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MAGDALEN COLLEGE, OXFORD UNIVERSITY 

TOPOLOGICAL CHARACTERIZATION OF FIELDS 
WITH VALUATIONS 

DANIEL ZELINSKY1 

1. Introduction. A topological field is a (commutative) field which 
is also a topological space satisfying the separation axiom To, and in 
which addition, subtraction and multiplication are continuous, two-
variable functions. For our purposes it is unnecessary to assume that 
division is continuous. 

If F is any field, topological or not, we define a (nonarchimedean) 
valuation of F to be a function v on F to a linearly ordered group T 
with the symbol 0 adjoined, such that 

(1) v(xy) = v(x)v(y), 

(2) v(x + y) S max [v(x), v(y)], 

(3) v(x) = 0 if and only if x = 0, 

for all #, y of F. I t is understood that for every y of I \ 0 < 7 and O7 = 7 0 
= 0. Such a valuation of a field defines a topology, with respect to 
which F is a topological field, when we specify that the neighborhoods 
of 0 in F are the sets U(y) = [tf£^|fl(#) <y], one for each 7 in I \ If 
F was a topological field to begin with and the topology defined by the 
valuation is the same as the original topology of Ff we say that the 
valuation preserves the topology of F. 

The question we intend to answer is, "Which topological fields have 
valuations preserving their topologies ?" 
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This problem was solved by Shafarevitch [3]2 and by Kaplansky 
[2] in the case where the assumption that T is an ordered group is 
strengthened to UT is the set of positive real numbers," and where the 
assumption (2) is weakened to v(x+y) ^v(x)+v(y). Such a function 
v we shall call an absolute value. For a topological field F to have an 
absolute value preserving its topology, it is necessary and sufficient 
[2, Theorem 3] that F satisfy these two conditions: 

(io) The set of nilpotent3 elements is open. 
(ii) If AQF is bounded away from zero, then A"1 is bounded.8 

For F to have a valuation preserving its topology, condition (ii) 
is still necessary. However, condition (i0) is not; in fact, a field with 
a valuation may have no nilpotent elements besides 0 and yet the 
topology may be not discrete. Condition (i0) essentially singled out 
the nilpotent elements for Shafarevitch and Kaplansky as the ele­
ments whose values are to be smaller than the identity element of T. 
But with our more general I \ the set of elements of value smaller than 
the identity is not uniquely determined by the topological field F. 
What is the same thing, inequivalent valuations may give the same 
topology. Hence we are forced to replace (i0) by a condition on sub­
sets of F rather than on elements. We choose this existence condition: 

(i) Some neighborhood of zero generates an additive group which 
is bounded. 

It is easily seen that (i) is equivalent to the condition: 
There is a bounded, open, additive subgroup of F. 
With the aid of Theorem 1, it is equally easy to see that the follow­

ing is also an equivalent condition : 
There is a set of group-neighborhoods of zero in F and some open 

subset of F is bounded.4 

We shall show that a topological field F has a valuation preserving 
its topology if and only if F satisfies (i) and (ii). We shall see in the 
course of the proof that fields satisfying (i) alone are plentiful and 
that the topology in such a field is closely linked to the arithmetic 
properties of the field (see Theorem 1 and its corollary). 

2 Numbers in brackets refer to the references cited at the end of the paper. 
3 An element x is called nilpotent if limn-ào^ns!!i0. If A(Z.F then UA is bounded 

away from zero" means "A is disjunct from some neighborhood of zero." By A"1 

we denote the set of inverses of elements of A. And A is said to be bounded in case, 
for every open set V containing 0, there is an open set U about 0 such that 
A U(Z V. Here and elsewhere the product of two subsets of a field is the set of all 
products of two elements, one from each of the given subsets. 

4 The referee has pointed out that the existence of an open, bounded subset, that 
is, local boundedness, follows from (ii); and that our main theorem could also be 
proved by first exploiting (ii) and using (i) only in the final stages. 
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Some preliminary remarks on boundedness of subsets of F may be 
in order. In a field with a valuation or an absolute value, a set is 
bounded exactly when it is bounded in the usual sense : the values of 
its elements are bounded above. I t follows, then, in well known 
fashion that an absolute value is a valuation (that is, is nonarchi-
medean) if and only if the additive group generated by 1 is bounded. 
In general, every subset of a bounded set is bounded. And, in our 
definition of boundedness, the notion is unchanged if we change the 
range of the variables U or F or both from the class of open sets 
about zero to an equivalent set of neighborhoods of zero. Every dis­
crete field is itself bounded (in fact, these are the only bounded fields) 
and so conditions (i) and (ii) are satisfied. But such a field has a trivial 
valuation preserving its trivial topology: v(x) = 1 if XT*0, V(0) = 0, so 
that all our theorems will be true for discrete fields. 

2. Condition (i) alone. Let F be a topological field satisfying (i). 
There is an open, bounded, additive subgroup of F which contains 1. 

For there is an open, bounded, additive subgroup G of F which is not 
{0} ; if b is a nonzero element of G, then b~lG is the required group. 

There is an open, bounded subring R of F containing 1. For if G 
is an open, bounded, additive group containing 1, let R be 
[aÇzF\Ga(ZG]. Clearly R is a ring and contains 1. Since G is both 
open and bounded, there is some neighborhood U of zero such that 
GUCG. That is, UCR and R is open. Since 16G, RQG and R is 
bounded. 

If Fis not discrete, any open, bounded subring of F which contains 1 is 
an order.6 For if O ^ a G F , then Ra is an open set about zero. Since R is 
bounded there is a neighborhood U of zero such that RUQRd* 
Choose an element bÇ_RC\Uwith b^O and have bÇ.RbQRa, b~ca, 
a — c^b, with b and c in R. 

I t is now clear that (i) is equivalent to the existence of a bounded, 
open order in F. Let us temporarily turn our attention to fields and 
their orders. 

If F is a field and R is an order in F, we may topologize F by desig­
nating the principal i?-ideals as neighborhoods of zero. Whether or not 
we include fractional ideals and whether or not we limit ourselves to 
principal ideals makes no real difference. The one restriction we do 
make is that {0} is not to be counted as an i?-ideal unless R~F. I t 
is easy to check that this designation makes F a topological field. 

On the other hand, R can be used to define a "semivaluation" in 

8 An order in F is a. subring of F which contains 1 and whose quotient field is F. 
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the usual fashion: If N is the multiplicative group of units of R and if 
F* is the multiplicative group of nonzero elements of F, then we may 
order F*/N by writing fN ggN when / f^Gi? . This makes F*/N a 
partially ordered group or ö-group in the sense of Everett and Ulam 
[l],6 and the natural homomorphism w of F* onto F*/N has the fol­
lowing properties: 

(4) w{xy) = w(x)w(y), 

(5) w(x — y) ^ max [w(x)t w(y)]. 

Of course, (5) is to be interpreted to mean: If d(E.F*/N and 8*zw(x), 
w(y)y then 8^w(x—y). We usually adjoin the symbol 0 to F*/N with 
the provision that OS = 30 = 0, 0<5 for all 0&F*/N. Then (4) and 
(5) are still true when we extend w by defining w(0) =0, and 

(6) w(x) = 0 if and only if g » 0. 

Any function w that maps F onto an 0-group A with 0 adjoined 
and satisfies (4), (5) and (6) will be called a semi valuation. (Note that 
the only difference between a valuation and a semivaluation is that 
the group of values of the latter need not be linearly ordered.) Not 
only does each order in F define a semivaluation, but each semivalua­
tion w defines an order, namely, [xÇzF\w(x) ^e ] , where € is the 
identity element in A. This is actually a one-to-one correspondence 
between orders in F and semivaluations of F, but we shall omit the 
proofs. 

Every semivaluation of F defines a topology in F exactly as a 
valuation would. Specifically, for each 5£A, define a neighborhood 
of zero in F by [^G^| w(x)<8]. It is a straightforward job to prove 
that this definition converts F into a topological field whose topology 
is the same as that defined by the order corresponding to the semi-
valuation w. 

Thus in a field the orders are in one-to-one correspondence with 
the semivaluations and a topology may be defined either by an order 
or by the corresponding semivaluation. "Close to zero" in such a 
topology means "divisible by many elements of the order." It may 
also be of interest to point out that the resultant topologies are not 
in one-to-one correspondence with the orders in the field, but rather 
with the classes of equivalent orders.7 

6 An 0-group is a group which is also a partially ordered set with respect to a rela­
tion, ^, with the further properties: If a £bt then ac^bc; and for any a, b, there is 
an element c with a£ct b^c, 

7 Two orders R and S are equivalent in case RdaS and SClbR for some nonzero 
elements a and b in F. 
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THEOREM 1. The following conditions on an order R in a topological 
Held F are equivalent. 

(7) The topology defined by R is the same as that of F. 
(8) The semivaluation corresponding to R preserves the topology of F. 
(9) The order R is bounded and open. 

PROOF. We have already remarked that R and its semivaluation 
define the same topology in F. Hence (7) is equivalent to (8). Since 
R is bounded and open in the topology it defines, (7) implies (9). 
Lastly, if R is open, every i?-ideal Ra is open. But since R is also 
bounded, every open set F about zero contains R UI or a suitable open 
set U containing 0; hence V contains the i?-ideal Ra where aÇzRC\ U 
and where a ^ O when Ry^F. This proves Theorem 1. 

COROLLARY. Each of the following conditions on a topological field F 
is equivalent to condition (i). 

(i') There is bounded, open order in F. 
(i") There is an order in F which defines the same topology as that of 

F. 
( i '") There is a semivaluation of F preserving the topology of F. 

3. Conditions (i) and (ii). We now prove our principal theorem. 

THEOREM 2. A topological field F has a valuation preserving its topol­
ogy if and only if F satisfies (i) and (ii). 

PROOF. Necessity is obvious. To prove sufficiency, let R be any 
open, bounded order in Ft and define X to be [xÇzF\xÇ£R and 
x~^R]. 

The set X is bounded. For X~l=*X is disjunct from R which is a 
neighborhood of zero. 

If we assume condition (i), a set A is bounded exactly when A QRb 
for some b7*0 in F. For there is some .R-ideal Re such that ARcQR, 
and we may choose 6 = c~1, except when R~F in which case any 
nonzero b will do. We shall call such an element b a bound for A. If 
b is a bound for A, so is bc~~x for any nonzero c in R. Hence we may 
choose a bound p for X with the property that p~lÇîR> and define Y 
to be the set of all pn (n = 1, 2, • • • ). 

If Y is not bounded then limn»* £~n = 0. For, because of (ii), F""1 

cannot be bounded away from zero, every neighborhood Ra of zero 
contains an element p~k. But if k'^k then p~k>Ç~Rp~kCRa. Thus 
lim £- n = 0. 

If Y is not bounded, the set of nilpotent elements in F is open. For it 
contains Rp~l which is a neighborhood of zero, and contains the open 
set Rq about q whenever it contains a nonzero element q. 
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If Y is not bounded, Theorem 2 is true. For Kaplansky's theorem [2, 
Theorem 3 ] asserts that F has an absolute value preserving its topol­
ogy. This absolute value is in fact a valuation since the additive group 
generated by 1, being a subset of R, is bounded. 

If Y is bounded we shall produce a valuation. Let 5 be the ring 
generated by R and X, that is, the set of all polynomials in elements of 
X with coefficients in R. 

If Y is bounded, S is an open, bounded order. Since 5 contains R, 
S is clearly an open order. But if a U?«i Xi is any monomial in S 
with aÇîR and Xi&X, then a Y[xi£:R(Rp)n = Rpn(ZRq, where g is a 
bound for Y. Since Rq is closed under addition, SCRq-

If Y is bounded, Theorem 2 is true. The required valuation is the 
semivaluation v corresponding to the order S. By Theorem 1, this 
semivaluation preserves the topology of F. It only remains to show 
that v is a valuation, that is, that v(F*) is linearly ordered. This fol­
lows from an obvious property of S: if xÇzF then x&S or a r ^ Ç S . 
For if x and y are nonzero elements of F, then either x"1yÇ,S or 
y^xÇiS. That is, either v(y) ^v(x) or v(x) ^v(y). This completes the 
proof. 

REFERENCES 

1. C. J. Everett and S. Ulam, On ordered groups, Trans. Amer. Math. Soc. vol. 57 
(1945) pp. 208-216. 

2. I. Kaplan sky, Topological methods in valuation theory, Duke Math. J. vol. 14 
(1947) pp. 527-541. 

3. I. Shafarevitch, On the normalizability of topological fields, C. R. (Doklady) 
Acad. Sci. URSS. vol. 40 (1943) pp. 133-135. 

THE INSTITUTE FOR ADVANCED STUDY 


