
RECENT PROGRESS IN THE GOLDBACH PROBLEM 

R. D. JAMES 

1. Introduction. The problem under consideration had its origin in 
a letter written by Goldbach to Euler in 1742 [4J.1 In the letter, 
Goldbach made two conjectures concerning the representation of 
integers as a sum of primes. They are equivalent to 

(A) every even integer greater than 2 is a sum of two primes, 
and 

(B) every integer greater than 5 is a sum of three primes. 

The two conjectures are, of course, equivalent. If 2n — 2 = pi+p2, 
then 2n = pi+p2+2 and 2n + l = pi+p2+3- Conversely, if 2n=pi 
-\-p2-\-pz one of the primes must be 2 and 2n — 2 = pi+p2. 

An impressive collection of numerical evidence indicating the truth 
of the conjectures has accumulated in the years since Goldbach's 
letter was written, but is it not known to this day whether the con­
jectures are true or false. What progress has been made towards the 
solution of the problem has been through two principal methods of 
attack. 

The first of these is the sieve method (see §§2 and 3) due originally 
to Brun [ l ] , and improved by Rademacher [16], Esterman [S], Ricci 
[17], [18], and Buchstab [2], [3]. The best result by this method, 
due to Buchstab in 1940, is 

every sufficiently large even integer is a sum of two integers, each having 
at most four prime factors. 

The sieve method has also been used in combination with results on 
the density of sequences of integers. (See §4.) Contributions have been 
made by Schnirelmann [20 ], Landau [12], [13], Heilbronn, Landau, 
Scherk [7], and Ricci [19]. Schnirelmann proved that 

every integer > 1 is a sum of a finite number of primes. 

The best result, due to Ricci in 1937, a minor improvement on the 
Landau, Heilbronn, Scherk result of 1936, is 

every sufficiently large integer is a sum of at most 67 primes. 

An address delivered before the Vancouver meeting of the Society on June 19, 
1948, by invitation of the Committee to Select Hour Speakers for Far Western Sec­
tional Meetings; received by the editors June 14, 1948. 

1 Numbers in brackets refer to the references cited at the end of the paper. 

246 

file://-/-p2-/-pz


RECENT PROGRESS IN THE GOLDBACH PROBLEM 247 

This result did not stand for long. I t was superseded almost im­
mediately by the Vinogradov result described in the next paragraph. 

The second principal method is the analytic method developed by 
Hardy and Littlewood [ó] in their series of papers on Partitio Nume-
rorum. In 1937, Vinogradov [23] established an asymptotic formula 
for the number of representations of an odd integer as a sum of three 
primes. From this it follows that 

every sufficiently large odd integer is a sum of three primes. 

The work of Page [15] and Siegel [21 ] is an important part of the 
Vinogradov method. Vinogradov's result is close to Conjecture B 
and is now known in the literature as the Goldbach-Vinogradov 
Theorem. The same method also leads to a proof of the result 

almost all even integers are sums of two primes. 

The precise meaning of "almost all" is explained in §5. 
Linnik [14] and Tchudakoff [22] have given different proofs of 

Vinogradov's result, but the Goldbach-Vinogradov Theorem still 
stands as the nearest approach of modern mathematics to the Gold-
bach conjecture of 1742. 

2. The sieve method. Brun's contribution. The method of Brun is 
an adaptation of the ancient Sieve of Eratosthenes, in which the 
mechanical process of striking out the multiples of primes is replaced 
by an algebraic recursion formula. Brun's significant contribution is 
the way in wrhich the formula is suitably modified. This important 
point will be explained later at the appropriate time. 

Let d be a given positive integer, and let pu p2, • • • , pk be the 
primes in order, which do not divide d and do not exceed y, where y 
is any positive number. Let a*; & * ; • • • ; a&, bk be a set of integers 
with 0^ai<pi, OSbi<pi, a^bi, i = l , 2, • • • , k. Let a be any posi­
tive integer and x any positive number. Then, following Rademacher, 
Buchstab, and Landau, let F(x; d, y) = F(x; d, y; aiy &,-; pi) denote 
the number of integers n which satisfy the conditions 

w < #, n ^ a (mod d), 

(n — ai)(n — £«•) ^ 0 (mod pi), i = 1, • • • , k. 

The arguments a, a^ bit pi, need not be written in the function since 
the results will hold for every a and every set a», bi of the type de­
scribed. F(x; d, 1) is nothing but the number of integers n^x, 
n^a (mod d) and will be abbreviated F(x; d). 

The connection between F(x\ d, y) and the Goldbach problem is 



248 R. D. JAMES [March 

indicated by the following considerations. Let d = 2, a = l, y = xl/u, 
where x is even integer and u is an integer not less than 2. Let a» = 0, 
bi^x (mod pi) if pi\x; bi^x (mod pi) if £»|x. Then the function 
F(x; 2, x1/u) is the number of odd integers n ^x such that neither n nor 
x — n is divisible by any prime not exceeding x1,u. Hence all the prime 
factors of n and x — n are greater than x1,u and there cannot be more 
than u — 1 of them. If u = 2 each of n and #•—w is either a prime 
or equal to 1. Thus, if it could be shown that F(x\ 2, x112) ^ 2, it would 
follow that there is at least one representation x = n+(x — n) in 
which each of n and x — n is a prime. Buchstab's result, quoted in the 
introduction, comes from establishing a similar inequality for 
F(x; 2, x1*). 

The fundamental recursion formula is not difficult to prove. 
Clearly, the number of integers satisfying (2.1) is equal to the num­
ber of integers satisfying 

n ^ x, n s a (mod d). 
(2.2) \ » 

(n — ai)(n — bi) ^ 0 (mod £,-), i = 1, 2, • • • , k — 1, 
diminished by the number of integers satisfying 

(2.3) n g x, n 2= a (mod d), 

(2.4) (rc — afc)(^ — &fc) = 0 (mod pk), 

(n — cii)(n — bi) ^ 0 (mod pi) i = 1, 2, • • • , k — 1. 

Since au^bk, pk\d, the conditions (2.3), (2.4) are equivalent to 

w ^ #, w ss a'(mod dpk); n S %, n = a" (mod dpk). 

I t follows that 

F(x; d, pk\ a) = F(x; d, pk-i; a) 

— F(x; dpk, pk-x) a') - F(x; dphy p^; a"), 

where the arguments a, a', a" are temporarily indicated in the func­
tion. Since the results are to hold for every a, a', a" it is usual to write 
(2.5) symbolically in the form 

(2.6) F(x; d, pk) = F(x; d, pk^) - 2F(x; dpk, £*_i), 

where, of course, if k = 1, F(x; d, pi) = F(x\ d)—2F(x\ dpi). Equation 
(2.6) is the fundamental recursion formula. 

From (2.6) it is but a short step to 
ft; 

F(x; d, ph) = F(x; d) - 2 ^ ^ ; dpr, pr-i) 
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and 

k 

F(x; d, pk) = F(x; d) - 2 J^F(x; dpr) 

(2 7) * r _ 1 

+ (-2)"F(x; dpkp^i • • • #rfj)-

Since /''(x; <2) is the number of integers n^x,n=a (mod d), F(x; d) 
=x/d+0, where \d\ g l . Hence, from (2.7), 

F(x;d,pk) = (x/d){l-2j2(i/Pr) 
+ 4EEd/M.) 
+ (-2) »(l/f » . . -*,)} + *. 

or 

(2.8) F(«; (*, ƒ>*) = (*/<*) Û (1 - 2/pr) + R, 

where \R\ does not exceed the number of terms in the brackets, 
that is, \R\ ^ 2 f c + 1 - l . 

Unfortunately, formula (2.8) is of no help as it stands. The diffi­
culty is that, if p\, p2, • • • , pk are the primes up to xllu then 
IJ(1 — 2/pr)~Ciu*/\og2 x, and k=Tr(x1/u)~ux1/u/log x, so that R is of 
higher order than the principal term in (2.8). This is where Brun's 
contribution comes in. He replaces the equation (2.8) by an inequality 
in which the number of terms is sufficiently reduced to make R of 
lower order than the principal term. 

It would take too long to reproduce the details here. The interested 
reader may find them in Brun's original memoir or in Rademacher's 
paper. The final result is that , if ki, &2, • • • , kt are integers satisfying 
l^kt^ • • • £ki£k, then 

(2.9) F(x;d,pk) = (x/d)E- R 

where E = l — 2 X ( l / £ n ) + 4 ] C Z ( V M r 2 ) - • • • » the summation 
indices satisfy 

1 J = 1, 2, • • • , t, 

1 ^ ^2«+i < ru < • • • < r2 < ri, 
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and R does not exceed the number of terms in the product 

a - 2 i : ( i / ^ ) ) ( i - 2 £ ( i / ^ ) ) - - - , 
that is, R<(2k+l)(2h+iy • • • (2£<+l)2 . 

By suitably choosing the integers ki, k%, • • • , kt it can be shown, 
for example, that 

o k 

(2.10) E > - I I (1 - 2/Pr), R = 0{pT\ 

This is Rademacher's result, and illustrates the point that reducing 
the number of terms only changes the principal term to a numerical 
constant times its former value, but reduces the remainder term by a 
considerable amount. 

It follows from (2.9) and (2.10) that, if pi, p2, • • • , pk are the 
primes up to x1/8, then F(x; 2, x1/8) >c2x/log2 x~~CzX79,S0. Hence every 
sufficiently large even integer x is a sum x = n-\-(x — n) of two odd 
integers, each with at most seven prime factors. The reduction from 
seven to four prime factors is accomplished by the method of Buch-
stab, which is discussed in the next section. 

I t should be noted in passing that the Brun method will yield upper 
bounds for F(x; d, pk) as well. I t is only necessary to stop the series 
for E with r2t instead of r2*+i. Such upper bounds are needed in 
Buchstab's work (§3) and in the density-sieve method (§4). 

3. The sieve method. Buchstab's contribution. Buchstab's results 
are based on a modification of the fundamental recursion formula 
(2.6), and uses a different estimate for the number of integers satis­
fying (2.3), (2.4). (See also James [8].) 

The number of integers n such that 

n ^ x, n s a (mod d), 
(3.1) J 

n = ak (mod pk), (n — a^){n — bi) f£ 0 (mod pi) 

is equal to the number of integers m such that 

au + tnpk ^ xf ak + mpk ~ # (mod d), 

(fl* + mph — ai)(ak + mpk — bi) ^ 0 (mod p%), 

or 

m < (x — a%)/pki m s a! (mod d)t 

(m- a'i){m - bi) fâ 0 (mod pt). 

The number of integers satisfying (3.2) and hence (3.1) is 
F((x—ak)/pk; df pk-i). Similarly the number of integers satisfying 



i949l RECENT PROGRESS IN THE GOLDBACH PROBLEM 251 

(3.1) with ak replaced by bk is F((x — bk)/pk\ d, pk-i), and therefore 

(3 3) F^X; di *** = F^X; dy Pk'1>} 

- F((x - ak)/pk; d, pk-i) - F((x - bk)/pk; dy p^). 

Since 0^ak<pkl 0^bk<pk, the difference between the last two terms 
on the right of (3.3) and 2F(x/pk; d} pk-\) is at most 2. Therefore 

(3.4) F(x; d, pk) = F(x\ d, pk-i) - 2F(x/pk; d, pk^) + dk, 

where 0 ^ 0 * ^ 2 . This is the recursion formula in the Buchstab 
method. 

Let u and v be integers such that 2Su<v, and let pt, pt+i, • • • » 
pk-i, pk be the primes in order for which 

pt ^ x1'" < pt+i < • • • < pkS *1/w < pk+i. 

By repeated application of (3.4) it follows that 

F(x; d, xx'u) = F(x; d, xl'v) 

(3 5) k k 

- 2 £ F(x/pa d, p^) + J2 Bi. 

If a lower bound for F(x; d, x1/v) and upper bounds for each term in 
the sum are known, formula (3.5) provides a lower bound for 
F(x;dt xllu). 

Formula (3.5) is one of the important parts of Buchstab's contribu­
tion. The larger v is the easier it is to get a good lower bound for 
F(x\ d, xllv) and reasonably good upper bounds for the terms in the 
sum, using the Brun methods. This leads to a better lower bound for 
F(x; dt xl,u) than can be obtained with the sieve method by direct 
calculation. 

Another important part of the method is the way in which (3.5) is 
used. I t can be shown by the Brun method that there exists a pair of 
non-negative step functions go(u), Go(u) defined for u^2 such that 

(3.6) g0(u)cx/log2 x S F(x; d} xllu) g G0(u)cx/log2 x 

for all sufficiently large x, where c is an absolute constant. In Buch-
stab's first paper [2], for example, he starts with 

, , ƒ 0, 2 g u < 10, 

* 198, u = 10; 
(3-7) , x 

Go(u) = 101.6, 2^u^l0. 
It then follows from (3.6) that go(u) and G0(u) may be replaced by 
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gi(u) and Gi(u), respectively, where 

giO) < go(v) - 2 ƒ» v—1 

Gom 
u - l 

z + l)z~2dz, 

Gi(u) > Gi ƒ
» v—1 

u-l 
go(*)(* + l)z~2dz, 

ior 2^u<v. 
The process may be repeated as long as the new bounds are better 

than the old. Starting with the rough estimate (3.7), Buchstab [2] ob­
tains the following : 

#>(*) = 

(3.8) 

o, 
0.3, 

53.51, 

75.58, 

98.0, 

67.58, 

72.86, 

85.1, 

101.6, 

2 S u < 6, 

6 S u < 8, 

8 ^ u < 9, 

9 ^ M < 10, 

M = 10; 

2 ^ « g 7, 

7 < « ^ 8, 

8 < M =" 9, 

9 < M ^ 10. 

G3(w) = 

In a second note, Buchstab [3] starts with the set (3.8) with the addi­
tion of 

M = \244.9997, 

G,0 
r i44. 

1196. 

144.1328, 

0022, 

10 ^ u < 15, 

w = 15; 

10 < u S 12, 

12 < u S 14; 

and works down to gi(5) =0.96438. From this follows the result 
quoted in the introduction, the best so far obtained by this method, 
that every sufficiently large even integer x is a sum x = n + (x — w), in 
which each of n and x — n has at most four prime factors. 

I t is not entirely improbable that the newer computation methods 
may be used to work further down, perhaps even to g»(2) > 0 . If this 
should be the case, Goldbach's first conjecture and other similar 
ones would be proved, at least for sufficiently large integers. 

4. The density-sieve method. While it is true that the results of 

file:///244.9997
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the density sieve method were soon superseded, the method itself is 
still of interest. 

It is well known that, if ir(x) denotes, as usual, the number of 
primes not greater than x, then ir(x)/x—>0 as #—»<*>. On the other 
hand, Schnirelmann [20] proved that, if M(x) denotes the number of 
integers nSx which are a sum of two primes, then M{x)/x^ 1/h, # ^ 4 , 
where h is a constant greater than 1. In other words, the set of integers 
# ^ 4 , which are sums of two primes, has positive density. It follows 
from standard theorems on the density of sequences of integers that 
every integer x>l is a sum of a finite number of primes. This is the 
Schnirelmann theorem. (See Landau [13].) 

The Schnirelmann result depends on the sieve method in the follow­
ing way. Let A(m) denote the number of representations of an 
integer m as a sum of two primes, and let M(x) be the function de­
fined above. Then, by the Cauchy-Schwarz inequality, 

(
x \ 2 x 

ZM<>)) ^ M(x) J^A2(m) 
w=4 / 7W=4 

and 
(4.1) M(x) ^(j^A(m))/(i^A\m)). 

\ m==4 / f \ m=4 / 

What is needed then is a lower bound for the numerator, and an 
upper bound for the denominator, of the term on the right of (4.1). 
A suitable lower bound is easily found by noting that 

(4.2) T,A(tn) ^ ir2(*/2) > Cix2/log2
 x. 

The sieve method enters into the problem of finding an upper bound. 
Clearly, the number of solutions of m — p-\-p\ where p and p' are 
primes, each greater than m1/2, does not exceed F{m\ 1, m112). The 
number of solutions where p^m112 or p' ^m 1 / 2 does not exceed 2m1/2. 
Hence, an upper bound for F(m; 1, m112) provides an upper bound for 
A(m) and finally for ]>^42(ra). 

The details are given by Landau [13] and will be omitted here. The 
result is 

(4.3) F(m; 1, m1'2) < c2(tn/\og2 m)H(l + 1/p), 

where c% is a constant. I t then follows that y^A2(m) <£3ff
3/log4 x, 

and then from (4.1) and (4.2) that M(x)/x^l/h, h = cs/cî. 
In the Heilbronn, Landau, Scherk paper [7], M(x) is the number 

of integers m^x for which 30m = p+p\ and the inequality (4.3) is 
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replaced by 
F(m; 30, ni1'2) 

Urn sup = : S Ci 
m-*oo,w==0(mod30) ( w / l o g 2 m) XX (1 + V ( # ~~ 2)) 

where £4 is a constant. There are similar changes for T^A (m) and 
y^42(W). By a careful consideration of the numerical constants in­

volved, it is shown that 

lim inf x~4 log4 * ( ]£ A(m))2 1 
lim inf M(x)/x è ^ è — • 

X-+00 lim sup x~d log4 ^ (2^ ^42(w)) 34 
Finally, from a general result of Khintchine [lO] it follows that every 
sufficiently large integer u may be written in the form 

34 
u = 2Z mi + r> 0 g r ^ 33. 

Hence, for each j such that 2 ^ / ^ * 3 1 , 

34 

v = 30u + y = E (#< + #/) + * 

where 2^*^1021 . 
It is easily verified that every 5 in the given range is a sum of at 

most three primes, and therefore every sufficiently large integer v is a 
sum of at most 71 primes. Ricci [l9] reduced the number 71 to 67, 
but the improvement is one of detail and no new principle is in­
volved. 

5. The analytic method. The method pioneered by Hardy and 
Littlewood [ó] is based on the idea of a generating function and on 
the Cauchy residue theorem. Thus, if {aj} is an infinite sequence of 
positive integers with a,-<ay+i, the function ƒ(z) = ]CjLi2°', 1*1 <*> 
is the generating function of the sequence. If A8(N) denotes the 
number of representations of an integer N as a sum of s integers of the 
sequence, then 

fs(z)~T,A8(j)z>', 

and 

(5.1) A.(N) « (1/2x0 f ftog-x-Wz, 
Je 

where C is the circle \z\ =r < 1 . 
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The question of convergence of the series, but not the difficulty 
of the proof, is avoided in the Vinogradov [23 ] version by consider­
ing notf(z) but F(x) = Yl<*j£Ne(a,jx) where e(a,jx) denotes e27ria>x

f and 
x is real. Then (5.1) is replaced by 

AS(N) = f F*(x)e(-Nx)dx. 
J o 

If the sequence a3- is the sequence of primes, the number of repre­
sentations of an integer N as a sum of three primes is 

(5.2) A(N) = f F\x)e{-Nx)dx, 
J o 

where 

(5.3) F(x) = £ e(px). 
p^N 

Formula (5.2) is Vinogradov's starting point, and since his work is not 
easily accessible, some details may be of interest. 

As is well known, the first step is to divide the interval (0, 1) into 
sub-intervals whose centers are the points x = a/q, (a, q) = 1, 0 ̂ a Sq, 
1 <; q <J Q, corresponding to a Farey series of some order Q. The 
sub-intervals corresponding to the smaller values of q form the 
intervals of Class I (major arcs), and the remaining sub-intervals, the 
intervals of Class II (minor arcs). If n is written for log N and if h 
is a number greater than 3, the classes for the Goldbach problem are 
defined by 

I : x = a/q + y, 1 ^ q S [nzh], \ y \ é nzh/N, 

I I : x — a/q + y, [nzh] < q S N/nzh, \ y \ S n*h/qN. 

If x belongs to an interval of Class I, the sum F(x) is written in the 
form 

F(a/q + y) = g £ e(p(a/q + y)) 
r=0 p^N,p==r(mod q) 

= £ e(ra/q) £ e(py) + o( Y, l)-
r—0,(r,q)=l p=*N,p^r(mod q) \ p\q / 

The inner sum is approximated by (l/<l>(q))J(y)y where 

rN 

J(y) = I (e(;y/)/log t)dt, M = Nl>\ 
J M 

In Vinogradov's paper the lower limit in J(y) is 2, but it is better to 
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use M (see James and Weyl [9]). From the results of Page [15] and 
Siegel [2l] , the error made in approximating to the inner sum is 
0(N/<l>(q)nUh+1). 

Since 

q-l 

Z) e(ra/q) = /x(?), 
r=0 , ( r ,g )= l 

it follows in turn that 

F(a/<I + J) = (Ko)/<l>(q))J(y) + a n error term, 

Fz(a/q + y) = {^{ç)/<t>z{(Ù)Jz(y) + a n e r r o r term. 

The part of the integral in (5.2) over an interval of Class I is 

ƒ. F'(a/q + y)e(-N(a/q+y))dy 

J
nBh/N 

P{y)e{-Ny)dy 
-n*h/N 

+ an error term. 

The limits in the integral may be extended from — 00 to 00 without 
making the error term any worse. Hence 

]C f F*(x)e(-Nx)dx 

[nth] q—l * 00 

(5-4) = 2 Z (K<Ù/<t>*(q))e(-Na/q) j P{y)e(-Ny)dy 
Q = 1 a=0 , (a ,g - )—1 • / — 00 

+ an error term. 

If the series for q is extended from 1 to 00 it becomes the so-called 
singular series, S(N), and, if R(N) is written for the integral in (5.4), 
then 

(5.5) X f Fz(x)e(-Nx)dx = S(N)R(N) + an error term. 

The singular series is a purely arithmetical function of an integer N 
(it is zero when N is even), whereas R(N) takes only the size of N into 
account, being defined for all real values of N. In fact R(N)~N2/2nz 

as N—> 00. 
One of Vinogradov's fundamental contributions is an estimate for 

F(x) when x belongs to an interval of Class II . Let D denote the 
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product p\p2 • • • pk of all primes not exceeding N112. Then 

N 

F(%) = £ e(px) = Y, e{mx) + 0(iV1/2). 
PUN m=2,(m,D)=l 

If /z(d) is the Möbius function and 

N 

Fd(oc) = X] e(wff), 
m=2,d |w 

then (the sieve again) 

(5.6) F(x) = £ M(d)Fd(») + O(N^). 
d£N,d\D 

It follows from (5.6) and Vinogradov's important results on ex­
ponential sums that , if x belongs to an interval of Class II , then 

(5.7) F(x) =0(N/nh-2), 

where h is an arbitrary number greater than 3. Hence 

£ f F\x)e{-Nx)dx = 0(N/nh~2) f \F(x) \2dx 

(5.8) J u J° 
= 0(N/nh-2)ir(N) = 0(N2/nh^). 

This is of lower order than the principal term in (5.5), and hence, by 
(5.2), (5.5), and (5.8), A(N) =*S(N)R(N)+0(N2/nh~l). 

There is an asymptotic expansion (James and Weyl [9]) 

R(N) ~ (N2/nz)(l/2 + h/n + b2/n
2 + • • • ) > 

where the error in stopping with the term bj-i/n3'*1 is less than Cj/n*9 

where Cj does not depend on N. Hence 

(5.9) A(N) ~S(N)(N2/n*)(l/2 + h/n + b2/n
2 H ). 

The singular series has a product representation (Hardy and 
Littlewood [6], Landau [ l l ] ) 

sim = n (i + I/(P - mil a - w - 3/» + 3)). 
p p\N 

For even N the first factor of the second product is zero, but for odd 
N it can be shown that S(N) > C, where C is a positive constant. By 
(5.9), A(N)>0 if N is sufficiently large, so that every sufficiently 
large odd integer is a sum of three primes. 

For reasons which are not too clear, the more recent papers mark a 
return to the original Hardy-Littlewood method (Hardy and Little-
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wood [ó], Landau [ i l ] ) . Hardy and Littlewood start with the func­
tion 

(5.10) ƒ(*) = 2 > g ^ 

and so does Tchudakoff [22]. Linnik [14], on the other hand, begins 
with 

00 

(5.11) f(«) = E A ( * ) « " , 

where A(m) =log p if m — p\ / ^ l , and A(ra) = 0 , otherwise. 
Each of the functions f(z) and F(z) is easier to treat by classical 

methods than is Es2>> but there is no essential difference. Starting 
from (5.10) the first step is to follow the plan of the Vinogradov 
method, that is, to write z = e~-llNe(a/q+y)> e~1,N being a convergence 
factor, and 

ƒ(*)= Ë E l°g P*-"»e(p(a/q +y)) 
r—0,(r,g)=l 2»^2,p = r(mod g) 

+ an error term. 

It is well known that (Landau [ l l ] ) 

ExWxW=|*(?) " *mr(faod*>. 
x ( 0 if p fâ r (mod q)t 

where the summation is over all characters mod q. Hence ƒ (z) is equal 
to 

(l/*(ff)) E E e(ra/q)x(r) E x(#) log pe~^Ne(py) 
X r p 

plus an error term. Also, the inner sum may be replaced by 
00 

X) K{m)x(in)e~mlNe(my) 
m=2 

with an error 0(N1,2/nz/2), n = log N. Thus 

ƒ(*) = (1 /0 (? ) )E E e(ra/q)x(r) E Mtn)x(fn)e-m/Ne(my) 
X r m 

+ Oiq^N1'2/^2). 

Linnik, starting with (5.11) instead of (5.10), arrives at the same ex­
pression for F(z)t but with a slightly different error term. 

By the classical formula of Mellin, 
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]T) ^(m)x(ni)e~m,Ne(my) 
m 

ƒ> 2+00* 

«rT( j ) ( i ' (« , x)/L(s, x))ds, 
2—00» 

where w=l/N—2iriy, \y\ Snzh/N (major arc). I t is here that the 
original Hardy-Littlewood paper ran into trouble. Clearly, the zeros 
of L(sy x) play an important part in the evaluation of the integral, and 
at that time information concerning the density of these zeros was not 
precise enough to be of help. The remainder of Hardy and Little-
wood's paper depends on an unproved hypothesis concerning the 
zeros. No further progress was made until the appearance of the 
papers of Page and Siegel. 

Linnik and Tchudakoff base their work on the approximate func­
tional equations for the L-functions, analogous to the famous ap­
proximate functional equation for the zeta function, and on improved 
estimates of the number of zeros of the L-functions in the critical 
strip. Their work involves some of the most delicate and intricate 
analysis written on the subject. Since TchudakofFs work is given in 
detail (and in English) it is not necessary to reproduce it here. The 
final result is that, if Q(N) ^Jcf(z)z~N-1dz = J2P+P'+P"-N log p log p' 
log pn

y where C is the circle | z\ =e"~1/iNr, then 

Q(N) = S(N)((N + 1)(N + 2)/2) + an error term. 

From this it follows that A(N)~S(N)(N2/2nz), but not the more 
complete result (5.9). 

No doubt something is gained by appealing to classical results in 
the theory of the distribution of primes, but Vinogradov's appears 
to be the more direct approach. 

The analytic method also has something to contribute towards the 
solution of Goldbach's first conjecture. Let B(x) denote the number 
of even integers m Sx which are not a sum of two primes. Then, by 
the Vinogradov, Linnik, or Tchudakoff methods, it can be shown that 

lim B(%)/% = 0. 

This is the precise meaning of the statement that almost all even 
integers are sums of two primes. As Landau [ l l ] puts it in the intro­
duction to his chapter on the Goldbach conjecture, "The Goldbach 
conjecture is false for at most 0% of all even integers. This at most 
0% does not exclude, of course, the possibility that there are infinitely 
many exceptions." 
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