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In the classical Lie theory it is shown how to construct a dif­
ferential equation invariant under a given group, and how to solve 
an equation when a group leaving the equation invariant is known. 
However, little is said about the problem of determining the group 
for a given differential equation, which is by far the most interesting 
problem. 

In the present paper, necessary and sufficient conditions for the 
existence of an infinitesimal contact transformation leaving a given 
equation invariant are determined along with the general form of the 
characteristic function of the group. It will also be shown how to 
reduce, by a proper change of variables, the infinitesimal contact 
transformation to a point transformation. This enables one to solve 
the transformed differential equation by Lie's methods. Passing 
back to the original variables, a new differential equation is obtained 
which combined with the original equation gives its solution in para­
metric form. 

Let 

df df df 

dx dy dp 

be the symbol of the infinitesimal contact transformation leaving in­
variant the differential equation u = F(v), with u = u(xy y, p), 
v — v(x, y y p), p = dy/dx, and F such that the equation G(xy yy p) 
= u — F(v) = 0 satisfies the various conditions for the existence of 
solutions (but otherwise arbitrary). Throughout this paper we shall 
assume t h a t : 

(A) Both u and v have first derivatives with respect to x, y and p, 
at least in some region R of the (x> y, £)-space. 

(B) The Jacobians 

d(u, v) d(u, v) d(u, v) 

à(y, P) à(P, x) à(», y) 

have in R derivatives of the first and second orders, while J\ and J% 
have also derivatives of the third order with respect to x, y and p} 

Presented to the Society, December 30, 1947; received by the editors January 14, 
1948, and, in revised form, April 10, 1948. 

355 



356 M. O. GONZALEZ [April 

as are involved in the discussion. 
(C) The functions u and v are not in involution, that is, 

Up ux H~ puy 

Vp Vx + pVy 
[uv] = = / 2 - pJi fâ 0. 

Since u and v are to be invariants under Bf they will satisfy the 
partial differential equations 

du du du 
£ — + v — + 7T— = 0, 

dx dy dp 

dv dv dv 

dx dy dp 

from which we obtain 

= o", 
d(u, v)/d(y, p) d(u, v)/d(p, x) d(u, v)/d{x, y) 

a — a{xy y} p) being the common ratio. This can be written 

(1) (• = <rJi, rj = aJ 2y TT = aJs. 

If W is the so-called characteristic function of the infinitesimal 
contact transformation, we have also 

(2) W = pS-v = <r{pJi - /*) . 

Now to find cr we recall that 1 

dW dW dW 
(3) £ = , 7T= p 

dp dx dy 
As a consequence of (1), (2) and (3) we obtain the system of equa­

tions 

da / dJx dJ2\ 

dp \ dp dp ) 

da da 
(4) (pj1-jt) — + p(pJl-Jt)-

dx dy 

K dJi dJ2\ ( dJi dJ2\ 1 

P ) + P[P J + /3 U = 0. 
dx dx) \ dy dy J J 

This system may be written in the homogeneous form 
1 See Cohen, An introduction to the Lie theory of one-parameter groups, p. 186. 
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df df 

(5) ** dff 

df df df 
Aif = ^- + p^- + M^ = 0, 

dx ay da 

in which 

/ ^ , , P(dJi/dp) - (dj2/ap) 
(6) M i = — a > 

pJi - J* 
(pÇdA/âx) - dJ,/dx) + p(p(dJi/dy) - dJz/dy) + Jz 

(7) M2 = - a 
pJi - Ji 

Adjoining to the system (5) the equations 

(8) Asf = (AiAjf = — + (AxMt - A2Mi) — = — + M3 — = 0, 
dy da dy da 

(9) A4 = (AtA3)f = ( i , M s - A3M!) — = 0, 
da 

df 
(10) Atf = ( ; M s ) / = (A2MS - A3M2) — = 0, 

da 
we see that the equations 

(11) AXM3 - AzMi = 0, AiMi - A3M-, = 0, 

are necessary and sufficient conditions in order that the system (4) 
have a solution. The system (5)-(8) implies the Jacobian complete 
system 

df df 
Klf = ~ + (M2 - pM3) — = 0, 

dx da 

df df 
(12) Kif=—+M3— = 0, 

dy da 
df df 

K3f=— + M i — = 0. 
dp da 

Either we may solve (12) or the equivalent total differential equa­
tion 

(13) (M2 - pM3)dx + M3dy + Midp - da = 0. 

li f=if/(x, y, p, a) is the solution of (12), then 
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(14) \p(x, y, p,<r) = c 

will be the solution of (13), and conversely. Equation (14) determines 
or in terms of #, y, and p. Since a enters as a factor in Mi and M2t it is 
also a factor of M3.2 Hence, equation (13) can be written 

da/a = Jco(#, y, p), 

and so <r has the form 

(15) a = keo^'V'pK 

Several special formulas for a may be found. For instance, if 

Mi = <t>i(p)cr, M2 = <t>2(x)a, 

then lf3 = 0, and equation (13) reduces to 

<t>2(x)adx + <t>i(p)adp — da *= 0, 

from which we obtain 

a = k exp ( I (j>i(p)dp + I #2(#)d#). 

Therefore, the characteristic function takes the form 

(16) W = *(#/i - J*) exp ( f $i(p)dp + \ <t>2(x)dx) 

by virtue of (2). This special case will be of use in some examples to 
be considered later. 

We summarize our results in the following theorem. 

THEOREM. The characteristic function W of the infinitesimal contact 
transformation leaving invariant a given differential equation u = F{v) 
can be found by the formula 

W = k(pJi - J2)e«'<«.*.*> 

ift and only if, the equations 

AiMz — AzMi = 0, A2MZ — AZM2 = 0 

are both satisfied for all values of x, y and p. 

Now, to solve the differential equation u = F(v) invariant under 
the known group 

2 If M^aNu M2 = <rN2f then Mz=*AiM2--AiMi~<T{dN2/dp--dNl/dx-pdNi/dy). 
This relation, together with (11), are the conditions in order that (13) be an exact 
differential when divided by <r. 
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(17) £ ƒ = wp^+(pW9-W)^-(W. + pWv)?f, 
dx ay dp 

we consider two cases : 
(A) Both %=Wp and r) = pWp—W are free of p. This case occurs 

when W is linear in p. Then Bf represents an extended point trans­
formation and the equation may be solved by introducing canonical 
variables. 

(B) Either £ or rj, or both, contain p. Then Bf represents a general 
contact transformation. 

In this case we may show that by a suitable change of variables the 
transformation reduces to a point transformation.3 To this aim, let 
us define a finite contact transformation 

(18) X = X(x, y, p), Y = Y(x, y, p), P = P(x, y, p) 

in the following manner: X = w, Y?*X in involution with X, that is, 
such that [ I F ] = 0, or 

ÔY dY ÔY 
(19) Xp + pXp (Xx + pXy) = 0, 

dx dy dp 
and P by the equation P = Yp/Xp. The symbol for the transformed 
group will be 

~ - df df df df df df 
(20) Bf = É — + rj —- + ff — = BX—- + BY — + BP — . 

dX dY dP dX dY dP 
But l = BX = Bu — Q since u is invariant under 5 / . Since l = Wp 

this implies that W is free of P . Also, we find that rj does not contain 
P because rj = PWp — W= —W. Hence, S / is an extension of the 
point transformation group 

(21) Uf= -W{X, F ) - | ~ . 

This group can be reduced further by introducing the canonical 
variables 

X* = Z, Y* = - f • 
dY 

W(Xt Y) 

Then the symbol of the infinitesimal transformation assumes the 
8 Cohen, loc. cit. p. 195, proves that the contact transformation reduces to a point 

transformation by assuming the corresponding differential equation solvable for p 
in the form p = œ(x, y). 
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simplest form 

U*f = 
dY* 

The equation u = F(v) when written with the variables X, F, P 
takes the form 

(22) 4>(X, F, P) = 0. 

This is also a differential equation, that is, P = dY/dX, since the 
relation dY—PdX = \(dy—pdx) which holds for any contact trans­
formation implies dY—PdX = 0 whenever dy—pdx = 0. Since (22) 
will be invariant under (21) we are in position to solve (22), either 
directly or by introducing the canonical variables X*, F* [this last 
step reduces the equation to the form dY*/dX* = G(X*)]. Let 

(23) *(X, Y,c) = 0 

be the solution of (22). Passing back to the original variables we get a 
second differential equation 

* ( * , y , PfC) = 0 

which together with u — F(v) determines the integral curves of the 
latter in terms of the parameter p. 

Examples. I. Consider the differential equation 

(24) P + y/P= F(x + 2p). 

Here u = p+y/p, v = x+2p. Hence, it follows that Ji = 2/p, J 2 = l 
~y/P\ Js=~l/P, pJi-Ji=l+y/p*, M! = 2a/p, M* = Mz = 0. 

Formula (16) can be applied with <f>i(p) =2/p, faix) = 0 . Therefore, 
the characteristic function of the group is 

W = k(l + y/p2)p2 = k(p* + y). 

Since a constant factor is irrelevant, we see that equation (24) is 
invariant under the infinitesimal contact transformation 

df df df 
Bf=2pf+(p*-y)-±-pf. 

ax ay dp 

By taking X = v = x+2p equation (19) reduces to 

dY dY dY 
(25) 2 + 2p = 0. 

dx dy dp 
The corresponding system of ordinary differential equations is 
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dx dy dp dY 

~2~~ 2 ^ ~ ^ ~ ~ ( ^ , 

from which we obtain Y=p2+y as a particular integral of (25). 
Finally we have P — 2p/2—p. Introducing the new variables in (24) 
we get dY/Y=dX/F(X). Hence, we have 

r dx 

Passing back to the variables x, y, p we obtain 

(26) p2 + y - <**(•+**> = 0. 

The system (24)-(26) furnishes the solution of the equation (24). 
For instance, if F(x+2p)=tan (x+2p)t equations (24) and (26) 

are respectively 

P + y/P = tan (x + 2p), p2 + y = c sin (x + 2p). 

Solving for x and y we find 

x = — 2t + arc cos (//c), 

y= -P±(c*~ /2)1 /2 , 

which are the parametric equations of the solution, where t = p is the 
parameter. 

I I . To apply the method to find the group leaving invariant some 
familiar types of ordinary differential equations, let us consider first 
the homogeneous equation 

p=F(y/x). 

We have u — p, v = y/x, Ji~—l/x, J2~—y/x2, Js = 0, pJ\ — J% 
= (y—px)/x2, Afi = 0, M2 = 2cr/x, M3 = 0. By using formula (16) with 
<t>i(p)=z0f <t>2(x)=2/x, we get (taking &= — 1) 

W = px — y. 

Since W is linear in p we obtain the point transformation with 
symbol 

Uf = x \r y — ; 
dx dy 

which corresponds to the so-called homotetic transformation. 
For the linear equation p+P(x)y~ F(x) we have u — p+Py, 

v^x, / i = 0, 72==1, / 3 = - P , pJi-Ji = - 1 , Mi = 0, M2= -oP,ikr3 = 0. 
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By putting <j>i(p) = 0, faix) = —P, kee= 1 in formula (16) we obtain 

W = — exp ( — I Fax J. 

Hence the symbol for the group has the form 

I I I . Finally, we shall give a short table of some general types with 
the corresponding characteristic functions.4 

Differential Equations Characteristic Functions 

y = pX + F [x<j>(p) ] kx<j)(p) 

y = poo + pF\y<t>{p)\ kyp<i>(p) 

J + 4>(P) = pFÏx + j 4>'(p)dp/p\ k[y + <f>{p) ] 

e*<f>(x + y + p) = F[e*(p + 1)] H{x + y + p) 

p + rtp) L J p + 4>(p)] U 

HAVANA UNIVERSITY AND 
UNIVERSITY OF ALABAMA 

4 1 am indebted to my former students Miss C. Santana and Dr. R. Pena for the 
fourth and fifth types shown in the list. 


