
SPACES OF CONTINUOUS FUNCTIONS 

S. B. MYERS 

Let X be a completely regular topological space, B(X) the Banach 
space of real-valued bounded continuous functions on X, with the 
usual norm ||&|| =supa?£x|&(#)| • A subset GCB(X) is called com­
pletely regular (c.r.) over X if given any closed subset KQ.X and 
point XoÇzX — K, there exists a ô £ G such that &(#o) = |NI a n ( i 
sup^^is: \b(x)\ <||&||. A topological space X is completely regular in 
the usual sense if and only if B(X) is c.r. over X. 

A Banach space B is said to act completely regularly (c.r.) on X if 
B is equivalent to a closed linear subspace of B(X) which is c.r. 
over X. I t is known [6 J1 that if X is compact,2 a closed linear sub-
space of B{X) c.r. over X determines the topology of X. By this is 
meant that if X\ and X2 are compact, and a Banach space B acts c.r. 
on both Xi and X2, then Xi is homeomorphic to X2. If B acts c.r. on 
X (compact or not), X is homeomorphically imbeddable in the sur­
face of the unit sphere in 23*, the conjugate space to B under the 
weak-* topology, and for each 6£J3 and xÇzX we have the formula 
6 ( x ) = i n f l G r [ | | 6 + / | | - | H | ] , where r = {tGB\ t(x) = |MI}. 

If we weaken the definition of complete regularity so that G is c.r. 
over X means that for every closed set KC.X and point x0(E.X — K 
there is a 6 E G such that b(x0) = |HI> s u p ^ ^ b(x) <||&||, then a closed 
linear subspace of B(X) c.r. over X does not necessarily determine the 
topology of X. For example, if X consists of just two points, xi and 
X2, then the subspace G of B(X) consisting of all bÇ:B(X) such that 
b(xi) — —b(x2) is c.r. over X according to the weakened definition, 
yet it is equivalent to the space B(Y), where Y consists of a single 
point. 

Proper closed linear subspaces of B{X) which are c.r. over X exist 
in general for both compact and non-compact X, and may contain 
the constant functions. This is in contrast to the situation when 
B{X) is made into a normed ring (Banach algebra) R(X) or into a 
Banach lattice L(X); if X is compact, no proper closed subring of 
R(X) containing the constant functions can be c.r. over X [s]t 

and no proper closed sublattice of L(X) containing the constant 
functions can be c.r. over X [4]. 

Since topological properties of X must be reflected in metric and 
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1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 "Compact" means bicompact and Hausdorff. 
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algebraic properties of B(X), and in such properties of every closed 
linear subspace G of B{X) which is c.r. over X, it would appear to be 
fruitful to investigate the possibilities of existence of a G of a particu­
larly simple sort, for example, separable, or finite-dimensional, or 
reflexive. Such a study is made here. 

In the next few paragraphs necessary and sufficient conditions are 
proved that for a given Banach space B there exists a compact X 
such that B acts c.r. on X. Later, we point out that B(X) is itself 
rarely separable, finite-dimensional, or reflexive, and the existence of 
a c.r. subspace of B(X) with such properties is investigated. 

Let B be any Banach space; by a T-set, we mean a maximal sub­
set T of B with the property that for any finite subset bi, • • • , bn of 
^>ll ]C^*II = ]CII^II- Every &£J3 is contained in such a T-set. 

Let E% be the solid unit sphere in B*y and let 5* be the surface of 
£*. I t is known that E% is compact [ l ] . 

THEOREM 1. Given a Banach space B, the following conditions are 
necessary and sufficient that there exist a compact X such that B acts 
c.r. on X: 

(1) For each T-set in B, there is a unique point XTÇZS% such that 
xT(t) =\\t\\ for all tGT. 

(2) The set MCS% of all such xT is closed in B%. 
(3) M is the union of two disjoint closed antipodal subsets Q, — £2. 

PROOF. The necessity of the conditions follows directly from [6, 
Theorem 4.1 and Lemma 2.3]. To prove the sufficiency, we show 
that hypotheses (1), (3) imply that B acts c.r. on £2. Consider the 
linear mapping C(B) (ZB(ti), which assigns to each bE:B the function 
b(x) defined by the formula b(x) =x(b) for all x £ 0 . It is clear that 
C(0) is the function = 0 over Q. Also, if C(&) = C(0), then b(x) = 0 
over 0, hence over M, and in particular b(xT) = 0 where xT is the point 
in M which corresponds by hypothesis (1) to the T-set containing b; 
hence ||&||=0. I t follows that C is one-to-one. Since MQS%, —1|&|| 
^&O0=INI f o r a11 °^B a n d a11 x&M, and since i(*r) = ||ô|| and 
b{ — xT) = — H&ll, we see that ||ô|| =supa;^n | &(x) | . Thus C is norm-
preserving, hence an equivalence. Since B is complete, C(B) is com­
plete and hence closed in B(Q). I t remains to show that C{B) is c.r. 
over 0. Let #o be any point in 0, let D be any closed subset of 0 not 
containing xo. Let K = D\J—D; K is closed in M. Let T be the T-set 
in B such that x0(t) = \\t\\ for all / £ ! , and let K be the closure of K 
in Et: ~K does not contain xo. For each x G f , there is a tÇ^T such 
that t(x)[ = x(t)]< 
\\x\\<l then t(x)< 

t\\; for if x is in S*, this follows from (1), and if 
t\\. Since K is compact, and t(x) is a continuous 
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function of x for every /£-B, there is a finite set h, • • • , tnÇ:T such 
that for each xÇzK, at least one ti has the property ti{x) <||/*-||. Hence 
if we let t = ^U, sups^f / (x)< | | j | | , in particular s u p * ^ J(x)<||/ | | . 
Since K——K, we have s u p ^ i e \t{x)\ <||?| |, hence s u p ^ p \t(x)\ 
<||?||. Thus B acts c.r. on Q. The compactness of 0 follows from (2), 
(3) and the compactness of JE*. 

Condition (1) of Theorem 1 could be replaced by the equivalent 
condition that for each !T-set in B the functional FT(b)—m{t^T 
[||&+/||—||/||] be linear over B (see [ó]). Furthermore, when (1) is 
satisfied, XT = FT> 

The following three results, the first two of which are stated with­
out proof since they are known, indicate properties which B(X) in 
general fails to have. 

THEOREM 2. If X is completely regular, B(X) is separable if and only 
if X is compact and metrizable [5 ]. 

THEOREM 3. If X is completely regular, B(X) is finite-dimensional if 
and only if X consists of a finite number of points. 

THEOREM 4. If X is completely regular, B(X) is reflexive if and only 
if X consists of a finite number of points. 

PROOF. If X has only a finite number of points, B(X) is reflexive 
because it is finite-dimensional. Now suppose X completely regular 
and infinite, and B(X) reflexive. Let X be the Cech compactification 
of X. Then B(X) is equivalent to B(X), hence reflexive. Therefore 
the unit sphere E in B{X) is weakly compact. We obtain a contradic­
tion by constructing a sequence in E with no weak limit point. Let 
{x} be an infinite sequence of distinct points of X, and let x be a limit 
point of {x} not a member of {x} ; let bi be an element of B(X) with 
the property that ||&,-|| = 1, &»(#) = 1, bi(xj)=0 for jSi\ bi exists due 
to the complete regularity of X. If b is a weak limit point of {b}, it 
follows that b(x) = l, b(xj)=0 for j — 1, 2, • • • , contradicting the 
fact that b is continuous and x is a limit point of {x}. 

THEOREM 5. If E is the unit sphere in any Hilbert {inner product) 
space H, there exists a closed linear reflexive subspace L of B(E) which is 
c.r. over E and is isomorphic to H if H is of infinite dimension and 
n + 2-dimensional if H is n-dimensional. 

PROOF. Let c, d be real numbers, let hEiH, let PÇE.E. For fixed 
c, d, h the function fc,d,h(P) =c\\P\\2+P-h+d is a bounded continu­
ous function over E. The set of all such functions as c, d range over 
the real numbers and h ranges over H, with \\fc,d,h\\ = SUpp£i? 
\fcd,h (P)\> forms a linear subspace L of B(E). 
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Consider the mapping C(HiXHiXH) =L, where X denotes direct 
sum, C{c, dy h) =fc,âth> and Hi is the euclidean line. C is clearly linear 
and continuous. C is also one-to-one, for if C(c, dy h) = C(c, d, h) 
then {c-c) \\P\\2+P- (h-h) + (d-d) =0 for all P<EE; by taking 
P = 0 we see that d = d, and by taking P — kQi — h), where k>0 is so 
small that k(h — h) is in E and k7^1/{c — c)f we see that h = h, hence 
c = c. To show that C~l is continuous, we must show that given 
€ > 0 there exists a ô such that if supp^j? \fc,â,n{P)\ <S then 
(c 2 +d 8 + | |* | | , ) 1 / , <€ . Using b = e/nii\ by taking P = 0 we get |d | 
< e / l l 1 / 2 . By taking P = A/||*|| we get | c+ | |A | |+d | <e / l l 1 / 2 , and by 
taking P=-h/\\h\\ we get | c - | | A | | + d | <e / l l 1 / 2 , hence ||A|| ^ / l l 1 ' 2 . 
Hence c<3e/lV'*, and ( C * + < P + | | A | | * ) I / * < € . 

Thus C is an isomorphism between H1XH1XH and L. But ftXffi 
X-fiT is complete and reflexive, hence L is complete (and so closed in 
B{E)) and reflexive.8 

If H is infinite-dimensional, H is isomorphic to HiXHiXH, 
hence to L. If H is ^-dimensional, H1XH1XH is w + 2-dimensional, 
hence so is L. 

To show L is c.r. over E, let P 0 £ E , and let X be any closed set in 
£ - P 0 . Then by taking c = - l / 2 , * = P 0 , d = 2, we obtain /Cfd,*(P) 
= - ( | | P - P o | | 2 ) / 2 + 2 + | |P0 | |2 /2, which is non-negative over JE, and 
has the properties 

fcd.h(Po) = H/e.d.jJLsup |/c.d.*(P)| <fcd,h(Po). 
PE.K 

COROLLARY. If X is imbeddable in a Hubert {inner product) space 
Hf

A there exists a linear subspace of B{X) which is c.r. over X, and which 
is the linear continuous image of HiXHiXH {direct sum). 

If X is imbeddable in H it is imbeddable in the solid unit sphere E 
in H. Let p{X)CE be this imbedding. The mapping F[B{E)] 
C.B [p{X) ], obtained by cutting down to p{X) each continuous func­
tion on E, is clearly continuous and linear. If L is the linear subspace 
of B{E) furnished by Theorem 5, then F{L) is a linear subspace of 

8 A Banach space B isomorphic to a reflexive Banach space B is reflexive. For let 
/ be such an isomorphism of B onto B, and let ƒ* be the induced isomorphism of B* 
onto B* defined by_Jƒ*(#)](&) =x[1(b)], where xC~B*. Then^ if ? is a continuous 
linear functionalpn B*, we see that F(x) —x [l~x(b) ] for all # £ # * , where b is the point 
in B such that F[l*(x)\—x{b) for all xÇz.B* {b exists because B is reflexive). Hence 
B is reflexive. 

4 X is imbeddable in a Hubert space if and only if it is metrizable; this follows by 
combining recent results of C. H. Dowker (Duke Math. J. vol. 14 (1947) pp. 639-
645) and A. H. Stone (Bull. Amer. Math. Soc. vol. 54 (1948) pp. 977-982). 
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B [p(X) ] and clearly acts c.r. on X and is the linear continuous image 
of L, hence of HiXHxXH. 

THEOREM 6. X is a finite-dimensional separable metric space if and 
only if there exists a finite-dimensional linear sub space of B(X) which is 
c.r. over X. 

Assume X is finite-dimensional separable metric, and let n be the 
smallest dimension of any euclidean space En in which X is homeo-
morphically imbeddable. Then X is imbeddable in the solid unit 
sphere E in E n ; let p(X)C.E be such an imbedding. Either p(X) lies 
on no spherical surface in E, or else p(X) (and hence X) is an (w — 1)-
sphere; for if p(X) is a proper subset of an (n — 1) -sphere it is con­
tained in the manifold obtained by removing a point from the (n — 1)-
sphere, which is homeomorphic to E n _ 1 , contradicting the definition 
of n. 

Suppose p(X) lies on no spherical surface in E. Let F(L) be the 
linear continuous image of the linear subspace L of B(E) (furnished 
by Theorem 5) under the mapping F[B(E)]QB [p(X)] obtained by 
cutting down to p(X) each continuous function on E. F(L) is equiva­
lent to a linear subspace of B(X), and acts c.r. on X. Now L is the 
space consisting of all functions on E of the form 

(1) fcd,-y(y) = cJ2 Ji + Z) JiJi + d 

» = 1 1 = 1 

where y = (y\, • • • , yn) ranges over En and (y) = (3/1, • • • , yn) ranges 
over E. L is closed in B(E), and is isomorphic to En + 2 . The mapping 
T îs 1-1 over L; for if fc,d,y=fc>,d>,-i> overp(X), thenfc-.c>td-d>,v-v>(y)=0 
for y(E.p{X)y which by (1) means that p(X) lies on an (n — l)-sphere 
or an (n — l)-plane in En> contradicting hypotheses. Hence F(L) is the 
linear 1-1 continuous image of Ew+2, hence isomorphic to En + 2 . 

If p(X) is an (n — l)-sphere in E, it is clear that (unless X con­
sists of one or two points, in which case it is clear from the start that 
B(X) is finite-dimensional) by deformation of p(X) there is an im­
bedding q(X) of X into E such that q(X) lies on no sphere, which 
reduces the problem to the case just treated. 

Now assume there is an ^-dimensional linear subspace M of B(X) 
which is c.r. over X. A consequence of the complete regularity of M 
over X is that given x, XÇLX there is a continuous function bÇ^M 
such that b(x)9£b(x). Since M is ^-dimensional, we can write b(x) 
= ^aibi(x) where &i(x), • • • , bn(x) is a base in M and, for a t least 
one value of i> bi(x)9£bi(x). Then the mapping f(X) <ZEn which as­
signs to each xÇzX the point in En with coordinates bi(x), • • • , bn(x) 



1949] SPACES OF CONTINUOUS FUNCTIONS 407 

is one-to-one. I t is clearly continuous. Also f~~l is continuous. For let 
XoÇzX, and let O(xo) be any open set containing xo. Since M is c.r. 
over X, there is a bÇ^M and a ô > 0 such that b(xQ) — b{x) >S for all 
XCZX — 0(XQ). Suppose b= ^aibi, an<^ ^e t # = niax |a»| . Then for all 
x such that \bi(x)—bi(x0)\ <8/an we have \b(xo)—b(x)\ <ô, hence 
x£0(xo) . Thus X is imbeddable in En, so X is finite-dimensional 
separable metric. 

THEOREM 7. /ƒ X is completely regular, B(X) contains a separable 
linear sub space c.r. over X if and only if X is separable metric. 

First assume X is separable metric. Then X is imbeddable in or­
dinary Hilbert space H. By the corollary to Theorem 5, there is a linear 
subspace L of B(X) which is c.r. over X and is the linear continuous 
image of H. Since the continuous image of a separable space is 
separable, L is separable. 

Now assume X is completely regular, and B{X) contains a sub-
space M both separable and c.r. over X. The unit sphere £* in If* 
contains a subset Xi homeomorphic to X. The points of E% form an 
equicontinuous set of linear functionals on M. According to known 
results (see [7, Lemma 3.2 and Theorem 4.1]), the weak-* topology 
on E* and the compact-open topology on E* as a set of mappings of 
M into the real line are identical, and the closure of X± in £* is com­
pact metric. Hence Xi is separable metric, and so is X. 
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