CONVERGENCE OF CONTINUED FRACTIONS
IN PARABOLIC DOMAINS

H. S. WALL

1. Introduction. The principal object of this paper is to establish
the following theorem.

THEOREM A. Let ¢1, ¢, C3, - - - be a sequence of complex numbers
such that, for p=1,2,3, - -,

(1.1) ! cp] — R(cpeit¢rtért)) < 27 cos ¢y €OS dpr1(1 — gp-1)gp

where 7, ¢1, 2, b3, + - -, Lo, L1, L2, * * - are real numbers satisfying the
inequalities
(1.2)0<r<1,—7r/2+c§¢pé+7r/2—c 0 <ec<7/2),

0=g,1=1, p=123.--,
¢ and r being independent of p. The continued fraction
(1.3) 1 - g (co = 1)

14 c1 =1 1
Ce
T

converges if, and only if, (a) some c, vanishes, or (b) c¢,#0,
p=1,2,3, -, and the series Zldpl diverges, where

(1.4) d1=1, dp+1= ’ P=1, 2, 3,"' .

Colp
We note the following particular cases of Theorem A.
(a) The continued fraction
© 1 1 ) Cp1 e~ i (¢ptépt1)
= — K ) =1 C¢p=—""")
p=1 kpez¢p kieidt p=1 1 kpkp+1
in which £,>0, —7/24c=¢,=+7/2—¢, 0<c<m/2, converges if,
and only if, the series Yk, diverges (Stieltjes [6] (¢,=¢); E. B. Van
Vleck [8]).! For an extension of this theorem in a direction different
from Theorem A, see Scott and Wall [5].
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(b) If
| co| — Rcoe?i#) < 27 cos? ¢, p=1,2,3"--,

where 0<7<1, —7/2<¢ < +m/2, then the continued fraction (1.3)
converges if, and only if, (a) some ¢, vanishes, or (b) ¢,0,
p=1,2,3, ., and the series Z[dpl, defined by (1.4), diverges
(Paydon and Wall [3]). The case ¢ =0 of this theorem holds with
r=1 (Scott and Wall [4]).

(c) Inasmuch as

1 <Idp|+ldp+1|
= ’
([es])r 2
it follows from Theorem A that a sufficient condition for convergence
of the continued fraction (1.3), satisfying (1.1) and (1.2), is the di-
vergence of the series Y (1/ (Ic,,l)”z) (Wall and Wetzel [7]). This

sufficient condition is not necessary, as is shown by the example
dop—1=1, dgp=5s?, 0<s <1.

2. Preliminary theorem. Let x, = X,(2) and x, = Y,(2) be the solu-
tions of the system of equations

(2.1) = apatp1t by + 20)%p — Gp¥p1 =0, p=1,23,---,
under the initial conditions xo= —1, ;=0 and x,=0, x1=1, respec-
tively. We suppose that ao=1, a1, as, a3, - - - are constants not zero,
by, bs, b3, -+ - are constants, and 21, 2s, 23, + - - are parameters. The
theorem of invariability [2, 5] states that if the series

(2.2) xEl ZIne

converge for z,=h,, p=1,2, 3, - - -, then they converge uniformly

for | 2,—h,| <M, for every finite constant M independent of p. The
determinate case is said to hold for the continued fraction

© =@y
(2.3) - K —*

p=1 bp + 2,
if at least one of the series (2.2) diverges for z,=0, p=1,2,3, - - .
In the contrary event, the sndeterminate case is said to hold.

TrEOREM 2.1. If ]bpl =M, p=1, 2,3, -, where M is a finite
constant independent of p, then the determinate case holds for the con-
tinued fraction (2.3) if, and only if, the series Zld,,’ l diverges, where

1
(2.4) di =1, d,’,+1=——d-, p=1,2,3---.

3 7
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Proor. From the condition imposed upon b,, and the theorem of
invariability, it follows immediately that the determinate case holds
if, and only if, at least one of the series (2.2) diverges for z,= —b,,
p=1,2,3, - - -.On putting these values of the z,in (2.1) we find that

sz(z)l 2 ] sz(z)|2, [Xg,,+1(z)|2 and | Y2p+1(z)| ? take on the values
dspl, 0, 0, and |dj,,4|, respectively. Therefore, the determinate case
holds if, and only if, the series Y |d, | is divergent.

It is easy to see that when we drop the condition that the |b,| be
bounded, then the determinate case may hold when the series ZI d, I
converges. It seems likely, however, that the divergence of the series
>-|d7| implies the determinate case whether or not the |b,| are
bounded.

3. Proof of Theorem A. Let 6 >0 be chosen sufficiently small in

order that
T 2
r[l + 6 sec <—2- — c)] =<1

Determine numbers @ by means of the equations
ape—i(¢p+¢p+!)
= J
(1 4 8 sec ¢,)(1 + 8 seC dppr1)

Let the partial numerators @ in (2.3) have these values, and there
take

p=1,2,3,....

Cp

Zp = 10, by + 2, = deitr(1 + & sec ¢,).

Then that continued fraction and (1.3) are equivalent, except for an
unessential factor. Moreover, by (1.1),

2 2
l apl - R(ap) = 26206334'1(1 - gp—l)gp! p= 1, 2’ 3, Tty

where f,=I(b,) =cos ¢,>0. Thus, the continued fraction (2.3) is
positive definite [7, 1]. Since I(z,) =8> 0, it follows that the continued
fraction (2.3) converges if (a) some @, vanishes, that is, some ¢,
vanishes, or (b) a,#0, p=1, 2, 3, - - -, and the determinate case
holds. Since the |bp[ are bounded, it follows from Theorem 2.1 that
the determinate case holds if the series Y. |d, | defined by (2.4) di-
verges. We note that this series diverges if, and only if, the series
Zld,,l defined by (1.4) diverges. Therefore, the continued fraction
(1.3) converges if (a) some ¢, vanishes, or (b) ¢,>0, p=1,2,3, - - -,
and the series Zldpl , defined by (1.4), diverges, If, on the other
hand, this series converges, then the continued fraction diverges by
virtue of a theorem of von Koch.
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REMARKS ON THE NOTION OF RECURRENCE
J. WOLFOWITZ

We give in several lines a simple proof of Poincaré’s recurrence
theorem.

THEOREM. Let Q be a point set of finite Lebesgue measure, and T a
one-to-one measure-preserving transformation of Q into itself.* Let
BCACK be measurable sets such that, if b6EB, T*b&E A for all positive
integral n. Then the measure m(B) of B is 0.

Proor. First we show that, if ¢ <j, (T"B)(T?B) =0. Suppose cET?B;
then from the hypothesis on B it follows that j is the smallest integer
such that T-¢&€ 4. Hence ¢ TB. Now if m(B) =6>0, @ would con-
tain infinitely many disjunct sets 7B, each of measure 8. This con-
tradiction proves the theorem.

The following generalization of the above theorem is trivially
obvious: The result holds if we replace the hypothesis that T is
measure-preserving by the following: If m(D) >0, lim sup; m { T%(D) }
>0.

Received by the editors April 3, 1948.
! For a discussion in probability language see M. Kac, On the notion of recurrence
in discrete stochastic processes, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1002-1010.



