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As can be easily shown, if a locally compact topological group is 
zero-dimensional, all of its factor groups are zero-dimensional. In this 
note we give an example of a non locally compact zero-dimensional 
group with a factor group which is topologically isomorphic to the 
real numbers, hence one-dimensional.1 

1. Preliminaries. Let {X} be a set of indices of cardinality c, and 
for each X, let R\ be a topological isomorph of the additive group of 
rational numbers. We form the weak product R of the R\: an element 
r of R is a collection r = {r\}, rx£-Rx, such that for only a finite num­
ber of the X's is rx5^0\. Under the definitions r+r'= {r\+r\ } , 
0 = {0\}, R forms a group. 

Now for each r^Ry we define ||r|| = ]Cx|f\| • Since all but a finite 
number of the r\ — 0\, this sum exists. Clearly | |f+r'| | ^|MI~Hlr1l» 
and || ~HI = IIHI» hence, as can be easily shown, ||r|| defines a metric in 
R under the definition: the distance from r to r' is ||r--r /||. 

LEMMA 1. Let {d\\ be a set of positive real numbers bounded away 
from zero, that is, there exists d>0 such thai dx^dfor all X. Then 

U-{'\^\T\<1} 
Received by the editors November 10, 1947. 
1 Cf. Bourbaki, Topologie generale, chap. I l l , p. 21, exercise 12, for an example of 

a totally disconnected group with a factor group topologically isomorphic to the reals. 
This example was pointed out to me by I. Kaplansky. 
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is an open set containing the origin, and 

FcflElyUl}. 
I I x I d\ I ; 

PROOF. We need only prove that the real valued function f(r) 
= ]Cx|fx/dx| is continuous. Given r = {r\} and €>0, choose ô<de. 
Now, for any r' = {r{ } , 

X 4 - z 
X 

= £ - E nu - f\ * z 
1 

^ - Z l h ' l - k l l 
d x 

» X 

H 'x 

= —\\f-r\\. 

Thus, if | |r ' — r\\ <ô, this last expression is less than €, which proves 
the continuity and hence the lemma. 

LEMMA 2. Let {a\} be a bounded set of positive irrational numbers 
linearly independent with respect to the rationals, that is: 

(1) fliax(i) + • • • + dhOiuh) = a (fli, • • • , ahl a rational) 

implies 

a\ = • • • = ah = a = 0. 

Then if, in Lemma 1, we take d\~l/a\, the resulting U has a vacuous 
boundary. 

PROOF. From the second part of Lemma 1, we need only prove 
that there is no r such that ]Cx| rx/^x| * ! • Assume there is. Then, 
since replacing an r\ by its negative does not change absolute values, 
we can assume all the r\ are non-negative. Then we have ^2\r\/d\ = 1. 
But each d\ — l/a\y hence ^2\r\a\ = l, which contradicts the hy­
pothesis on the ax's. 

Using Lemma 2, we now define a special sequence of neighborhoods 
{ £/»} (» = 0, 1, • • • ) which form a basis around the origin. We first 
take the set of real numbers l/2Sc<l and set them in one-one cor­
respondence with the X's: {c\}. (Our purpose in bringing these in will 
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become clear in §2.) We then choose a set of irrational numbers 
{a\} with the property (1) (the existence of such a set follows from 
the existence of a Hamel basis for the reals), and such that for each 
X, c\<ofx<l. This last can always be accomplished by multiplying 
a\ by a suitable rational. We then have 

(2) 1/2 Û ex < ax < 1 for all X. 

(n) 1 1 
d\ = - f 

2n ax 

Now for each n, we define Un by taking 

(3) 

and letting 

(4) Un = (r\ E | - r | < 4 -
dx 

Since, for r£Z7, n> 

x x 

fx 

d™ 
X 

2» x 
< 

2n- l 

the diameter of C/n is less than l/2n~2 , hence approaches zero as n 
goes to infinity. Thus { Un} constitutes a basis around the origin. 
Since, from Lemma 2, the boundary of each Un is vacuous, it follows 
that R is zero-dimensional. 

2. The example. Let i?* be the additive group of real numbers {r*} 
with distance defined by \\r*\\ = 1 for all r* different from zero. This 
makes it discrete. Let G~R*XR with distance defined as follows: If 
g = (r*, r) then ||g|| HMI+IIHI- Since i?* is discrete, the Un

f8, now 
considered as subsets of G, form a basis around the origin of G, hence 
G is zero-dimensional. 

We define the subgroup H of G as the set of all g = (r*, r) such that 
r * + 2 > * f X - 0 ( c f . (2)). 

LEMMA 3. 27 w a cfosed subgroup of G. 

PROOF. 27 is a subgroup, for if g, g 'E27 then r * + S A O / X ^ O and 
**+ ]Cx^x' =°> hence (r* — r*) + DxCx(rx-r/) = 0 . To prove If is 
closed, it is sufficient to show that the real-valued function/(g) =r* 
+ X)x^x^x is continuous. Given g = (r*, r) and e>0 , choose 
8<min (e, 1). Consider any g,=s(r^y r') such that | |g ' - -g | |<5 . We 
note first that r% = r*, for otherwise | |**—r*||=l and hence ||g'—g\\ 
^ 1 ^ 5 . Then 
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*' + Z W£ - r* 
X 

= 

IIA
 

VII 

-

]C <fcfx' — ] £ Sxfv 
X X 

]£ x̂ | ri - f x | 
x 

£k-M 
|g' - g|| < S < 6. 

(from (2)) 

This proves the lemma. 

LEMMA 4. G/H is algebraically isomorphic to the real numbers. 

PROOF. Since R*X0CG is algebraically isomorphic to the real 
numbers, it is sufficient to prove that G/H is algebraically isomorphic 
to this subgroup. 

(i) Every coset of H contains an element of i?*X0. 
For, let g=(r*, r) be any element of G, where r={r\}. Then if 

g' = (r* + ZxWx, 0), g ' - g = ( E x ^ x , -r)EH. Since g 'Gi?*X0, this 
proves (i). 

(ii) Different elements of J R * X 0 lie in different cosets. 
For, let g = (r*, 0), g' = (ri, 0), with r**^. Then g'-g = (r'+-r*, 0), 

and since (ri — r*)+05^0, g'—g(£.H. This proves (ii), and with it, 
Lemma 4. 

We can thus denote each element of G/H by a unique real number. 
From the proof of (i) above, we see that the real number is given by 
the mapping 

(5) ir(r*, r) = f* + 2 <W 
x 

LEMMA 5. Tr(Un) = [~-l/2n<x<l/2n]for all n*=0, 1, • • • . 

PROOF. Since the argument is the same for all n, it is sufficient to 
prove this for Uo. From (4) and (3), 

tfo= | g = ( 0 , r ) | £ | a x f * | < l | -

(i) 7 r ( f / o ) C [ ~ K ^ < l ] . 
For, if g = (0, r) G J7o, then from (5), 

* ( * ) ! = £c\fx =S EUxrxl 
x 

< £ I «xrx | 
x 

< 1. 

(from (2)) 
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(ii) [-1<X<1]CT(UQ). 

For consider any real number x such that —Kx<l. Since the 
C\s run through all the real numbers from 1/2 to 1, there is a C\> such 
that 

X = €CX', 

where e is one of the values ± 1 , ± 1 / 2 . Hence, if g is the element of 
G whose X'-coordinate is e and whose remaining coordinates are 0, 
we have from (5) that 

Thus x has an inverse in UQ under 7r. Since x was any element of 
[ — 1 < # < l ] , (ii) is proved. This establishes the lemma. 

Since the set { Un] is a basis around the origin of G, the set {7rC/w} 
is by definition a basis around zero in G/H. Hence, from Lemma 5, 
G/H has the topology of the real numbers. 

INSTITUTE FOR ADVANCED STUDY 


