A. Kurosch

1. Theory of groups (in Russian), Moscow, 1944.

MARSTON MORSE AND G. A. HEDLUND

- 1. Symbolic dynamics, Amer. J. Math. vol. 60 (1938) p. 815.
- G. T. Whyburn
 - Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, New York, 1942.

THE UNIVERSITY OF PUERTO RICO AND THE UNIVERSITY OF VIRGINIA

A ZERO-DIMENSIONAL TOPOLOGICAL GROUP WITH A ONE-DIMENSIONAL FACTOR GROUP

SAMUEL KAPLAN

As can be easily shown, if a locally compact topological group is zero-dimensional, all of its factor groups are zero-dimensional. In this note we give an example of a non locally compact zero-dimensional group with a factor group which is topologically isomorphic to the real numbers, hence one-dimensional.¹

1. Preliminaries. Let $\{\lambda\}$ be a set of indices of cardinality c, and for each λ , let R_{λ} be a topological isomorph of the additive group of rational numbers. We form the weak product R of the R_{λ} : an element r of R is a collection $r = \{r_{\lambda}\}$, $r_{\lambda} \in R_{\lambda}$, such that for only a finite number of the λ 's is $r_{\lambda} \neq 0_{\lambda}$. Under the definitions $r+r'=\{r_{\lambda}+r_{\lambda}'\}$, $0=\{0_{\lambda}\}$, R forms a group.

Now for each $r \in R$, we define $||r|| = \sum_{\lambda} |r_{\lambda}|$. Since all but a finite number of the $r_{\lambda} = 0_{\lambda}$, this sum exists. Clearly $||r+r'|| \le ||r|| + ||r'||$, and ||-r|| = ||r||, hence, as can be easily shown, ||r|| defines a metric in R under the definition: the distance from r to r' is ||r-r'||.

LEMMA 1. Let $\{d_{\lambda}\}$ be a set of positive real numbers bounded away from zero, that is, there exists d>0 such that $d_{\lambda} \ge d$ for all λ . Then

$$U = \left\{ r \middle| \sum_{\lambda} \left| \frac{r_{\lambda}}{d_{\lambda}} \right| < 1 \right\}$$

Received by the editors November 10, 1947.

¹ Cf. Bourbaki, *Topologie generale*, chap. III, p. 21, exercise 12, for an example of a totally disconnected group with a factor group topologically isomorphic to the reals. This example was pointed out to me by I. Kaplansky.

is an open set containing the origin, and

$$\overline{U} \subset \left\{ r \middle| \sum_{\lambda} \left| \frac{r_{\lambda}}{d_{\lambda}} \right| \leq 1 \right\}.$$

PROOF. We need only prove that the real valued function $f(r) = \sum_{\lambda} |r_{\lambda}/d_{\lambda}|$ is continuous. Given $r = \{r_{\lambda}\}$ and $\epsilon > 0$, choose $\delta < d\epsilon$. Now, for any $r' = \{r'_{\lambda}\}$,

$$\left| \sum_{\lambda} \left| \frac{r_{\lambda}'}{d_{\lambda}} \right| - \sum_{\lambda} \left| \frac{r_{\lambda}}{d_{\lambda}} \right| \right| = \left| \sum_{\lambda} \frac{\left| r_{\lambda}' \right| - \left| r_{\lambda} \right|}{d_{\lambda}} \right| \le \sum_{\lambda} \left| \frac{\left| r_{\lambda}' \right| - \left| r_{\lambda} \right|}{d_{\lambda}} \right|$$

$$\le \frac{1}{d} \sum_{\lambda} \left| \left| r_{\lambda}' \right| - \left| r_{\lambda} \right| \right|$$

$$\le \frac{1}{d} \sum_{\lambda} \left| \left| r_{\lambda}' - r_{\lambda} \right|$$

$$= \frac{1}{d} \left| \left| r' - r \right| \right|.$$

Thus, if $||r'-r|| < \delta$, this last expression is less than ϵ , which proves the continuity and hence the lemma.

LEMMA 2. Let $\{\alpha_{\lambda}\}$ be a bounded set of positive irrational numbers linearly independent with respect to the rationals, that is:

(1)
$$a_1\alpha_{\lambda(1)} + \cdots + a_h\alpha_{\lambda(h)} = a$$
 $(a_1, \cdots, a_h, a \text{ rational})$ implies

$$a_1=\cdots=a_h=a=0.$$

Then if, in Lemma 1, we take $d_{\lambda} = 1/\alpha_{\lambda}$, the resulting U has a vacuous boundary.

PROOF. From the second part of Lemma 1, we need only prove that there is no r such that $\sum_{\lambda} |r_{\lambda}/d_{\lambda}| = 1$. Assume there is. Then, since replacing an r_{λ} by its negative does not change absolute values, we can assume all the r_{λ} are non-negative. Then we have $\sum_{\lambda} r_{\lambda}/d_{\lambda} = 1$. But each $d_{\lambda} = 1/\alpha_{\lambda}$, hence $\sum_{\lambda} r_{\lambda}\alpha_{\lambda} = 1$, which contradicts the hypothesis on the α_{λ} 's.

Using Lemma 2, we now define a special sequence of neighborhoods $\{U_n\}$ $(n=0, 1, \cdots)$ which form a basis around the origin. We first take the set of real numbers $1/2 \le c < 1$ and set them in one-one correspondence with the λ 's: $\{c_{\lambda}\}$. (Our purpose in bringing these in will

become clear in §2.) We then choose a set of irrational numbers $\{\alpha_{\lambda}\}$ with the property (1) (the existence of such a set follows from the existence of a Hamel basis for the reals), and such that for each λ , $c_{\lambda} < \alpha_{\lambda} < 1$. This last can always be accomplished by multiplying α_{λ} by a suitable rational. We then have

(2)
$$1/2 \le c_{\lambda} < \alpha_{\lambda} < 1 \qquad \text{for all } \lambda.$$

Now for each n, we define U_n by taking

$$d_{\lambda}^{(n)} = \frac{1}{2^n} \cdot \frac{1}{\alpha_{\lambda}},$$

and letting

$$(4) U_n = \left\{ r \bigg| \sum_{\lambda} \left| \frac{r_{\lambda}}{d_{\lambda}^{(i)}} \right| < 1 \right\}.$$

Since, for $r \in U_n$,

$$||r|| = \sum_{\lambda} |r_{\lambda}| = \sum_{\lambda} d_{\lambda}^{(n)} \left| \frac{r_{\lambda}}{d_{\lambda}^{(n)}} \right| \leq \frac{2}{2^{n}} \sum_{\lambda} \left| \frac{r_{\lambda}}{d_{\lambda}^{(n)}} \right| < \frac{1}{2^{n-1}},$$

the diameter of U_n is less than $1/2^{n-2}$, hence approaches zero as n goes to infinity. Thus $\{U_n\}$ constitutes a basis around the origin. Since, from Lemma 2, the boundary of each U_n is vacuous, it follows that R is zero-dimensional.

2. The example. Let R_* be the additive group of real numbers $\{r_*\}$ with distance defined by $||r_*|| = 1$ for all r_* different from zero. This makes it discrete. Let $G = R_* \times R$ with distance defined as follows: If $g = (r_*, r)$ then $||g|| = ||r_*|| + ||r||$. Since R_* is discrete, the U_n 's, now considered as subsets of G, form a basis around the origin of G, hence G is zero-dimensional.

We define the subgroup H of G as the set of all $g = (r_*, r)$ such that $r_* + \sum_{\lambda} c_{\lambda} r_{\lambda} = 0$ (cf. (2)).

LEMMA 3. H is a closed subgroup of G.

PROOF. H is a subgroup, for if g, $g' \in H$ then $r_* + \sum_{\lambda} c_{\lambda} r_{\lambda} = 0$ and $r'_* + \sum_{\lambda} c_{\lambda} r_{\lambda}' = 0$, hence $(r_* - r'_*) + \sum_{\lambda} c_{\lambda} (r_{\lambda} - r'_{\lambda}') = 0$. To prove H is closed, it is sufficient to show that the real-valued function $f(g) = r_* + \sum_{\lambda} c_{\lambda} r_{\lambda}$ is continuous. Given $g = (r_*, r)$ and $\epsilon > 0$, choose $\delta < \min(\epsilon, 1)$. Consider any $g' = (r'_*, r')$ such that $\|g' - g\| < \delta$. We note first that $r'_* = r_*$, for otherwise $\|r'_* - r_*\| = 1$ and hence $\|g' - g\| \ge 1 \ge \delta$. Then

$$\begin{vmatrix} r_{*}' + \sum_{\lambda} c_{\lambda} r_{\lambda}' - r_{*} - \sum_{\lambda} c_{\lambda} r_{\lambda} \end{vmatrix} = \begin{vmatrix} \sum_{\lambda} c_{\lambda} r_{\lambda}' - \sum_{\lambda} c_{\lambda} r_{\lambda} \end{vmatrix}$$

$$\leq \sum_{\lambda} c_{\lambda} | r_{\lambda}' - r_{\lambda} |$$

$$\leq \sum_{\lambda} | r_{\lambda}' - r_{\lambda} | \qquad \text{(from (2))}$$

$$= ||g' - g|| < \delta < \epsilon.$$

This proves the lemma.

LEMMA 4. G/H is algebraically isomorphic to the real numbers.

PROOF. Since $R_* \times 0 \subset G$ is algebraically isomorphic to the real numbers, it is sufficient to prove that G/H is algebraically isomorphic to this subgroup.

(i) Every coset of H contains an element of $R_* \times 0$.

For, let $g = (r_*, r)$ be any element of G, where $r = \{r_{\lambda}\}$. Then if $g' = (r_* + \sum_{\lambda} c_{\lambda} r_{\lambda}, 0)$, $g' - g = (\sum_{\lambda} c_{\lambda} r_{\lambda}, -r) \in H$. Since $g' \in R_* \times 0$, this proves (i).

(ii) Different elements of $R_* \times 0$ lie in different cosets.

For, let $g = (r_*, 0)$, $g' = (r'_*, 0)$, with $r_* \neq r'_*$. Then $g' - g = (r'_* - r_*, 0)$, and since $(r'_* - r_*) + 0 \neq 0$, $g' - g \notin H$. This proves (ii), and with it, Lemma 4.

We can thus denote each element of G/H by a unique real number. From the proof of (i) above, we see that the real number is given by the mapping

(5)
$$\pi(r_*, r) = r_* + \sum_{\lambda} c_{\lambda} r_{\lambda}.$$

LEMMA 5.
$$\pi(U_n) = [-1/2^n < x < 1/2^n]$$
 for all $n = 0, 1, \cdots$

PROOF. Since the argument is the same for all n, it is sufficient to prove this for U_0 . From (4) and (3),

$$U_0 = \left\{ g = (0, r) \left| \sum_{\lambda} |\alpha_{\lambda} r_{\lambda}| < 1 \right\} \right.$$

(i) $\pi(U_0) \subset [-1 < x < 1]$.

For, if $g = (0, r) \in U_0$, then from (5),

$$|\pi(g)| = \left|\sum_{\lambda} c_{\lambda} r_{\lambda}\right| \leq \sum_{\lambda} |c_{\lambda} r_{\lambda}|$$

$$< \sum_{\lambda} |\alpha_{\lambda} r_{\lambda}| \qquad (from (2))$$

$$< 1.$$

(ii)
$$[-1 < x < 1] \subset \pi(U_0)$$
.

For consider any real number x such that -1 < x < 1. Since the c_{λ} 's run through all the real numbers from 1/2 to 1, there is a $c_{\lambda'}$ such that

$$x = \epsilon c_{\lambda'}$$

where ϵ is one of the values ± 1 , $\pm 1/2$. Hence, if g is the element of G whose λ' -coordinate is ϵ and whose remaining coordinates are 0, we have from (5) that

$$\pi(g) = c_{\lambda'} \epsilon = x.$$

Thus x has an inverse in U_0 under π . Since x was any element of [-1 < x < 1], (ii) is proved. This establishes the lemma.

Since the set $\{U_n\}$ is a basis around the origin of G, the set $\{\pi U_n\}$ is by definition a basis around zero in G/H. Hence, from Lemma 5, G/H has the topology of the real numbers.

INSTITUTE FOR ADVANCED STUDY