÇîAi-Ar-SîQ.Aii 

i = l, • • • , r, and we have (a). Otherwise, Ar-S2 is a connected sub­
set of 52 which is in the interior of one of the semi-circles bounded by 
x and —x. Moreover, Ai-Si is connected, i = l, • • • , s, since Ai-Si 
contains a point in A{-Ar• S2 as well as x. Choose a point Xi in each of 
the sets Ai -A r- Si, and let y be the nearest of the points xif • • • , xs to 
x. Then y must belong to A1 As-Ar, since the minor arc joining 
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Xi and x must contain y. This is case (b). 
We now return to the proof of part 2. Suppose F has r members. 

By the induction hypothesis, there is a point x such that xÇzAi- • • • 
•A8, while — x(EAs+i Ar~\, where l^s^r — l. If T(n, n) is 
false, by part 3 there is a point y common to s+1 members of F. 
Applying part 3 again, we can find a point z such that (b) or (c) hold 
with 5 replaced by s + 1 and t^O. If z is not common to 5+2 members 
of Fy by applying part 3 repeatedly we can eventually find a point 
common to s+2 members of F. Repeating the process, we finally ar­
rive at a point common to r — 1 members of F. Another application of 
part 3 completes the proof. 

4. Convex sets in the ordinary sense. In this section we use the 
term convex in the ordinary sense unless otherwise stated. A hyper-
plane in En is a translation of a subspace of En. We define a — 1-
dimensional hyperplane as the empty set. 

THEOREM 4. Let F be a family of bounded, closed convex sets in En 

which is such that every k members of F have a point in common, 
1 :g k S n + 1 • Then through each n —• k-dimensional hyperplane there 
passes ann — k -\-\-dimensional hyperplane which intersects every member 
ofF. 

PROOF. The case k = n + l is Helly's theorem. Suppose l^k^n, 
and let Hn-k be an n — ̂ -dimensional hyperplane. By a change of co­
ordinates, we may suppose that Hn-h passes through the origin. We 
may also assume that no member of F intersects Hn-k- If AÇE.F, let 
A' be the set Ey(y=x/\x\, xÇ.A). Clearly, A' is a closed subset of 
Sn. If y\ and y% are linearly independent points of A', that is, ji 
= Xi/\xi\, XiÇ:A, i = l, 2, and if ceiàO, c^èO, û : i+a 2 >0, then 

OLlVl + «2^2 XXl + (1 ~ \)%2 

| aiyi + a2y21 | \xi + (1 — \)x21 

where 

x- , afXl] , , so. 
a i / I Xi | + a2/ I #2 I 

Hence -4 ' is a strictly convex subset of Sn (in the sense of Definition 
2). Let F' be the family of sets A', A £F. F' satisfies the hypotheses 
of Theorem 2, and we conclude that through Sn-k^Hn-h-Sn there 
passes a great n — è + 1-sphere Sn-k+i intersecting all members of F'. 
Let £Tn_jb+i be the subspace generated by 5n_fc+i. The statement 
Sn-k+i-A'^O implies there is a point x in A such that x/\x\ ESn-fc+i 

file://-/-/-dimensional
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and hence xÇzHn-k+i. Thus iîn-&+i intersects every member of F. 
This completes the proof. 

As shown in the proof of Theorem 2 (see part 1) the cases k^n of 
Theorem 4 can be made to depend on the case k=n. I t does not 
appear possible to derive the case in n from the Helly case k — n + 1. 

Upon learning of Theorem 4, S. Karlin and L. S. Shapley [3] gave 
a short proof using Helly's Theorem and the non-existence of a non-
vanishing tangential vector field on a sphere of any dimension such 
that the vectors at antipodal points are equal. Their method does not 
yield Theorem 2. 
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