
THE MAYER HOMOLOGY THEORY 

EDWIN H. SPANIER1 

1. Introduction. In 1942 W. Mayer [4]2 defined new homology 
groups based on a boundary operator whose pth power (p a prime) is 
zero, instead of the usual one whose square is zero. As a coefficient 
group an abelian group G with only elements of order p is used. The 
Mayer homology groups Hn,q depend on two integers: n^O and 
0<q<p. Mayer has established the topological invariance of these 
groups but left unsettled the question of their relation with the 
classical homology groups. This question is settled in this paper. The 
answer is embodied in the following theorem which is the main re­
sult of the paper. 

THEOREM 1.1. Let p be a prime and G an abelian group with all ele­
ments of order p. The Mayer homology groups Hn,q (over G) are then 
related to the classical homology groups Hr (over G) as follows: 

(1) If » s 2 - l ( m o d £ ) , then Hn,q~Hrfor r = 2(n-q+l)/p. 
(2) Ifn^~l (mod p), then Hn,q~Hrfor r = 2(n + l)/p-l. 
(3) In all other cases, Hntq = 0. 
Converselyj the classical groups Hr can be expressed in terms of the 

Mayer groups as follows : 
(4) If r is even, then Hr~Hn,q provided n — q = pr/2 — l. 
(5) If r is odd, then Hr~Hn,q provided n = p(r+l)/2 — l. 

The theorem implies that the Mayer groups do not yield new topo­
logical invariants but lead instead to rather interesting alternative 
definitions of the classical homology groups. 

The theorem is valid for the absolute and relative homology groups 
in simplicial complexes. It also remains valid for arbitrary spaces 
provided the Cech limiting process is used to define both Hn,q and Hr. 

The proof of the theorem is not obtained by a direct construction of 
the requisite isomorphisms but is an application of the axiomatic 
characterization of homology theory of Eilenberg and Steenrod 
(sketched in [ l ] and fully developed in a forthcoming book). Roughly 
speaking, the procedure is the following. It is shown that certain 
collections of the Mayer groups, suitably relabeled and together 
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with suitably defined homomorphisms, satisfy the axioms for homol­
ogy. The uniqueness theorem in the axiomatic theory then implies 
that these groups are isomorphic with the classical homology groups 
based on the same coefficient groups. The theorem follows from a 
discussion of the coefficient groups and the relabeling process. 

The main interest of this paper lies in the fact that it offers an ap­
plication of the axiomatic approach to a problem which did not 
seem easy to handle by direct methods. Of course, an analysis of the 
proof of the uniqueness theorem will yield a direct, though most 
likely complicated, definition of the isomorphisms. 

The next section summarizes all the needed definitions and results 
from the book being prepared by Eilenberg and Steenrod, to whom 
the author is indebted for allowing him access to the manuscript. 

2. The axioms. Elienberg and Steenrod [l] have characterized 
homology theory on a certain class of spaces by means of a set of 
axioms which are topological in nature. In addition, another set (to 
appear in their forthcoming book) is considered which is combina­
torial in nature and characterizes homology theory for simplicial 
complexes. This latter set is the one we employ in the following. 

DEFINITION 2.1. Two simplicial maps ƒ and g of a simplicial pair 
(Kr L) (consisting of a simplicial complex K and a closed subcomplex 
L) into a simplicial pair (K\ L') are said to be contiguous if for every 
simplex 5 of K (or L) the simplexes f(s) and g(s) are contained in a 
simplex of K' (or L'). 

DEFINITION 2.2. A sequence of groups and homomorphisms 

OQ On-l °n 

Go < • • < G w - 1 < Gn < 

is said to be exact if for n ^ 1 the kernel of gn-i is the image of gn, and 
go is a homomorphism onto. 

DEFINITION 2.3. Consider a system H= {Hr(K, i ) , d, ƒ*} consist­
ing of the following concepts : 

(a) For every simplicial pair (if, L) and integer r ^ O , Hr(K, L) is 
an abelian group called the nth homology group of K mod L. 

(b) For r ^ l , d:Hr(K, L)—>Hr-i(L) is a homomorphism called the 
boundary operator. 

(c) For every simplicial map ƒ : (if, Z,)—»(i£', L') there is a homo­
morphism/* :iJ r(i£, L)—>Hr(K', L') called the homomorphism induced 
b y / . 

The system H is called a simplicial homology theory if it satisfies 
the following axioms: 
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AXIOM 1. If f is the identity simplicial map of (K, L) onto itself, 
then ƒ* is the identity isomorphism of Hr(K, L) onto itself. 

AXIOM 2. If f:(K, L)-*(K', V) and g\(K', ! / ) - * ( # " , L") are 
simplicial, then (&ƒ)* = £*ƒ*. 

AXIOM 3. If f:(K, L)—>(K', L') is simplicial and n>l, then com-
mutativity holds in the diagt am 

ƒ* 

Hr(K, L) > Hr(K', V) 

dl id 
U\LU 

Hr-i(L) >Hr^(Lf). 

AXIOM 4 {Exactness axiom). If i:L—>K and j:K—*(K, L) denote 
identity simplicial maps, then the following sequence is exact 

H0(K, L) <-^ ^— Hr(K) ^— Hr(L) < Hr+1(K, L) «-^ . 

AXIOM 5 (Contiguity axiom). Iff, g: (K, L)—>(K', L') are contiguous 
simplicial maps, then f* = g*. 

AXIOM 6 (Excision axiom). If Ki, K2 are closed subcomplexes of a 
complex K, the homomorphisms 

Ù : Br(Klt Ki H K2) -* Hr(Ki U K2, K2) 

induced by the identity map i:(Ki, Kir\K2)—*(K^JK2r K2) are iso­
morphisms onto. 

AXIOM 7 (Dimension axiom). If P is a complex consisting of a single 
vertex, then Hr(P)=0for r>0. 

If a simplicial homology theory is given, the group HQ(P) is called 
the coefficient group of the theory. If G is a fixed abelian group, the 
groups Hr(K, L) —Hr(K, L; G), defined in terms of the cellular struc­
ture of K as in [3, chap. 3] together with suitable definitions of d 
and /* form a simplicial homology theory with G as coefficient group. 
This homology theory will be referred to as the classical homology 
theory. 

The above shows that simplicial homology theories with arbitrary 
coefficient group exist. The following uniqueness theorem, which will 
appear in the book on the axiomatic theory mentioned earlier, shows 
that any simplicial homology theory is isomorphic to the classical 
homology theory with a suitable coefficient group. 

THEOREM 2.4, Given two simplicial homology theories H and ZF and 
given an isomorphism 



1949] THE MAYER HOMOLOGY THEORY 105 

h0: G « G 

of their coefficient groups, there exists an isomorphism 

h: H ~H 

which is an extension of ho. 

By an isomorphism h:H^~H between two simplicial homology 
theories is meant an isomorphism between corresponding homology 
groups Hr(K, L) and lRr{Ky L) which commutes with the boundary 
operator and induced homomorphism. 

3. Definition of the Mayer groups. Let p be a fixed prime and let 
G be a fixed abelian group all of whose elements are of order p. 

DEFINITION 3.1. Let K be a finite simplicial complex with vertices 
{vi}. An n-cell <rn of K is defined to be an (w+l)-tuple v0l • • • , vn of 
vertices Vi (not necessarily distinct) such that the vertices v0y • • • , vn 

all belong to some simplex of K. Two such (w+l)-tuples differing 
only in the arrangement of the z/'s are to be considered the same n-cell. 
There are no cells of dimension k for k < 0 . 

DEFINITION 3.2. For n^O the group Cn{K) of n-chains of K with 
coefficients in G is the group of linear forms X^g*0"? m the w-cells a" 
of K with coefficients g*£G. An elementary n-chain is a chain of the 
form go*l. Clearly the elementary w-chains span Cn(K). 

For n*zl9 the boundary homomorphism 

F: C.(JC)->C»-i(2Q 

is defined as follows. I t suffices to define F for elementary w-chains 
and extend to Cn(K) by linearity. Define F(g(vQ • • • vn)) by 

F(g(Vo • • • Vn)) = ] £ g(Po • • • « < • • • »n) 
i 

where (vo • • • 8» • • • vn) denotes the (n — l)-cell obtained from the 
cell Vo • • • vn by deleting z;»-. The fact that every element of G has 
order p implies, as shown by Mayer [4, p. 371], that for n*zp, Fp 

maps Cn(K) into the zero of Cn-P(K). 
DEFINITION 3.3. Let q be an integer such that 0<q<p. If n^q, 

consider the diagram 

Cn+p-q(K) — - > Cn(K) — - + Cn_fl(Z). 

The group Zn,q(K) of qth n-dimensional cycles of K is defined to be 
the kernel of Fq, and the group Bn,q(K) of qth n-dimensional bound­
aries of K is defined to be the image of F*~q. If 0^n<qt we define 
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Zn,q(K), to be Cn(K) and Bn,q(K) to be the image of Cn+P-g(K) under 
P*-«. Since P* = 0, it follows that Bn,q(K)CZn,q(K). The factor group 

Hn,q(K) = Zn,q(K)/Bn,q(K) 

is defined to be the gth n-dimensional homology group of K. (This 
notation differs slightly from that used by Mayer in that he uses H^ 
to denote the group Hn,q-) 

THEOREM 3.4. If P is a complex consisting of a single vertex v, then 

Hq~i>q(P) « G, and Hn,q(P) = 0 for n 9* q - 1. 

PROOF. If n^0> there is only one w-cell an of P . Hence, Cn(P) con­
sists solely of the elementary chains g<xn and is isomorphic to G under 
the mapping g<rn-*g. If n>0y 

F(g<rn) = ((» + l ) * ) * - 1 . 

Since p is a prime, elements of G can be divided by integers m if 
ra^O (mod p). I t follows that if n + 1^0 (mod p), F((l/(n + l))g<rn) 
z=zg(Jn-im Therefore, for w>0, 

F(C»(P)) = 0 if » a - 1 (mod £), 

P(Cn(P)) = Cn^(P) if n ^ - 1 (mod p). 

It follows that for n ^ q 

F«(Cn(P)) = 0 if n = k with - 1 g k < q - 1, 

F«(Cn(P)) = C W P ) otherwise. 

Therefore, 

Cn(P) if w = ç - 1 or « = î  with - l g i < g - l , 

otherwise, 

if n + p — q^m with - l ^ w < ^ - g - l , 

- iC 

(O otherwise, 

P n JP) = < 
lCn(P) iin + p-q^m with J - g - l | « < # - l . 

Then Hn,q(P)=0 unless n = q — 1 or w = £ with — l ^ £ < g — 1 . If 
ns=& with —l^k<q-" 1, then w + ^ ~ 2 s ^ + ^ —g and ƒ> — g—1^& 
+ £ - g < / > - l , so J3n,fl(P) = C l l(P) l and Hn,q(P)=0. Therefore, 
Hn,q(P)=0 if n^q-1. If w = g - l , then w + / > - g = £ - l = - 1 , so 
P f f_i,«(P)=0. Since Z^i i f f(P) = Cfl-i(P), it follows that Hq^,q{P) 
= C^x(P)«G. 

4. Relative theory. The axioms stated in §2 require that a group 
Hn(K, L) be defined for every simplicial pair (Kt L). In this section 
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we extend the Mayer definition to the relative case so that later we 
will have the groups needed in verifying the axioms. 

Let L be a (closed) subcomplex of K, Then any cell of L is also a 
cell of K so that Cn(L)C.Cn(K). I t is clear that F defined for chains 
of L is the same homomorphism as F defined for chains of K when 
restricted to Cn(L). 

DEFINITION4.1 . Forn^q, thegroup ZntQ(K,L) of qih n-dimensional 
cycles of K mod L is defined to be the subgroup of Cn(K) which is the 
inverse image of Cn-q(L) under Fq, while for n<q, Zn,q(K, L) is 
defined to be Cn(K). The group Bntq{K1 L) of qth. n-dimensional bound-
aries of K mod L is defined to be the subgroup of Cn(K) spanned by 
the two subgroups Cn(L) and Fp~q(Cn+P-q(K)). Then Bntq(K, L) 
(ZZntq(K, L) and the factor group 

Hn,q(K, L) = Zn,q(K, L)/Bn,q(K, L) 

is defined to be the qth n-dimensional homology group of K mod L. 
Note. If L = 0 is the null set, then Hn,q(K, 0) = Hn,q{K). 
In the following we use <j>:Zn,q{K, L)-^Hntq(Kf L) to denote the 

natural homomorphism of Zn,q(Kt L) onto its factor group Hniq(K, L). 
DEFINITION 4.2. For n*zq, define a homomorphism 

Fq: Hn,Q(K, L) ~> Hn-q,p.q(L) 

as follows. Let zÇiZn,q(K, L). Then from the definition of Zn,q(K, L) 
it follows that F*zGCn-q(L). lin-q^p-q, then F*-*(F*z) = Fpz = 0. 
If n — q<p — qy Cn-q(L)=Zn-q,p-q(L). In any event we see that 
Fqz(E:Zn-.q,p-q(L) so that Fq is a homomorphism 

Fq\Zn%q{K, L) —*Zn-qtV-q(L). 

Let bÇzBntq(K> L). Then there is u(E:Cn+P-q(K) and vÇzCn(L) 
such that 

Fp-qu + v = 6. 

Since Fqb = Fpu+Fqv = FqvEBn-q,p-q(L), it follows that Fq maps 
Bn,q(K, L) into Bn-.qtP-q(L) and so induces a homomorphism 

F*:Hn.q(K,L)-+H^q.n(L) 

such that Fq<t>z=<t>Fqz for zÇ_Zn%q(K, L). 
DEFINITION 4.3. Let f:(K, L)-+(K', L') be a simplicial map. If 

Vo, • • • , vn is an w-cell of K (or L)f f(v0, • • • , » « ) =ƒ(*><>), • • • , f M 
is clearly an w-cell of K' (or L'). Therefore, ƒ induces a homomorphism 
U\C«{K)-+Cn(K') such that ƒ * ( £ * * ? ) - £*<ƒ(*?). 
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LEMMA 4.4. For n*zl, commutativity holds in the diagram 

Cn(K) >Cn^{K) 

Cn{K') > Cn^(K'). 

PROOF. I t suffices to prove the commutativity for elementary «-
chains. Let v<> • • • v„ be an «-cell of K. Then 

FMgVo • • • » » ) = Fgf(vo) • • • f(vn) 

- E sAv») • • • ht) • • • f(vn) 
i 

a n d 

fn-lF(gV0 • • • » » ) = fn-ll £ ) W>0 • ' • *i ' ' • Vn) 

= Z s / W > •••ƒ(**•) • • • ƒ ( * ) . 
* 

I t follows from Lemma 4.4 that / n induces a homomorphism 

ƒ*• Hn,q{K) L) —» Hn,q(K', If) 

such that f*<l>z=<j)fnz for zÇzZn,q(K, L). 

THEOREM 4.5. If f:(K, L)—*(K, L) is the identity simplicial map, 
then f * is the identity isomorphism. 

PROOF. The theorem follows immediately from the fact that ƒ„ is 
the identity isomorphism of Cn(K) onto itself. 

THEOREM 4.6. Iff:(K, L)-*(K', V) and g:(K', L')->(K", L") 
are simplicial, then (g/)* =#*ƒ*. 

PROOF, gf is simplicial because both ƒ and g are, and (gf)n
:=gnfn 

which implies the theorem. 

THEOREM 4.7. If f:(K, L)—>(K'f L') is simplicial and if n^q, 
commutativity holds in the diagram 

/* 
Hn,q(K, L) > Hn,q(K'y L') 

F«l IF« 
(/ID* 

Hn—qt p—q(Li) > Hn—qtP—q\lj ) , 

PROOF. I t follows from Lemma 4.4 that 
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F«fn = (f\L)n^F« 

and this, together with the commutativity of Fq and <£, implies the 
theorem. 

THEOREM 4.8. Iff, g:(K, L)-»(i£', L') are contiguous, thenf* = g*. 

PROOF. This is proved for the absolute case by Mayer [4, p. 379]. 
The same proof carries over to the relative case without any essential 
change and so is omitted here. 

THEOREM 4.9. If K\, K2 are closed subcomplexes of K, and if 
i:(Ki, K\C\K2)—*(K-iSJK21 K2) is the identity simplicial map, then 

i*: Hn,q(Ki, K\ C\ K2) « Hn,Q(Ki VJ K2, K2). 

PROOF. Since Cn(Klr\K2) = Cn(K1)r\Cn(K2) and Cn(K1KJK2) 
= Cn(Ki) + Cn(K2)=the subgroup of Cn(K) spanned by Cn(Ki) and 
Cn(K2)y it follows from the Noëther isomorphism theorem that 

Cn(KÙ/Cn(K! n K2) « Cn(Ki KJ K2)/Cn(K2). 

More precisely, if T:Cn(K1\JK2)-^Cn(K1yJKi)/Cn(K2) is the natural 
homomorphism, then rin maps Cn(K{) onto Cw(i^iVJX2)/Cn(i^2) and 
has kernel Cn(i£inX2). 

If n^q and zEZntg(K1KJK29 K2), then zÇ^CniKxKJK*) such that 
FqzÇ.Cn-q(K2). Choose z'£Cw(i£i) such that rinz' = TZ. Then inz' 
= z+c for some cGCn(Z2) and so 

rFHnz' = rFq(z + c) = r{Fqz + Fqc) = 0 

because Fqz and Fqc both belong to Cn-q(K2). Therefore, rin^qF
qzf 

— rFqinz
f = 0, so Fqzf is an (n — g)-chain of Kir\K2 from which it fol­

lows that z' is a gth w-cycle of iTi mod Kir\K2. Then we have 
<f>z'GHn,q(Kh Kxr\Ki) and 

i ^ z ' = <j>inz
f = </>(2 + £) = 0s, 

the last equality because cÇz.Bn,q{K\\JK2, K2), Therefore, i* maps 
Hn,q{Ku K1C\K2) onto Hn,q{Kl\JK2y K2) if » è j . 

If n < g , the same proof as above can be used, the only difference 
being that it is no longer necessary to show that z' is a gth w-cycle of 
K\ mod K\C\K2 because any w-chain of K\ is such a cycle by defini­
tion. Hence, i* is onto in all cases. 

To prove the kernel of i* is zero let i*(/>z = 0. Then inz — Fv~qc+d 
where c(E.Cn+P-q(KiUK2) and d£Cn(i£2). Choose c'Ç:Cn+p-q{K^) 
such that Tin+p~qc' =TC. Thenc—in+p„qc' ÇE.Cn+P-q(K2). Nowz — Fp-qc' 
eZn,q(Ku K1nK2) and 



110 E. H. SPANIER [February 

rin(z - F*-*c') = TF*~*C + rd - rF^Hn+p^qc
f 

which equals zero because Fp~Q(c—in+p-qc') and d both belong to 
Cn(K2). Since the kernel of rin is Cw(j£ini£2), we see that z — Fp-qc' 
e.Cn{Kir\Kt). Hence z**F*~*c'+d' for some d'' GCn(KiniKi). I t fol­
lows that <£2 = 0, so i* is an isomorphism. 

5. Verification of the axioms. All of the concepts necessary to 
verify the axioms have been defined, and the main theorem can now 
be proved. 

A pair of integers (g, k) is called admissible if 0 <q <p and 0 ^k <q. 
For a fixed admissible pair (g, k) we define a simplicial homology 
theory #«•* = [Hf, d, ƒ*} as follows. 

Define 

*••" / ir x̂ (Hn,q(K, L) where w = r^>/2 + & f or r even, **W)- {' lHm,p-q(K,L) where w = ƒ>(/-+1)/2 + £ — £ f or /* odd. 

The boundary operator d'.H^ÇK, L)-^Hfli{L) is defined to be the 
homomorphism 

Fq: Hn,q(K, L) —> Hn-QtP-.q(L) if r is even, 

F?"*: Hm,P-q(K, L) - • Hm-p+q>q(L) if r is odd. 

The homomorphism 

f*:HÏ\KfL)->HÏ\K',L') 

induced by a simplicial map/:(üT, L)-*(K', L') is defined to be the 
homomorphism 

ƒ*: #n,g(ür, £) -» Hn,q(K'y I!) if r is even, 

ƒ*: Hm,p-q(K, L) —» Hm.p-qiK', Lf) if /• is odd. 

It will be shown that {HQ'*f d, ƒ*} is a simplicial homology theory. 
Theorems 4.5-4.9 and 3.4 imply all the axioms except for Axiom 4, 
the exactness axiom. To prove exactness, consider the following se­
quence 

• • • > Crp/2+k(K) > Crp/2+k-q(K) 

and subsequence 

'* Crp/2+k(L) • Crp/2+k-q(L) 

Fp-q 
7 • • 

Fp-q 

• • - ^ C » ( J K ) 

• - A C * ( I ) . 

The groups iî?' (K, L) have been defined to be the homology groups 
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of the upper sequence modulo the lower sequence (in the notation of 
Kelley-Pitcher [2]). I t follows that the homology sequence of (K, L) 
is exact [2, Theorem 3.3], 

We have now shown that for any admissable pair (q> k) there is a 
corresponding homology theory. The uniqueness theorem stated in 
§2 implies that this homology theory is the same as the classical 
homology theory based on Ho'k(P) as coefficient group. By Theorem 
3.4, 

«.* (G if k = q - 1, 

10 if k 9* q — 1. 

Hence, for k?*q — 1, the homology theory Hqk is trivial because it is 
isomorphic to the classical one based on a trivial coefficient group. For 
k = q — 1, the homology theory Hq'q"1 is isomorphic to the classical 
one based on G as coefficient group. Hence, if Hr(K, L) denotes the 
classical homology group of K mod L based on G as coefficient group, 
we see that 

Hr(K9 L) = 

Hi'9 l(K, L) = Hn.q(K, L) 

where n = pr/2 + q — 1 for r even, 

Hr (K, L) = Hmtq(K, L) 

where m = p(r + l ) /2 — 1 f or r odd, 

thus parts (4) and (S) of Theorem 1.1 have been proved. 
Let Hn,q(K, L) be any Mayer group. We shall determine this group 

in terms of the classical groups by showing that it belongs to some 
homology theory Hm>h. Find integers m> t such that 

n = mp + / where 0 £ t < p. 

If t<q, (g, /) is an admissible pair, and 

H2m(Kt L) = Hmp+t,q(K, L) = Hntq(K, L). 

Hence, if n^t (mod p) with 0St<q, 

qtt 

Hn,q(K, L) = H2(n-t)/p(Kt L) 

- { 
0 if / ^ q - 1, 

ffr(K, L) for r = 2(n - q + l)/p if * = Ï - 1. 

This proves (1) of Theorem 1.1. 
If t^q> then 0 ^ / — q<p — q so (p — q, t — q) is an admissible pair, 
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and 

(K, L) = Hntq(K, L). 

Hence, if n^t (mod p) with q^t<p 

Hn,q(K> L) = H2(n-t)/p+l(Kf L) 

_ (0 if t ^ p - 1, 

"~* \Hr(K, L) where r = 2(» + l ) /£ — 1 if / == j^ — 1, 

thus proving (2) and (3) of Theorem 1.1. 
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