
CYCLIC INVARIANCE UNDER MULTI-VALUED MAPS1 

A. D. WALLACE 

In what follows it is always assumed that X, Y are compact 
( = bicompact) connected Hausdorff spaces each containing more than 
one point. 

Let ƒ denote a function which assigns to each a c i n l a subset fix) 
of F. We suppose that the sets {fix)} cover Y. By definition 

tKy) = {*|* G ƒ(?)}. 
It is assumed that the sets {f~l(y)} cover X. The f unctions ƒ and f*1 

play dual roles inasmuch as ƒ = Cf"1)""1- If ƒ is single-valued, then f~l is 
the inverse of ƒ in the usual meaning of the term. For A QX, BQY 
we define 

f(A) = U { ƒ ( * ) \ x G A } , / - i (B) = U [tKy)\yGB}. 

When ƒ is single-valued we know that continuity is equivalent to 
the assertion that A, B closed imply f (A), f~l(B) closed. When ƒ is 
multi-valued we take this as a definition of continuity. I t does not 
follow, as in the single-valued case, that f~~l(B) is open if B is open. 
These definitions include both a single-valued map ( = continuous 
function) and its inverse. 

In this note we show that certain theorems of analytic topology 
carry over to multi-valued maps ( = continuous multi-valued func­
tions as defined above). Some of our results are new even for single-
valued maps. Except for fixed-point theorems there seem to be no 
results in the literature for multi-valued maps. 

We say that ƒ is anarthric if it is continuous and if for y Ci Y no 
xÇzX—f~l{y) separates f~"l{y) in X. If ƒ is single-valued and non-
alternating, then ƒ is anarthric. See Wallace [2],2 [3], and [4] and 
Whyburn [5] and [ó]. I t is clear that if ƒ is the inverse of a single-
valued map, then ƒ is anarthric. 

For simplicity we write P \ Q to mean that the sets P and Q are 
mutually separated. Also if py qG.X, then p~q means that no point 
separates p and q in X. 

THEOREM 1. In order that the multi-valued map f be anarthric each of 
the following conditions is both necessary and sufficient : 

Received by the editors June 28, 1948. 
1 This work was done under Contract N7-onr-434, Task Order 3, Navy Depart­

ment, The Office of Naval Research. 
2 Numbers in brackets refer to the bibliography at the end of the paper. 

820 



CYCLIC INVARIANCE UNDER MULTI-VALUED MAPS 821 

(i) If X = M^JNy where M and N are continua meeting in a cutpoint 
x, and K is any continuum meeting M> thenf(MC\K) =f(M)r\f(K). 

(ii) If H is a subcontinuum of Y and K is a subcontinuum of X and 
Kr\f-l(H) = P U Ç , P\ Q, then there exist points PEP, Ç.EQ such that 
p~q. 

PROOF. We show that (i) holds if/ is anarthric. Now the conclusion 
follows at once if K is disjoint with either M—x or N—x. We assume 
therefore that K meets both of these sets and that yEf{K)(^f{M) 
~f{KC\M), the inclusion f{MC\K)Cf{K)r\f{M) clearly holding. 
Then f~l{y) meets both K and M but not KC\M. Hence x is not in 
f~l(y) since xEKC\M. But f~l(y) meets both M—x and N—x, a 
contradiction. 

Next, (i) implies (ii). For let Ko be a continuum contained in K 
and irreducible between the disjoint closed sets P and Q. Let pEP 
P\Z*o, qEQf^Ko and suppose that x separates p and q in X. Then 
p\Jq\J(K<s — {P\JQ)) is connected and so contains x. Thus x is not in 
/~1(flr) and so f(x) does not intersect H. We have a decomposition 
X = MKJN with M and N closed, MC\N = x and pEM, qEN. Now 
ƒ0*0 =f(M)^f(N) as we see by taking the i t of (i) to be the present 
N. But H=(Hnf(M))\J(Hr\f(N)) and so Hr\f(M)C\f(N) is not 
void since H is a continuum contrary to the fact that this intersection 
is Hr\f(x). 

Finally (ii) implies that ƒ is anarthric by taking H—y and K = X. 
We remark that it is sufficient to take K — N in (i) and in (ii) to 

t a k e Z - X . 
We recall briefly some definitions and results mostly contained in 

Wallace [2]. These reduce to the well known cyclic element theory if 
X, Y are metric and locally connected. See Whyburn [S]. 

By an A -set we mean a closed set H such that if zEX—H, then 
X = MVJN with MC\N = x, (M-x)\(N-x), HCM, zEN-x. I t is 
easily seen that an A -set is a chain (Wallace [2]) and hence a con­
tinuum, that the intersection of any collection of A -sets is again an 
A -set and that the union of two intersecting A -sets is also an A -set. 

A prime-chain is a chain which is either an end point, a cutpoint 
or a nondegenerate minimal chain. One can replace "chain" by 
M-se t" in the last sentence. I t is readily seen that if a chain A is met 
by a prime-chain E in two points or in a non-cutpoint, then EEA. 

A nodal set is a closed set which meets the closure of its complement 
in a single point. I t is readily seen that an .4-set is the intersection of 
all the nodal sets containing it and (since each nodal set is an A -set) 
that any intersection of nodal sets is an ,4-set. 
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THEOREM 2. In order that the multi-valued map f be anarthric it is 
necessary and sufficient that for any A -set H in X and any subcontinuum 
KofX meeting H we havef(HC\K) =f(H)r\f(K). 

PROOF. Suppose that ƒ is anarthric. I t is enough to show that, for 
any y in F, f-l(y)C^H, f~l{y)C\K non void imply f~1(y)r\Hr\K 
non void. Now HKJK is a continuum and so by (ii) there exist points 
pÇ.HC\f^l{y), qQ:Kr\f~1(y) with p~q, assuming of course that our 
implication is not valid. Let E be the prime-chain containing p^Jq 
(Wallace [2]). Then Ef\H nonvoid implies that EKJH is an A -set. 
Thus, since J? is a continuum, we know that Kr\(E\JK) — (K.r\E) 
\J(KC\H) is connected and so EC\HC\K is not void. Hence E must 
contain two distinct points of H since pGf~x(y) and this latter set does 
not meet HC\K by assumption. From this it follows that EQH and 
so qÇzH, a contradiction. 

The sufficiency is readily inferred from the remarks following 
Theorem 1. The result fails unless it is required that H and K 
meet. For if X is the union of the unit circle and the segment from 
(1, 0) to (2, 0) and Y is the unit circle and ƒ is the map X onto Y 
carrying the segment into (1,0), then taking Y=H and K = (2, 0) we 
see that the conclusion fails. 

THEOREM 3. In order that the multi-valued map ƒ be anarthric it is 
necessary and sufficient that if {A } is any collection of A-sets with the 
finite intersection property, then f(f\A)=f\f(A). 

PROOF. If ƒ is anarthric it is sufficient to prove that, if yG.Y, the 
proposition uf~l{y) meets every set in {-4}" implies uf~l{y) meets 
0-4." To this end show that {f~~l{y)C\A } has the finite intersection 
property. Or, for any A\, A2, • • • , An in {A} we have f~~l(y) 
r\A\C\ - • • C\An nonvoid. Now by Theorem 2 we see that 
f(AiT\ • • • n ^ n ) = / ( ^ i ) n • • • r\f(An). Thus if f~l(y) intersects 
every A^ then f~~l(y) also intersects AiC\ • • • C\An. 

The sufficiency follows from the fact that, in Theorem 2, it is 
enough to take K an A -set. 

THEOREM 4. Iff is anarthric and the image of each outpoint is a point, 
then the image of a nodal set is a nodal set. 

This follows without difficulty from (i) of Theorem 1. The result is 
false if the condition, that the image of a cutpoint be a point, is 
deleted. In the (u, v) plane let Y be the circle u2+v2 = A and X the 
union of the circles (u + l)2+v2 = l, (u — l)2+v2 = l. Define g(u, v) 
= (u, (lu — u2)112) if v is non-negative and g(u, v) = (u, —(2u — u2)112) 
if v is nonpositive. Let f=g~1; then ƒ is anarthric but the left-hand 
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circle is mapped by ƒ into the left-hand semicircle of F, which is not 
a nodal set. 

THEOREM 5. If f is anarthric and the image of a cutpoinl is a point, 
then the image of an A-set is an A set or a point. 

PROOF. If H is an .4-set, then H is the intersection of all the nodal 
sets IN} which contain it. By Theorems 3 and 4 we have 
f(H) = 0/(iV). But each f(N) is a nodal set and thus an A -set. Then 
f(H) is an A -set since it is an intersection of A -sets. 

In the case in which ƒ is non-alternating and X is a Peano space 
this result is due to G. E. Schweigert. 

Let us denote, for any non-null set -4, the intersection of all the 
A -sets which contain A by C(A). I t then follows from Theorem 5 
(see the proof of (3.14) in Wallace [2]) that we have the following 
corollaries. 

COROLLARY. For any nonempty set ACX, C(f(A))Cf(C(A)). 

COROLLARY. Let f be a single-valued map of X onto Y such thatf~~l(y) 
is a point f or each cutpoint y in Y. Then the inverse of an A-set is an 
A-set or a point. 

According to Kelley [l ] a central set is an intersection of a finite 
number of nodal sets. From Theorems 3 and 4 we have the following 
theorem. 

THEOREM 6. Iff is anarthric and the image of each cutpoint is a point, 
then the image of a central set is a central sel. 

THEOREM 7. In order that a multi-valued map be anarthric it is neces­
sary and sufficient that no A -set separate the inverse of a point. 

PROOF. The condition is clearly sufficient since each cutpoint is an 
A -set. Suppose that some A -set A separates the inverse of a point so 
that we have X-A = C/UF, U\ V, with f~l(y) meeting both U and 
V but not A. Now AKJU and AKJ V are A -sets, say H and K. Then 

f~l(y) intersects both H and K but not HC\K contrary to the fact 
f(Hr\K)=f(H)r\f(K), 

Our next result generalizes a noteworthy theorem of G. T. Why-
burn [5]. 

THEOREM 8. Let ƒ be an anarthric map such that the image of a cut-
point is a point and let E be a prime-chain in Y. Then there is a prime-
chain F in X such that E(Zf(F). If Ff is any other prime-chain in X, 
then f {F') meets E in at most one point. 
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PROOF. We may suppose that E is nondegenerate. Using the Haus-
dorff maximality principal (Zorn's lemma) we see that there exists a 
collection {A } of A -sets maximal relative to the properties that (i) 
ECf(A) and (ii) no finite collection of 4 ' s has a void intersection. 
Let F be the intersection of these -4's so that, since f(F) = 0/04), we 
know that £ is a subset of f(F). Now if F is a point it is either an 
end point or a cutpoint and so a prime-chain. Suppose that F con­
tains more than one point and is not a prime-chain. Then X = M^JN 
with Mr\N=*x, (M—x)\ (N—x) with F meeting each of these 
separands. We conclude that Y=f(M)Uf(N),f(x)=y=f(M)r\f(N). 
Now if E is contained in /(AT), then also ECf(M)r\f(F) =f(Mr\F). 
Since M and F are A -sets so also is MC\F and this latter is a proper 
subset of F contrary to the maximality of {A }. Accordingly we con­
clude that E meets both f(M) —y and f(N) — y, an impossibility since 
£ is a prime-chain. 

Let F' be a prime-chain distinct from F such that f(F') contains 
two points of £ . Then X = M\JM' where M, Mf are closed, intersect 
in a cutpoint x and F CM, F'CM'. Then f(x)~yÇ:Y. As before 
F = / ( M ) U / ( M ' ) . If f(M')Cf(M), then f(M')=y contrary to the 
fact that f(F') Cf(M') and contains two points. I t then follows that, 
as above, the point y cuts E in X, a contradiction. 
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