ON THE SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS OF THE FIRST ORDER INVARIANT
UNDER CONTACT TRANSFORMATIONS

MARIO O. GONZALEZ

In the classical Lie theory it is shown how to construct a dif-
ferential equation invariant under a given group, and how to solve
an equation when a group leaving the equation invariant is known.
However, little is said about the problem of determining the group
for a given differential equation, which is by far the most interesting
problem.

In the present paper, necessary and sufficient conditions for the
existence of an infinitesimal contact transformation leaving a given
equation invariant are determined along with the general form of the
characteristic function of the group. It will also be shown how to
reduce, by a proper change of variables, the infinitesimal contact
transformation to a point transformation. This enables one to solve
the transformed differential equation by Lie’s methods. Passing
back to the original variables, a new differential equation is obtained
which combined with the original equation gives its solution in para-
metric form.

Let

1é)
p=t L, ¥ Y
ax dy ap
be the symbol of the infinitesimal contact transformation leaving in-
variant the differential equation #=F(v), with u=u(x, v, p),
v=ov(x, ¥, p), p=dy/dx, and F such that the equation G(x, y, p)
=y — F(v) =0 satisfies the various conditions for the existence of
solutions (but otherwise arbitrary). Throughout this paper we shall
assume that:
(A) Both % and v have first derivatives with respect to x, y and p,
at least in some region R of the (x, y, p)-space.
(B) The Jacobians

_ (u, v) _ (u, v) _ (u, v)
T, T ke T a(s, 9)

have in R derivatives of the first and second orders, while J; and J
have also derivatives of the third order with respect to x, y and p,
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as are involved in the discussion.

(C) The functions % and v are not in involution, that is,
Up Uz Plly
[uo] =

Vp U+ Py

Since # and v are to be invariants under Bf they will satisfy the
partial differential equations

=Jy— pJ1 5 0.

from which we obtain
£ _ n _ ™ _
ow, 0)/3(y, £) 9w, 0)/a(p, %) (w, )/(%,3)
a=0c(x, v, p) being the common ratio. This can be written

(1 £ =dJy, n = oJ T = oJs

o,

If W is the so-called characteristic function of the infinitesimal
contact transformation, we have also

(2) W = pt — 9 = o(pJ1 — Jo).

Now to find o we recall that?

3) £=§.I/_I_/:, 1r=.__.a..W_/:__?ﬂ.
a ox dy

As a consequence of (1), (2) and (3) we obtain the system of equa-
tions

(57 J)6a+< oJ1 6]2) ~0
?J1 261; ?ap 7 c=0,

do do
) (pJ1—TJo) —+ p(pJ1 — Jo) —
dx ay

+|:< aJ1 0]2)+ < aJ1 3]2>+J:| =0
? dx dx P\? ay dy i A

This system may be written in the homogeneous form

1 See Cohen, An tntroduction to the Lie theory of one-parameter groups, p. 186.
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f = "I' + M1—f- = 0,

©) ap do

_f of of

Azf_(—a___'— P—‘I‘Mzao. = 0

in which
6) Mi=—¢ $(07/99) — (372/08)

I —

(2(0T1/0%) — 8T2/0x) + p(p(871/0y) — 672/8y) + Js

N Mi=—0 s |

Adjoining to the system (5) the equations
of of o . of

(8) A3f=(A1A2f=—-+(A1Mz-'A2M1) ="—‘+ 3_'—0
dy do do
of
(9) A4f= (A1A3)f= (AlMa—AaMl)——= 0,
of _
(10) A5f= (AzAs)f (AzMa - Ast)
we see that the equations
(11) A1M3—A3M1=0, AzMs—A3M2=O,

are necessary and sufficient conditions in order that the system (4)
have a solution. The system (5)—(8) implies the Jacobian complete
system

K1f=a—f+(M2—PMs)%=0,
(12) K»f = a—f+MSZ—f-_ 0,
K3f=—"f+M1—Z— 0.
ap do

Either we may solve (12) or the equivalent total differential equa-
tion

If f=y(x, 3, p, 0) is the solution of (12), then
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(14) ¢(x, Y b 0') =c

will be the solution of (13), and conversely. Equation (14) determines
¢ in terms of x, ¥, and p. Since o enters as a factor in M; and My, it is
also a factor of M;.2 Hence, equation (13) can be written

do/o = dw(x, v, p),
and so o has the form
(15) o = kev®v.p),
Several special formulas for o may be found. For instance, if
My = ¢i(p)o, M= ¢a(2)o,
then M;=0, and equation (13) reduces to
$2(x)odx + ¢1(p)odp — do = 0,

from which we obtain

o = kexp (f¢1(17)dﬁ +f¢2(x)dx>.

Therefore, the characteristic function takes the form
(16) W = k(pJy— J») exp ( [owar+ [ ¢2<x)dx)

by virtue of (2). This special case will be of use in some examples to
be considered later.
We summarize our results in the following theorem.

THEOREM. The characteristic function W of the infinitesimal contact
transformation leaving tnvariant a given differential equation u= F(v)
can be found by the formula

W = k(pJ1 — Jo)ee@v:»)
if, and only if, the equations
AMs — AsM1 =0, A:M;— AsM,=0
are boih satisfied for all values of x, y and p.

Now, to solve the differential equation #= F(v) invariant under
the known group
2 If M,y =gN,, Mjy;=0N,, then Ma=A1M2—Ang=o(6N2/ap—aNl/ax—paNl/ay).

This relation, together with (11), are the conditions in order that (13) be an exact
differential when divided by o.
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17) Bf =W, f—l— (W5 — W)g- - (W.+ qu)-al’
dy d9p

we consider two cases:

(A) Both ¢=W, and n=pW,— W are free of p. This case occurs
when W is linear in p. Then Bf represents an extended point trans-
formation and the equation may be solved by introducing canonical
variables.

(B) Either £ or 7, or both, contain p. Then Bf represents a general
contact transformation.

In this case we may show that by a suitable change of variables the
transformation reduces to a point transformation.® To this aim, let
us define a finite contact transformation

(18) X = X(xy Y, p)v V = V(x, Y P)’ P = P(x: Y, P)

in the following manner: X =%, Y5 X in involution with X, that is,
such that [XYV]=0, or

(19) X ay+ X o (X.+ X)ay_o
Pax ?pay z Pvap",

and P by the equation P=Y,/X,. The symbol for the transformed
group will be

of of of of of of
20) Bf = ¢t— . — = BX — BY—— BP —.
(20) Bf E + 7) + 7 3P X + + 3P
But §=BX =Bu=0 since « is invariant under Bf. Since §=Wp
this implies that W is free of P. Also, we find that 7 does not contain
P because =PWp—W=—W. Hence, Bf is an extension of the
point transformation group

— of
(21) Uf = —W(X,7Y) i

This group can be reduced further by introducing the canonical
variables

X* = X, y*=_f___f_{__.
W(X,Y)

Then the symbol of the infinitesimal transformation assumes the

3 Cohen, loc. cit. p. 195, proves that the contact transformation reduces to a point
transformation by assuming the corresponding differential equation solvable for p
in the form p=w(x, y).
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simplest form

of

U*f = :
1=y

The equation %= F(v) when written with the variables X, ¥, P
takes the form

(22) ¢(X, Y, P) =0.

This is also a differential equation, that is, P=dY¥/dX, since the
relation d YV —PdX =\(dy —pdx) which holds for any contact trans-
formation implies dY—PdX =0 whenever dy—pdx=0. Since (22)
will be invariant under (21) we are in position to solve (22), either
directly or by introducing the canonical variables X*, ¥* [this last
step reduces the equation to the form dV*/dX*=G(X*)]. Let

(23) VX, Y, ¢)=0

be the solution of (22). Passing back to the original variables we get a
second differential equation

Y(x, v, p,¢) =0

which together with %= F(v) determines the integral curves of the
latter in terms of the parameter .
Examples. 1. Consider the differential equation

(24) b+ y/p = F(x + 2p).

Here u=p+4y/p, v=x+2p. Hence, it follows that J1=2/p, Jo=1
_y/P2’ Js= —'1/Ps PJ1—J2=1+3’/P2, M1=20'/P, My=M;=0.

Formula (16) can be applied with ¢1(p) =2/p, ¢2(x) =0. Therefore,
the characteristic function of the group is

W = k(1 + y/p")p* = k(p* + ).

Since a constant factor is irrelevant, we see that equation (24) is
invariant under the infinitesimal contact transformation

i) d a
Bf = tpt (=5 =

9
By taking X =v=x-2p equation (19) reduces to
)4 oY ¥y
(25) 2— 4 2p———=0
ox dy ap

The corresponding system of ordinary differential equations is
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from which we obtain Y=p%+y as a particular integral of (25).
Finally we have P=2p/2=p. Introducing the new variables in (24)
we get dY/Y=dX/F(X). Hence, we have

aX
Y =¢, GX)=]}] ——:
F(X)
Passing back to the variables x, y, # we obtain
(26) P+ y — ceGE¥R) = (,

The system (24)—(26) furnishes the solution of the equation (24).
For instance, if F(x+42p)=tan (x+2p), equations (24) and (26)
are respectively

p+y/p=tan(x+2p), p*+y=csin(x+ 2p).
Solving for x and y we find
x = — 2t + arc cos (¢/c),
y= -8+ (-,
which are the parametric equations of the solution, where t=p is the
parameter.
II. To apply the method to find the group leaving invariant some

familiar types of ordinary differential equations, let us consider first
the homogeneous equation

p =F(y/x).

We have u=p, v=9/x, Ji=—1/x, Jo=—y/x2, Js=0, pJ1—Ja
=(y—px)/x?, M1=0, My=20/x, M3=0. By using formula (16) with
&1(p) =0, ¢a(x) =2/x, we get (taking k= —1)

W = px — 9.

Since W is linear in p we obtain the point transformation with
symbol
of of
Uf=2—+y—
/ dx Y ay,
which corresponds to the so-called homotetic transformation.
For the linear equation p-+P(x)y=F(x) we have u=p+ Py,
V=X, Jl=0, Jz=1, Jz= —'P, PJI_J2= —'1, M1=0, Mz= —O'P,M3=0.
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By putting ¢1(p) =0, ¢pa(x) = — P, ke=1 in formula (16) we obtain
= — exp (—dex).
Hence the symbol for the group has the form

Uf = exp(—dex)%-

ITI. Finally, we shall give a short table of some general types with
the corresponding characteristic functions.*

Differential Equations Characteristic Functions
y = px + Flap(p)] kxé(p)
y = px + pF[ys(p)] Eype(p)
y+6(0) = F | a+ [ #pap/s ] Ely + 6(0)]
ed(x + v+ p) =Fle*(p + 1)] kd(x + 5 + p)
y+ x¢(?) &' (p)dp
e k )
PE ) w[log e+ [ Py ¢<p>] by + =]

HAvaNA UNIVERSITY AND
UNIVERSITY OF ALABAMA

4 I am indebted to my former students Miss C. Santana and Dr. R. Pefia for the
fourth and fifth types shown in the list.



