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In the numerical integration of a function ƒ (x) it is very desirable to 
choose the set of values {xi} at which the function/(x) is to be ob­
served, for it is generally possible to obtain the same accuracy with 
fewer points when these points are especially selected. Gauss1 gave 
such a proof for the case of the finite range ( — 1, + 1 ) and established 
that the "best" accuracy with n ordinates is obtained when the cor­
responding abscissae are the n roots of the Legendre polynomials, 
Pn(x)=0. For this case there obtains 

ƒ
1 n 

f(x)dx ~ X ) ^i,nf(%i,n) 
-1 *=1 

where the numbers {xitn} are the zeros of P«(#) and where the num­
bers {\{,n} are the Christoffel or Cotes numbers. Formula (1) is 
exact whenever f(x) is a polynomial of degree (2n — l) or less. Values 
of the zeros {xitn} and the corresponding Christoffel numbers {X*,n} 
for the Legendre polynomials for w = l to n = 16 have been tabulated 
by the Mathematical Tables Project.2 The range of integration can 
be chosen to be any finite range (p, q) with suitable modification2 of 
the zeros {xi,n} and the constants {\*\w}. 

It is understood that while selection of the abscissae {xi,n} is very 
desirable for theoretical reasons, it may not always be practicable to 
measure the ordinates oif(x) at these values. 

For the infinite range ( — <*>, + <x> ) a similar situation holds for the 
Hermite polynomials. These may be defined by the relation 

Hn(x) = ( - l ) ^ 2 - ^ L 
dxn 

n(n — 1) 
(2) ~ ( 2 s ) » - v (2x)«-> 

n(n - 1)(» - 2)(» - 3) 

2! 
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1 C. F. Gauss, Methodus nova integralium valores per approximationem inveniendit 

Werke, vol. 3, pp. 163-196. 
2 A. N. Lowan, Norman Davids and Arthur Levenson, Table of the zeros of the 

Legendre polynomials of order 1-16 and the weight coefficients for Gauss1 mechanical 
quadrature formula, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 739-743. 
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For n even, the last term is 

(-1)»/». 
(»/2)I 

and for n odd, the last term is 

»! 
(_l)C»-l) /2 (2a;). 

These polynomials obey the recursion relations 

(3) Hn+1(x) - 2xHn(x) + 2nHn-l(x) = 0, 

(4) Hi{x) = 2nH^i(x). 

[Some writers, including many statisticians, prefer to use 

(5) hn(x) = e*2 /2-^- '-
dxn 

as the defining relation for Hermite polynomials. The relation be­
tween these two sets of polynomials is given by 

(6) Hn(x) = (-2^)-hn(2^x).] 

The approximate numerical integration formula for functions f(x) 
on the infinite range ( — oo, -f oo) with the weight function exp (—x2) 
is 

(7) f "e~*2f(x)dx ~ f ) W(*<,n) 

where the set {#*,n} is the set of roots defined by 

(8) Hn(x) = 0 

and where the set {X;,w} is given by3 

7 r l / 2 2 n + l ^ | 

(9) Xt-,w = T r • 

If f(x) is a polynomial of degree (2n — 1) or less, integration formula 
(7) is exact.4 

3 Gabor Szegö, Orthogonal polynomials. Amer. Math. Soc. Colloquium Publica­
tions, vol. 23, 1939, p. 344. 

4 Szegö, op. cit. Chapter XV, 
C. Winston, On mechanical quadrature formula involving classical orthogonal poly­

nomials, Ann. of Math. (2) vol. 35 (1934) pp. 658-677. 
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The zeros {X»,n} for the polynomials hn(x) for w = l to n = 27 have 
been tabulated by Smith6 to six decimal places. The corresponding 
zeros {xi,n\ for the Hermite polynomial Hn(x) are given by 

(10) *,,„ = —X,- ,B . 

Newton's tangent rule was used to improve Smith's values, and the 
zeros {Xi,n} for n = lton = 5 are tabulated herewith to twelve decimal 
places and for w = 6 to w = 10 to nine decimal places. The set of 
Christoffel numbers {X,-,n} were calculated from relation (9). 

The results were subject to the following tests: 

T T / | coefficient of either x° or x term | \ 1 / 2 

(11) 1 1 positive roots = ( . 1 , 
\ coefficient of xn term / 

^ 2 n(n — 1) 
(12) I > » - . n = ' , 

Z 
(13) £ \itn = *xl\ 

V - 2 7T1'2 

(14) 2L<^i.nXi,n = —> 

where (11) and (12) are obtained from the algebraic expressions for 
the products of the roots and the sum of the squares of the roots and 
where (13) and (14) are obtained from (7) by taking f(x) = l and 
f(x) =x 2 respectively. For the most part, calculations were carried to 
two more places than were retained. 

Because of symmetry, it is convenient to tabulate the zeros of 
Hz(x) as #_i, xo, Xi rather than as Xi, x2, #3, and the zeros of Ht{x) 
as X-2, X-u #1» #2 rather than aS X\y X2) XZf X^y with similar notation for 
other values of n. Since there is but slight danger of confusion, the 
second subscript n on the zeros and Christoffel numbers has been 
omitted. Because of the relations #_,-= —Xi and X_i=X; only values 
with non-negative subscripts have been tabulated. 

w = l Hx{x)=*2x 
*o = 0.000 000 000 000 Xo = 1.772 453 850 906 

w = 2 H2(x)=4:X2-2 
*, =0.707 106 781 187 Xi = 0.886 226 925 453 

n = 3 Hz(x) = 8x*-12x 
Xo = 0.000 000 000 000 Xo= 1.181 635 900 604 
*, = 1.224 744 871 392 Xi = 0.295 408 975 151 

5 E. R. Smith, Zeroes of the Hermitean polynomials, Amer. Math. Monthly vol. 43 
(1936) pp. 354-358. 
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« = 4 U4(x) = 16x4-48x ! !+12 
*i = 0.524 647 623 275 Xi = 0.804 914 090 006 
xt = 1.650 680 123 886 X2 = 0.081 312 835 447 3 

» = 5 iï6(x) = 32xB-160x3 + 120x 
xo = 0.000 000 000 000 Xo = 0.945 308 720 483 
xi = 0.958 572 464 614 Xx = 0.393 619 323 152 
x2 = 2.020 182 870 456 X2 = 0.019 953 242 059 0 

« = 6 2J6(x)=64x6--480x4+720x2-120 
xi = 0.436 077 412 Xi = 0.724 629 595 
* i -1 .335 849 074 X2 = 0.157 067 320 
x3 = 2.350 604 974 X3 = 0.004 530 009 90 

w = 7 i77(x) = 128xT--1344xB+3360x3-1680x 
xo = 0.000 000 000 Xo = 0.810 264 618 
xi = 0.816 287 883 Xi = 0.425 607 253 
x2 = 1.673 551 629 X2 = 0.054 515 582 8 
x3 = 2.651 961 357 X3 = 0.000 971 781 258 

« = 8 iT«(x) = 256x8-3584x6+13,440x4-13,440x2+1680 
xi = 0.381 186 990 Xi = 0.661 147 013 
x2 = 1.157 193 712 X2 = 0.207 802 326 
x3 = 1.981 656 757 X3 = 0.017 077 983 0 
x4 = 2.930 637 420 X4 = 0.000 199 604 071 

» = 9 Ht(x) = 512x9-9216x7+48,384xB-80,640x s+30,240x 
xo = 0.000 000 000 Xo = 0.720 235 216 
xi =0.723 551 019 Xi = 0.432 651 559 
x2 = 1.468 553 289 X2 = 0.088 474 527 4 
x3 = 2.266 580 585 X3 = 0.004 943 624 28 
x4 = 3.190 993 202 X4 = 0.000 039 606 977 4 

w = 10 Hu(x) = 1024x10-23,040x8+161,280x6-403,200x4 

+302,400x2-30,240 
xi = 0.342 901 327 Xi = 0.610 862 634 
x2 = 1.036 610 830 X2 = 0.240 138 611 
x3 = 1.756 683 649 X3 = 0.033 874 394 5 
x4 = 2.532 731 674 X4 = 0.001 343 645 77 
x6 = 3.436 159 119 X6 = 0.000 007 640 432 86 

As an example, consider the evaluation of 

J = l e~
x* cos xdx. 
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The known value of this integral is 

j = T i / * r i /4~1.380 388 447. 

Using formula (7) to evaluate I approximately, and taking n = 8 and 
making use of symmetry, there results 

/ ^ S ^ . 8 COS (Xits) 

= 2[(0.661 147 013)(0.928 223 702) 

+ (0.207 802 326)(0.401 910 767) 

+ (0.017 077 983 0)(-0.399 398 300) 

+ (0.000 199 604 071X-0.977 831 340)] 

= 1.380 388 447 

which agrees to nine decimal places with the actual value. 
If the function f(x) is expansible in a Taylor's series about the 

origin, estimates of the error in using (7) may be made as follows: 
The error (not counting rounding off error) arises from terms in the 
Taylor's series with powers of x greater than (2n — l) when n ordi-
nates are used. In the example above, the largest error term is that 
due to the x16 term in the expansion of cos x. Since 

I dx = < 2 X 10-10 

J . * 16! 216-8! 

and since the neglected terms in the cosine expansion when inte­
grated out as above form an alternating series of decreasing absolute 
values, the error can be estimated as being less than 2X10~10. This 
heuristic estimate is not the actual error in the use of integration cor­
respondence (7), but is a sort of an order of magnitude error. 
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