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If we make this assumption it follows that 2JÎ annuls dA/dyir, 
where r is the order of A in yx. Let s be the order of A in y%. We form 
the resultant R of A and dA/dyir, considered as algebraic poly­
nomials in y%8. Since A is irreducible, and cannot be a factor of dA/dyir, 
R is a nonzero polynomial, free of y%9, which is annulled by 9K. Since 
R is of lower efiective order than A in y%, 5DÎ must be an essential 
singular manifold of A relative to y^ The proof is now complete. 
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1. Introduction. Let W be a set of elements a{ -W= {au • • • } 
and let U{Si, • • • , Sj, • • • } be an indexed system of subsets of W. 
We wish to choose distinct representatives of the subsets. If dj — R(Sj) 
designates the representative of the subset Sj, then we require 
R(Sj)GSj for all j and R(Sj)^R(Sk) iiJ7*k. I t is to be emphasized 
that subsets are distinguished only by their indices and distinct 
subsets may contain the same elements. An obviously necessary con­
dition for the existence of distinct representatives is : 

Condition C : Every k distinct subsets contain between them at least k 
distinct elements, for every finite k. P. Hall1 has shown that if the num­
ber of subsets is finite, condition C is also sufficient for the existence 
of a system of distinct representatives, or SDR as we shall abbreviate. 
This condition is no longer sufficient if the number of subsets is in­
finite. As a counter example consider U(So, Si, • • • } where 
So— {ai, #2, • * • }, Si= {#»}, i = l, 2, • • • . Here condition C is easily 
shown to hold for the subsets, but clearly no representative may be 
selected for So which is not also a representative of some Si. 

In this paper it is shown that condition C is sufficient if every sub­
set Sj is finite, and also an estimate on the number of systems of 
distinct representatives is given. This latter result is applied to Latin 
squares. 

THEOREM 1. Given an indexed system U{Si, • • • , Sj, • • • } of 
finite subsets of a set W{ai, - • • , ai, • • • }. If the subsets satisfy condi-
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1 P. Hall, On representatives of subsets, J.London Math. Soc. vol. 10 (1935) pp. 26-
30. 
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tion C for every finite k then there exists a system of distinct representa­
tives R(Sj) of the subsets. 

THEOREM 2. Under the hypotheses of Theorem 1 if the smallest subset 
contains r distinct elements^ then there are at least r\ different systems of 
distinct representatives. 

THEOREM 3. There are at least nl(n — l)\ • • • 2 M ! different n by n 
Latin squares. 

2. Blocks and critical blocks. A finite system of subsets {Sj} of 
U{Si, • • • , Sj] together with the set of elements {#»•} of these sub­
sets will be called a block B. If we wish to indicate that there are r 
subsets and s distinct elements in the block J3, we write B — Brt8. 
We shall assume that every subset Sj contains only a finite number 
of elements. Condition C is equivalent to the condition s^r for 
every block BTt9 and we shall assume this to hold. If s = r we say the 
block Brtr is a critical block. 

There is a natural partial ordering for the blocks, if we define 
BQB' whenever every subset Syof the block B is a subset of the block 
B'. With respect to this partial ordering it is easily verified that the 
blocks form a distributive lattice, since they are essentially finite sets 
of S/s. I t will be desirable to consider the void block as an improper 
critical block J30,o. 

LEMMA 1. The union Bk,kUBiti and crosscut Bk,k^Bi,i of critical 
blocks are again critical blocks. 

PROOF. Given two critical blocks Bh,h and Bi,i, let Bk,k(^Bi,i = Br,8 

and Bk,k^JBi,i — BUtV. Let Si, • • • , S r be the subsets and au • • • , a8 

be the elements of Br,8- Then s^r. In Bk,k\JBiti~Bu,v, we have 
u=k+l — r since there are in BUtV the sets Si, • • • , Sr and k—r 
further sets of Bk,k and l — r further sets of Bi%i. Also in BUtV there 
are at most k+l — s different elements since at least the elements 
au • • • , a8 appear in both Bk,k and Bi,i. Hence k+l — s^v^u 
— k+l — r and also s^rt whence s = r, v = u and both Br,s and BUtV 

are critical blocks. 

LEMMA 2. Given an indexed system of finite subsets U{Su • • • , 
•S'y» ' ' *} of a set of elements W{au • • • , a*, • • • } satisfying condi­
tion C and a proper critical block Bk,k of U. If the system Uf{S{f • • - , 
S / , • • • } consists of the subsets S/ =S» for SiÇzBktk, and, for Sj 
Ç£Bk,k, Sj contains those elements of Sj which are not elements of 
Bk,kj then U'{S{, • • • , S / , • • • } also satisfies condition C. 

PROOF. This lemma can be more loosely phrased by saying that 
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deletion of elements of a critical block Bk,k from sets not in Bk,k does 
not alter the validity of condition C. Let BTt8 be any block of U and 
Brtt the corresponding block of U' (no subsets have been deleted). 
Also let Br^f^Bjck — Bij, Br,8UBk,k = Bmtn. The number of elements 
of Br,8 not in Bk,k is n — k. As nè£in = r+k--l, we have n — k^r — l. In 
the deleted block Br,t there are I subsets of Bk,k and r — l other subsets 
and there are f^l elements of Bk,k and n — k other elements. Hence 
t=f+n—k*zl+r—l = r and so condition C is also satisfied for the de­
leted block B'r%t, and hence for the deleted system U'. 

Since an element of a critical block could not be a representative of 
any subset not in that block, the deleted system V' will have the same 
SDR's (if there are any) as the system U. 

3. The principal theorems. 
PROOF OF THEOREM 1. We divide the proof into two cases, accord­

ing to the cardinal number a of sets Sj in U: Case 1 : a finite, Case 2 : 
a infinite. 

Case 1: a finite. Suppose first there is a critical block Bk,k, l^k 
^a — 1, not the whole system U. From the sets of Z7not in Bk,k delete 
the elements of £&,&. Then U', the deleted system, consists of Bk,k and 
another block B'a-ktV with no sets or elements in common. By Lemma 
2, U' satisfies condition C, whence both Bk,k and Ba„kfV as systems 
U' and U" satisfy condition C. By induction both of these have 
SDR's and, as they are disjoint, together these SDR's form an SDR 
for U. Now suppose there is no critical block except possibly the whole 
system U. This means that for an arbitrary block Br,8 with r^a — 1 
we have s ^ r + 1. Now take an arbitrary element of Sa as a repre­
sentative and delete this element in every other subset. In this dele­
tion any block Br,8 in Si, • • • , Sa-i goes into a block Br

T)t where 
t = s or 5 — 1 since only one element has been deleted. As s?>r-\-l, 
t^r and so Condition C holds for Uf(Sr

if • • • , S^x) whence by induc­
tion there is an SDR for U' and this together with the representative 
for Sa gives an SDR for U. 

This part of the theorem is equivalent to Philip HalFs result. 
Case 2 : a infinite. If from every set Sy of U we delete an element ai 

which does not belong to any critical block, then the deleted system 
still satisfies condition C. For in any block Br,8 which contains ai we 
have s^r + lf and after deletion the block becomes B^i with 
s — 1 ^ r. Condition C is a property of finite character in the sense 
used by Tukey2 since it applies to finite collections of subsets Sy. If 

2 J. W. Tukey, Convergence and uniformity in topology, Annals of Mathematics 
Studies, No. 2, 1940, p. 7. 
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we consider the set T of pairs (a<, Sj), ai £ Sj, the following property 
of subsets T* of T will also be a property of finite character. Property 
D : "After deleting a» from Sj for every pair (at, Sj) £ T, the system 
U{Sj} still satisfies Condition C." Hence, using the third form of 
Zorn's Lemma8 (Tukey2 p. 7), we may conclude that there is a maxi­
mal system ÜT* with property D. Put more simply, there is a maximal 
amount of deleting of elements a» from subsets Sj which may be done 
without destroying the validity of Condition C. Let us suppose this 
done. Then by the first sentence of this paragraph, every element be­
longs to a critical block. From Lemma 2, every critical block is dis­
joint from all sets not in it. Hence we have left only disjoint critical 
blocks. By Case 1, a critical block, being finite, possesses an SDR. 
Hence within each critical block deletion may continue until each Sj 
contains only one element. Hence after maximal deletion there is ex­
actly one element left in each set, and as Condition C is still satisfied, 
we have left an SDR for Z7. 

The reader will note that if initially every element of U belongs to 
a critical block, the argument goes through without appeal to the 
axiom of choice. 

PROOF OF THEOREM 2. Two systems of distinct representatives are 
different if they give different representatives for any subset. This 
theorem gives a lower limit on the number of different SDR's. I as­
sert that in U there is one Sj in which an aribtrary element may be 
taken as a representative in an SDR. Suppose U contains critical 
blocks. Choose a minimal critical block 5*,*. Here an Sj in Bk,k has 
the property that any element of Sj may be a representative. For 
deleting a chosen element of Sj from the other subsets of Bk,k leaves 
them satisfying condition C, whence the chosen element appears in an 
SDR for j3fc,fc. But in any SDR for U we may replace any SDR for Bktk 
by any other. On the other hand, if U contains no critical blocks, we 
may use an arbitrary representative from any one subset Sj without 
violating condition C by deleting it from the remaining subsets. 
Hence given U with at least r elements in every 5, we may choose fron 
an appropriate Sj a. representative in at least r ways and delete it 
elsewhere without violating condition C. Now apart from this Sj 
every other deleted subset contains at least r •— 1 elements. By induc­
tion this possesses at least (r — 1)! different SDR's. Hence U possesses 
at least r ( r - l ) ! = r! different SDR's. 

4. Application to Latin squares. Theorem 2 may be used to improve 
8 Cf. C. Kuratowski, L'élimination des nombres transfinis, Fund. Math. (1922) pp. 

76-108, Theorem 42, p. 89. 
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a result of the author's4 on Latin squares. Given a Latin rectangle 
with n columns and r<n rows. The problem of finding an (r + l)st 
row to add to this Latin rectangle is equivalent to finding an SDR 
for the n sets G • • • Cn where each C* consists of the w — r letters not 
in the ith column. Applying theorem 2, we see that this may be done 
in a t least (n —1)1 ways. Hence adding a row at a time we see that the 
number of distinct nby n Latin squares is at least n\ (n —1)1 • • • 2! 
1!. 

This number is surely too small. A better estimate may be obtained 
by combining the results given here with those of Erdös and Kaplan-
sky.6 This would increase the first k factors for k < (log n)zl2~'. The 
last factors are also too small and it would be interesting to obtain 
further improvements. 

Note added in proof. Another proof of Theorem 1, by C. J . Everett 
and George Whaples, is to appear in Amer. J. Math. See Bull. Amer. 
Math. Soc. Abstract 53-5-170. 
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