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1. Introduction. If A is a metric set, and A2 its cartesian product 
with itself, it is possible, in terms of the metric A, to metrize A2 in 
many different ways. Thus, the problem of determining when A2 

isometric to B2 implies A isometric to B can be attacked by placing 
limitations on the sets A and B or on the product metrics. The present 
paper proves that the isometry is implied when A and B are bounded 
and linear and the metric in A2 and B2 is determined by the use of a 
modified Minkowski gauge. 

Also stated, without proof, are certain conditions under which the 
isometry of two product sets implies the isometry of the factors. The 
proofs for these results, given in the author's doctoral thesis,1 are 
long and differ only in detail from the one demonstrated. 

2. Definitions. 
(A) Metric set. A is a metric set if to each pair of its element a*, an­

thère corresponds a real, non-negative number p(#», a3) which is inde­
pendent of the order of the elements, zero if and only if a» = ay, and 
which satisfies p(a», a3)+p{a^ a&)^p(#», au). 

(B) Isometry. Metric sets A and B are isometric (indicated by 
A^B) if there exists between them a 1-1 correspondence of ele­
ments, r , such that p{a,i, aj)=p(T(a,i), T(a})). The metric in A and 
B need not be the same, but in writing p(#,-, a3) we shall understand 
that p is the metric for the set containing at- and ay. 

(C) Linear set. Linear, here, will mean a set isometric to a subset 
of the euclidean line. 

(D) Bounded set. A metric set A is bounded if p(a»-, a3) is equal to or 
less than some real number R for all couples in A. If there exists a 
couple a,-, ay, such that p(aiy a3) =i? , the set assumes its bound. 

(E) Modified Minkowski gauge. In the first quadrant of the car­
tesian plane let C' be a curve having nonzero intercepts. A curve C 
consisting of C' together with the segments of the x and y axes which 
C' intercepts will be called a modified Minkowski gauge if the follow­
ing properties hold: (1) Cis a simply cbnnected, closed, convex curve; 
(2) if Pi(xi, yi)> P^{x2l y%) are any two points in the first quadrant and 
the lines joining the origin to P\ and P2 cut C in P{ and PI, respec­
tively, then the relations x\^x^ and y%Sy% imply OPi/OPi 
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^OP2/OP2. I t is easily shown, and we shall need to use, the fact that 
(1) and (2) imply that : (3) when x\<x2 and yi<y2 then OPi/OPi 
<OP2/OP2. In addition to (1) and (2) the gauge will be called sym­
metric if: (4) C is symmetric about the line y = x. 

(F) Minkowski metrizations. Let A, with elements a», be any 
metric set. We use C to metrize A2 as follows. To a pair of elements 
(a,-, ay), (a&, ai) in A2 there corresponds a metrizing point P in the 
plane with coordinates [p(aiy a&), p{aJy ai)]. Let the line determined by 
0 and P cut C in the point P ' . Then p[(aif ay), (a&, ai)] is denned as 
the ratio OP/OP'. We shall also use the notation | |P| | for OP/OP'. 
Thus condition (2) under (E) could be stated that when x^Soc2 and 
y\Sy* then ||(*i, yx)\\ ^ | | (#2 , y*)li­

l t can be shown that if C has properties (1) and (2) under (E) then 
A2 will satisfy definition (-4) of a metric set.2 Some condition similar 
to (2) is essential, for the metric defined this way with an ordinary 
Minkowski gauge permits examples in which -42 is not a metric set. 
Symmetry about y = x is not a necessary but a natural condition to 
assume in dealing with square sets. Since | |P | | = 1 if and only if P 
lies on C, C is often referred to as a unit gauge. Various familiar 
metrics derive in a natural way from different choices of the gauge. 
If C' is the arc of a unit circle then || (x, y)\\ = (x2+y2)1/2. If C is a unit 
square, then \\(x, y)\\ = M a x (x, y). If C' is the line joining (1, 0) and 
(0, 1) then ||(x, y)|| =x+y. 

THEOREM 1. If A and B are bounded linear sets which assume their 
bounds and if A2, B2 are metrized by the same symmetric gauge C, 
then A2^B2 implies A=B. 

PROOF. (1) Let T be the correspondence establishing -42=i?2 . Let 
Mi and M2 be the bounds of A and B respectively. From linearity 
these bounds are assumed at one and only one pair of elements in 
each set. Let p(a, a*) = Mif p(5, &*) = M2. 

(2) Let Pi , P2 , P3 , PA in A2 be the points (â, à), (a*, a) (a*, a*), 
(a, a*) and Qj, Q2, Qs, Q* in B2 have similar coordinates with "a" re­
placed by "ô." Let T(Pi) = Si = (ui9 vi), i = l, 2, 3, 4. 

(3) The set {Si} is in some order the set {(?;}, i = l, 2, 3, 4. We 
prove this by showing each Ui and each Vi is 5 or &* as follows. 

(3.1) From the coordinates of P» and the definition of the metric 
in A2 we have p(Ph Pz)=p(P2l P 4 )= | | (Mi , Mi)\\ and p(Qu Qz) 
=p(Ö2» Qù = | | ( ^ 2 , -M2)||. From property (2) under (E) these must be 
the largest distances which occur in -42 and B2 respectively. Then 

2 Ibid. 
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from A2=B2, we have ||(Jtfi, Mi)\\=\\(M2l M2)\\. Since (Mh Mi) and 
(M2i M2) both lie on y=x and this line cuts C' in only one point it 
follows that Mi = M2. Let M\ = M2 = M. From symmetry of C the 
x and y intercepts of C' are equal and for simplicity we may take 
them as (ikf, 0) and (0, M). (This could always be done by a radial 
expansion or contraction of C that would change all distances in 
A2 and B2 by the same multiple.) With this condition it follows from 
(1) and (2) that p(Pu P 2 )=p(P 2 , Pz)=p{P*, P 4 )=p (P 4 , Pi) = l. 

From (3.1) and A2^B2 we have 

(3.2) p(Si, S2) = p(52, S3) = P(^3, S4) = P(SAJ SI) = 1, 

and 

(3.3) P(5i, 5s) = P ( S „ 54) = ||(M, Jf)||. 

Now \\(M, M)\\ ^ 1 and we treat these two possibilities separately. 
(3.4) Case 1. \\(M, M)\\ > 1 . Then if P(x, x) is the gauge point on 

y=*x (that is, intersection of C' and y = x), we have 0<x<M. From 
(1) we have 

(3.5) p{ui, uz) ^ M, p(vh vz) ^ M 

and 

(3.6) p(u2, Ui) ^ M, p(v2, VA) ^ M. 

From (3.3) and property (3) of the gauge C, one of the equalities in 
(3.5) and one in (3.6) must hold. To show that all four equalities 
must hold, suppose: 

(3.7) p(uu uz)=M, p(vi, vz)<M. Let R be the point [p(uu uz), 
p(vu vz)]. From ||p(«lf uz), p(vh tf8)|| = | | (M, M)\\ it follows, using 
similar triangles, that the gauge point R' on the line joining O and R 
lies on the line x = x. Since the points P and (ikf, 0) are on C, the chord 
joining them must lie on or interior to C. Hence, R", the intersection 
of this chord with the radial line through R, must lie on or interior to 
C, which is impossible since OR">OR'. This contradiction shows 
that if p(u\, Uz) = M then p(vi, vz) = M. The four possibilities of one 
inequality holding in (3.5) and (3.6) lead to a similar contradiction, 
hence all four equalities hold. But from (1) that implies each Ui and 
each Vit i = l, 2, 3, 4, is either 5 or b* and establishes (3). 

(3.5) Case 2. ||(ikf, M)\\ = 1 . Then (Jlf, M) as well as (ikf, 0) and 
(O, Af) are gauge points. From the definition of convexity then there 
can be no gauge point interior to the square (0, 0) , (M, 0) , (M, M), 
(O, M). But now from (3.2) and (3.3) all six distances in the set 
{T(Pi)}, i = 1, 2, 3, 4, are 1, therefore the metrizing point correspond-
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ing to any pair of these elements must lie on C, and hence must have 
either its 1st or 2nd coordinate equal to M. Then either p(uit uj) =M 
or p(Vi, Vj)=M, i,j = l, 2, 3, 4, i V j . Now assume Vi^h or 5*. Then 
p(vi, V^T^M, p(vlf vz)?*M, p(vu V^T^M. Therefore, p(ui, #2) =p(w1, m) 
=p(ui, UA) = Af. Take Wi = 5, then w2 = w3 = W4 = &*. Therefore p(u2, Uz) 
=p(u2f U4) =p(w3, Ui) = 0. Then p(v2, v±) =p(%, *>3) =^(^3, Vt)—M. Let 
t;2 = 5 then s;3 = tf4 = &*, and p(z;3, v 4 )=0 contradicting p(u8, z/4)=.M. 
Therefore fli must equal 5 or b* and by the same argument each Ui and 
each vu i = 1, 2, 3, 4, must be 5 ar &*, which establishes (3). 

(4) If we think of Pi , P 3 and P2 , P4 as diagonal pairs in A2 and 
Qu Qz and ft, ft as diagonal pairs in B2 it is clear, since there are six 
pairs in each set, that T must map at least one nondiagonal pair of 
the Pi s onto a nondiagonal pair of the ft's. The symmetry of C 
makes the argument the same in any case and we may suppose for 
définiteness that T{PX)^QU P(P2) = ft. 

We define a mapping, S, of A onto B as follows. To any element ai 
in A there corresponds in A2 the point P»(a,-f 0). Let P(P»)=Q t-
^fr», &*), that is, label the first coordinate of the transformed point 
h. Define S by S (a%)=bh S (a) =5 , 5(a*) =&*. 

(5) 5 establishes A ^B. 
(5.1) From the coordinates of Pi , P», P 2 we have p(Pi, P») 

=p(<z, a<)/Jf, p(P», P2) «pCa*, a*)/M, p(Pi, P2) =p(â, a*)/Jlf. 
(5.2) Linearity in A gives p(â, a») +p(a», a*) =p(â, a*). 
(5.3) (5.1) and (5.2) imply p(Px, Pi)+p{Ph P2) =p(Pi , P2). 
(5.4) From (5.3) and A2^B2 we have p(ft, ft)+p(ft, ft) 

ap(a,ft). 
(5.5) Consider the point ft(&i, 5). From the coordinates of 

ft, ft, ft and linearity in B it follows that p(ft, ft)+p(ft, ft) 

=p(ft, ft). 
(5.6) (5.4) and (5.5) give p(&, 0,) +p(Q<, Q%) =p(Qi, ft) +p( f t , ft). 
(5.7) The metrizing point corresponding to the couple ft, ft has 

its coordinates respectively equal to or greater than those for the 
point corresponding to the couple ft, ft. Hence, p(ft, ft) ^p ( f t , ft). 
Similarly p(ft, ft)èp(ft, ft). These relations together with (5.6) 
imply p(ft, ft)=p(ft, ft) andp(ft, ft) =p(ft, ft). 

(5.8) Since p(ft, &) =p(5, b{)/M, from (5.1), -42==52 and (5.7) we 
obtain p(<z, a*) = Mp(Pi, P t ) = Mp(ft, &) = Mp(ft, ft)=p(5, &<)• 

(5.9) Let a*, ay be any two elements in .4 with bit bj their trans­
forms under 5. From (5.8) we have p(<x, ay)=p(5, &y) and p(â, a,-) 
=p(5, è,), and from the linearity of A and B it follows that pia^ a3) 
=p(bif bj). This last implies that if a^aj then bi^bj so the mapping 
cannot be many-to-one. Also 5 is not a mapping of A onto a part of B 
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because, using the same method, we could define an isometric trans­
form S' of B onto A, then SSf would be an isometry of A onto a sub­
set of itself which is impossible. Thus 5 is 1-1 and (5) is established. 

3. Other results. If A\, A2, • • • , An are bounded linear sets which 
assume their bounds, they do so only on one pair of elements which 
might be called end points. In the product set ^ X ^ X • • • XAn 

there are 2n n-tuples each coordinate of which is an end point of a 
base set. Call this collection of points in the product the vertex set. 
In the following theorems, as in the proof just given, the method 
employed was to show that the mapping giving the isometry of two 
product sets had to map the vertex set of one into the vertex set of 
the other. I t was then possible, as in the proof of Theorem 1, to use 
the isometry of the products to establish the isometry of the base sets. 

If Pi (an, #i2, • • • , au), P%(a2\, #22, • • • , a2n) are two elements in 
^ i X - ^ X • • • XAn, then by the euclidean, maximum, and sum 
metrics in the product we shall mean that p(Pi, P2) is given re­
spectively by [J^piau, a2i)

2]1/2, Max [p(an, a2i), pfa», #22), • • • . 
pOin, a2n)], o r by ^Lp(au, a2i). 

THEOREM 2. If Ax, A2, Bi, B2 are bounded, linear sets assuming non­
zero bounds and if AiXA2 and B\XB2 are both metrized under (1) the 
sum metric or (2) the maximum metric, then A\XA2^B\XB2 implies 
Ax^Bx, A2=B2 or AX=B2, A%=B\. 

THEOREM 3. If A is a bounded linear set, assuming its bound, and 
B is a metric set, then if An and Bn are metrized by the maximum metric 
An=Bn implies A^B. 

THEOREM 4. If A%, A2, • • • , An are linear, metric sets, each assum­
ing a nonzero bound and if B\, B2, • • • , Bn are metric sets bounded from 
zero (not consisting of a single point) and if A=AiXA2X • • • XAn 

and B=BiXB2X • • • XBn are metrized by the euclidean metric then 
A=B implies that the sets Ai are isometric to the sets Bi in some order. 

THEOREM 5. Let Ax, A2, Bi, B2 be euclidean plane sets, each of which 
contains the vertices of some rectangle bounding it, and let AXXA2 and 
BXXB2 be metrized by the euclidean metric. If one of the sets A\, A2is 
not isometric to a product of two linear sets, then AXXA2^BXXB2 im­
plies the sets Ai are isometric in some order to the sets Bi, i = 1, 2. 
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