
CONVERGENCE OF CONTINUED FRACTIONS 
IN PARABOLIC DOMAINS 

H. S. WALL 

1. Introduction. The principal object of this paper is to establish 
the following theorem. 

THEOREM A. Let c\, ci, £3, • • • be a sequence of complex numbers 
such that, for p = l, 2, 3, • • • , 

(1.1) \cp\ - R(cpe
i<+*++**'>) ^ 2r cos <j>p cos 0p+i(l - gP-i)gP, 

where r, <j>u 02, 03, * * • , go, gi, £2, • • * are real numbers satisfying the 
inequalities 

0 < r < 1, - T/2 + c ^ c/>p ^ + w/2 - c (0 < c < TT/2), 

0£gp-i£ 1, p= 1 ,2,3, . . . , 

c and r being independent of p. The continued fraction 

(1.3) = K^— ( c o - 1 ) 

1+ Ci 

1 + 

converges if, and only if, (a) some cp vanishes, or (b) cp9^0, 
p = l, 2, 3, • • • , and the series "%2\dP\ diverges, where 

1 
(1.4) di=l, dp+1 = —-, p = l,2,3,---. 

Cp(tp 

We note the following particular cases of Theorem A. 
(a) The continued fraction 

00 1 1 °° cp-i e-i^p+^p+i) 
K , = j£ ; Co = 1, Cp = ; 
p-i kpe

%+* kxe**1
 p=1 1 kpkp+i 

in which kp>0, —ir/2-\-cS<l>I>S+Tr/2—c, 0<c<7r/2, converges if, 
and only if, the series ^kp diverges (Stieltjes [ó] (0p = 0) ; E. B. Van 
Vleck [8]).1 For an extension of this theorem in a direction different 
from Theorem A, see Scott and Wall [5]. 
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1 Numbers in brackets refer to the bibliography at the end of the paper. 
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(b) If 

\cp\- R(cpe
2i*) g 2-V cos2 4>, p = 1, 2, 3, • • • , 

where 0 < r < l , —T/2<<J>< +7r/2, then the continued fraction (1.3) 
converges if, and only if, (a) some cp vanishes, or (b) Cp-^0, 
p=l, 2, 3, • • • , and the series ]T)|dP\, defined by (1.4), diverges 
(Paydon and Wall [3]). The case 0 = 0 of this theorem holds with 
r = l (Scott and Wall [4]). 

(c) Inasmuch as 

1 < \dv 1 + 1 dP+i 1 
( k l ) 1 / 2 = 2 

it follows from Theorem A that a sufficient condition for convergence 
of the continued fraction (1.3), satisfying (1.1) and (1.2), is the di­
vergence of the series 

Z ( l / ( k | ) 1 / 2 ) (Wall and Wetzel [7]). This 
sufficient condition is not necessary, as is shown by the example 
dilh-i=*l, d2p = sp, 0<s < 1 . 

2. Preliminary theorem. Let xp= Xp(z) and xp= Yp(z) be the solu­
tions of the system of equations 
(2.1) — ap_i#p_i + (bp + zp)xp — apxp+i = 0, p = 1, 2, 3, • • • , 

under the initial conditions Xo = — 1, #i = 0 and #o = 0, #i = l, respec­
tively. We suppose that ao = l, #i> #2, #3, • • • are constants not zero, 
&i, &2, 63, • • • are constants, and 21, 22, 23, • • • are parameters. The 
theorem of invariability [2, 5] states that if the series 

(2.2) E I *,(*) I2. E I ^ W l ' 
converge for zp — hp> p = l, 2, 3, • • • , then they converge uniformly 
for |sp —&p| ^M, for every finite constant M independent of p. The 
determinate case is said to hold for the continued fraction 

(2.3) - X — 
p = l Op ~j~ Zp 

if at least one of the series (2.2) diverges for zp = 0y p = l, 2, 3, • • • . 
In the contrary event, the indeterminate case is said to hold. 

THEOREM 2.1. If \bp\ ^M, p = l, 2, 3, • • • , where M is a finite 
constant independent of p, then the determinate case holds for the con­
tinued fraction (2.3) if, and only if, the series X ) | ^ / | diverges, where 

(2.4) di = 1, dp+i = -Ty-> P = 1» 2, 3, • • • . 
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PROOF. From the condition imposed upon bp, and the theorem of 
invariability, it follows immediately that the determinate case holds 
if, and only if, a t least one of the series (2.2) diverges for zp — — bpi 

£ = 1,2,3, • • • .On putting these values of the zp in (2.1) we find that 
I X*p(z) 12, I Y2P(z) 12, I X2p+i(z) 12 and | Y2p+i(z) | 2 take on the values 
|^2p| > 0, 0, and J df

2p+1 | , respectively. Therefore, the determinate case 
holds if, and only if, the series X) I ^p I *s divergent. 

It is easy to see that when we drop the condition that the \bp\ be 
bounded, then the determinate case may hold when the series 221 dp' I 
converges. I t seems likely, however, that the divergence of the series 
X I dp I implies the determinate case whether or not the | bp \ are 
bounded. 

3. Proof of Theorem A. Let S>0 be chosen sufficiently small in 
order that 

r j 1 + Ô sec( — - c\\ S 1. 

Determine numbers a2
p by means of the equations 

cp = ; p = 1, 2, 3, • • • . 
(1 + 8 sec <f>p)(l + ô sec <£p+i) 

Let the partial numerators a2
v in (2.3) have these values, and there 

take 
zp = id, bp + Zp = ie**p(l + ô sec <t>p). 

Then that continued fraction and (1.3) are equivalent, except for an 
unessential factor. Moreover, by (1.1), 

I 4 I - R(ap) ^ 2/3^j,+i(l - gp-i)gP, p = 1, 2, 3, . . . , 

where (3P = I(bp) = cos 0 P >O. Thus, the continued fraction (2.3) is 
positive definite [7, 1 ]. Since I(zp) = 5 > 0 , it follows that the continued 
fraction (2.3) converges if (a) some ap vanishes, that is, some cp 

vanishes, or (b) a ^ O , £ = 1, 2, 3, • • • , and the determinate case 
holds. Since the \bp\ are bounded, it follows from Theorem 2.1 that 
the determinate case holds if the series YL\dP' \ defined by (2.4) di­
verges. We note that this series diverges if, and only if, the series 
231 dp\ defined by (1.4) diverges. Therefore, the continued fraction 
(1.3) converges if (a) some cp vanishes, or (b) c p ^ 0 , p— 1, 2, 3, • • • , 
and the series ]C |dp | , defined by (1.4), diverges, If, on the other 
hand, this series converges, then the continued fraction diverges by 
virtue of a theorem of von Koch. 
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THE UNIVERSITY OF TEXAS 

REMARKS ON THE NOTION OF RECURRENCE 

J. WOLFOWITZ 

We give in several lines a simple proof of Poincaré's recurrence 
theorem. 

THEOREM. Let Q, be a point set of finite Lebesgue measure, and T a 
one-to-one measure-preserving transformation of fl into itself.1 Let 
B(ZAC.ti> be measurable sets such that, if bÇ^B, TnbÇ£A for all positive 
integral n. Then the measure m(B) of B is 0. 

PROOF. First we show that, if i <j, {TlB){T^B) = 0. Suppose c£TŒ; 
then from the hypothesis on B it follows that j is the smallest integer 
such that T~3'cEA. Hence c(£T*B. Now if m(B) = 5>0 , O would con­
tain infinitely many disjunct sets TnB, each of measure 5. This con­
tradiction proves the theorem. 

The following generalization of the above theorem is trivially 
obvious: The result holds if we replace the hypothesis that T is 
measure-preserving by the following: If m(D) > 0 , lim sup»• m{ Tl(D)} 
> 0 . 

Received by the editors April 3, 1948. 
1 For a discussion in probability language see M. Kac, On the notion of recurrence 

in discrete stochastic processes, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1002-1010. 


