REAL ROOTS OF DIRICHLET L-SERIES
J. BARKLEY ROSSER

Let & be a positive integer. Let x be a real, non-principal character
(mod k) and

L0 = 3 )

be the corresponding L-series, which converges uniformly for
R(s)=e>0. If it could be shown that uniformly in % there is no real
zero of L(s, x) for

4

-_

log &

1%

where A is a constant, then the existing theorems on the distribution
of primes in arithmetic progressions could be greatly improved (see
[1]).! Moreover by Hecke’s Theorem (see [2]) it would follow that
uniformly in &

L(1 B
( ’ X) > log 3
where B is a constant. This would be a considerable improvement
over Siegel’s Theorem (see [3]), and would lead to an improved lower
bound for the class number of an imaginary quadratic field.

In the present paper, we shall show that for 2 <k <67, L(s, x) has
no positive real zeros. By combining this information with the results
of [1], we infer very sharp estimates on the distribution of primes in
arithmetic progressions of difference k& for £ <67.

The methods used for 2 <67 certainly will suffice for many other
k’s greater than 67. They may possibly suffice for all k2, but we can
find no proof of this.?

In [5], S. Chowla has considered the positive real zeros of L(s, x),
and shown that for many explicit %’s, no positive real zeros exist.
However Chowla could not settle whether his methods would suffice

Presented to the Society, September 1, 1949; received by the editors August 30,
1948.

1 Numbers in brackets refer to the bibliography at the end of the paper.

2 These methods have been tried on all £ <227 and it has been ascertained that
except for the cases k=148 and k=163, L(s, x) has no positive real zeros for 2=k
=<227. Cases k=148 and k=163 are now being studied and any results obtained about
them will appear in the Journal of Research of the National Bureau of Standards.
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to handle the difficult cases =43 and k=67. In [6], Heilbronn has
shown that there exist values of & for which Chowla’s methods are
certainly inadequate.

THEOREM 1. If x is non-principal (mod k) and x(—1)=1, then for
all s

© 2s(s+ 1) (s+2a—1)

L(s, x) = E 42(2q) | ko+2e

(292« — 1)¢(s + 20)
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Proor. For s>1, we have
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Since x is non-principal, we have k2>2, and so if % is even, we have
x([#/2]) =x(%/2) =0. Now since x(—1) =1,

2 x(m)(k — 2m)%

n=1

[k/2]
= Z x(n)(k — 2n)* + E x(n)(2n — k)%=
n=[k/2]+1
[k/2]
= 2 x(n)(k — 2n)* + Z x(n)(k — 2(k — n))*
n=1 n=k—[%/2]
[k/2] [k/2]
= 2 x(m)(k = 2n)* 4+ 30 x(k — n)(k — 2n)*=
n=1 n=1

[k/2]
=22 x(n)(k — 2n)
n=1
Similarly, we prove Y t-1x(n)(k — 2n)2*+! = 0.
Thus we infer that the equation stated is valid for s>1.
Now since

[k/2]

2 x(n)(k — 2m)*e| < —(k - 2)%,

n=1
we see that the series on the right converges absolutely and uniformly
for all s, and so our theorem follows by analytic continuation.

THEOREM 2. If x is non-principal (mod k) and x(—1)= —1, then
for all s
e s(s+1) - (54 2e)

= s+2atl
Lis, 0 = 2 $0a g Dip @ 1¢(s + 2a + 1)

[k/2]

> x(n)(k — 2m)2et1,

n=1

The proof is similar to the proof of Theorem 1.

Although these theorems hold for any non-principal x, we shall use
them only for real non-principal x. We assume henceforth that x is
real and non-principal. We let 2, denote

[k/2]

22 x(n)(k — 2m)™.

n=1

For sufficiently large M (certainly for M = k), the initial term
x(1)(k — 2)™
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of Z) dominates the remaining terms, and we infer that 2, >0. If
by good chance 2 =0 for all M =1, then by Theorem 1 or Theorem 2
we infer that L(s, x) >0 for s>0, and hence that L(s, x) has no posi-
tive real zeros. For k<67, this happens in a majority of cases.

When considering positive real zeros of L(s, x) it suffices to re-
strict attention to primitive x's (and to the %’s for which there are
primitive x's. See [4, §125]). For primitive x's, =0 for M =1 for
each k <67 except 43 and 67. Moreover for each such %, the proof of
Zu =0 is easily accomplished by grouping the terms in groups, each
of which is non-negative. Typical such groups are:

1. A¥—BM where A > B.

II. A¥—BM—(C™, where A=B+C.

IIl. AM—BM —CM 4 DM where A+D=B+C.

For k=53, there occurs the group S51M —49M —4TM | 45M _43M
+414 39M —37M  which we show to be non-negative by writing it
as (4447 —(44+45)M — (444+3)M (44 4+1)M — (44 —1)M | (44— 3)M
+ (44 —5)" — (44 —"T7)M, and expanding each term by the binomial
theorem.

For k=43 or 67, we have 23 <0, so that the series in Theorem 2 does
not consist entirely of non-negative terms. However, we can show
that the initial positive term outweighs the negative terms. We give
the proof for k=67, since the proof for #=43 is similar and easier.

By the functional equation for L(s, x) (see [4, §128]) it follows
that if L(s, x) has a zero p with 1/2<p<1, then it has a zero p with
0<p<1/2. As it is known that L(s, x)>0 for 1<s, it suffices to
prove L(s, x) >0 for 0=<s=<1/2. So we take k=67 and 0=s=<1/2. By
Theorem 2,

L(s, x) =

1

2041 — 1 {sg‘(s +0

67¢ 67

s+ D(s+2) 27— 1
367)F 42+ — 1)

i‘($+3)23+"‘},

where now Zx = D 38 x(n)(67 —2n)™. For s>0,

1 1 *® dx
1) — — = _— -
e+ ——=2 — fl

w1 ¥ gotl

i 1 S }
- i\ per .zt
> 0.

So for 520, s¢(s+1)=1. Also Z,=67. So
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) sg(s+1)

For 0=s
2¢t2atl — 2s d 2s
s < and ——( ) > 0.
42t — 1) 2 — 20 ds\2 — 2
So for 0=s=1/2

2st+2at+l _ 2(1/2)
s =
da(2ert — 1) T 2 — 27112

=1
67

< 0.77346.
Also
G+ D6+ _ (/2 6/2)
31! - 3!
Since Z3= —102,845, we infer
s+ D(s+2) 23 -1

5
)

3
M R R
5
> - — 0.77346)¢(3)(102,845
" 2~ <oy O TIHOE (102,849
5 102,845
> — — (0.77346)(1.20206)
8 300,763

> —0.199.
Now for M =1,
Sa= {(57+ 8)M — (57 4 6)™ — (57 + 4)M + (57 4+ 2)M™ — 57
4 (57 — 2)M — (57 — 4)M — (57 — 6)M 4 (57 — 8)M}
+ {(43 + HM — (43 + 2)M — 43M — (43 — 2)M + (43 — 4)¥}
+37M_|_35M+

MM -1
> = STM " STH{2.80 — 2.6 — 241 + 227}

+M(M - DM - 2)(M - 3)
4!
— 244 4 2.24} + ..

MM -1
- 43M+__(_._2_!_)43M-2{2.42 - 2.22} + -

57M-4{2.84 — 2.64
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= — 57M(1 — Eﬂf(_M:_l_)) —_ 43M(1 — M)

572 432

In particular, if « =2, then

16(2 1)2
o = — 572,,.“(1 _ M)

572
— 432a+1<1 — _12_(_2.a—.+ 1)2._a)
432
( 320 > ( 240 )
> — 572t — ) — 43211 —
3249 1849
2929 1609
> — 572a+1 —_ 432a+ JR—
- 3249 1849

So for 0=s=<1/2,
ss+1) - (54 2a) 2ot —
S Qa+ 1IET)IH 4e(2et — 1)
2 s(sH1) - (54 2a) 202t —

¢(s + 2a + 1)Zs0is

=" 2a +1
B g (2a + 1)1(67)20+1  42(2s+1 — 1) ¢(s + 2a +1)
2929 1609
. {572a+1 787 4 43ren }
3249 1849
@ s(s41)---(s+4) 2et2etl g
== £5)
a=2 5 '(67) 2a+1 4“(28"]‘1 )
{ 1609}
572« +l + 432%at1
®) 1849
= (o 77346) (1. 03693)2{(57>2"+1 2929
B S W67/ - 3249

" (4:3)2"‘+1 1609}
67 1849
63
Z — — (0 77346)(1.03693) {(
" (43)5 4489 1609}
67/ 2640 1849

> — 0.638.

57)5 4489 2929
67/ 1240 3249
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By (1), (2), and (3), for 0=5s<1/2,

o+l — 1 0.163
L(s, x) 2 ———— {1.000 — 0.199 — 0.638} = ——— = 0.0199.
67° (67)1/2
So L(s, x) >0 for 0<s.

When x(—1) = —1, Theorem 2 opens up further interesting possi-
bilities. When s—0, the first term of the series is bounded away from
zero, while the remaining terms approach zero. Thus one can always
infer L(s, x)>0 for 0=<s=e¢, where ¢ depends on k. Even for € as
small as 4 /log k, this would be a very worthwhile result, as remarked
at the beginning of the paper.

For another possibility, let s=0 and —2 in Theorem 2, and evalu-
ate L(0, x) and L(—2, x) by the functional equation. We infer the
known result

T
4 L, x) = '13—3/;21

and the result

3

T { k2=, — 25},

®) LG, x) =

From these follow

L(1, 6L(3,
© 5 = k7/2{ (L, x)  6L( x)}.
T w3
This gives
Ss = — k1/26_L_(3_’l) .

3

If one could prove independently any appreciably better result, one
could derive a sensational inequality for L(1, x). For instance, if one
could prove

= — k7/zi > — k7/2§L_(311_)_,
- 7['3 - 1,.3
one could get by (6)
L(3,
L(1, 0 > 230
1‘.2

Another possibility is that one can perhaps derive some connec-
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tion between Z; and Zs. For instance, if one could prove
3= — k?log k2,
then by (4) and (6), we could infer
6L(3, x)
x*(1+ log k)

Even this would be a very worthwhile result, since the best known at
present is, by Siegel’s Theorem,

L, x) >

L(3, x)

kc

L(1, x) >

for €>0 and large &.
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