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During the past war a new field of application of the scientific 
method was developed, called operations research, or operational 
analysis. A number of mathematicians contributed to this develop­
ment and some of their work should be of general interest to mathe­
maticians, though reasons of military security have precluded pub­
lication of much of it. I t is my intention to discuss a number of prob­
lems in this field which can now be talked about, and to indicate why 
further work in operations research is of some importance at present. 

The term operations research has heretofore been used to connote 
various attempts to study the operations of war by scientific methods. 
From a more general viewpoint, however, operations research can 
be considered to be an at tempt to study those operations of modern 
society which involve organizations of men or of men and machines. 
The study is behavioristic, not subjective, and the aim is to be able 
to predict the changes produced in the operation by changes in ex­
ternal conditions. The subject can be said to cover, for example, the 
quantitative aspects of city planning (including traffic analysis), 
those parts of the study of telephone traffic handling which are called 
systems engineering, and certain aspects of efficiency engineering. Its 
methods might be applied to a scientific study of peacetime opera­
tions, such as those of railroads or of other transportation systems, if 
this were desired. In each case one seeks to study the dependence of 
certain measures of effectiveness of an operation upon certain opera­
tional parameters which are subject to the control of the director of 
the operation. I t is important to appreciate what operations research 
is not, as well as what it is : it is not efficiency engineering or historical 
analysis nor is it a branch of applied statistics. I t views operations 
from a much more active and experimental point of view than do these 
other subjects. 

I t is obvious that operations research is a branch of engineering, 
rather than of pure science, since it is concerned with the application 
of scientific method to immediate and pressing practical problems. At 
least in the initial stages it must be developed in close connection 
with these practical problems and in personal contact with the ad­
ministrators who have control over the operation under study. The 

The twenty-first Josiah Willard Gibbs lecture delivered at Athens, Georgia, 
December 29, 1947, under the auspices of the American Mathematical Society; re­
ceived by the editors January 9, 1948. 
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fundamental data concerning the operation must be obtained in part 
by first-hand observation and in part by judicious variation of the 
operational parameters involved. After the data are collected the re­
sults of their analysis are of value to the administrator in charge, in 
helping him plan future operations. 

As with any field of engineering, a number of branches of science are 
called upon for help. For example, physics is required for a basic 
understanding of the operational possibilities of the machines in­
volved, and biophysics and psychophysics are required in order to 
understand the capabilities of the human components. Mathematics 
is (as always) basic to all of the work, and some of the problems 
already encountered have required mathematical abilities of fairly 
high order to solve. During the war it was found that a mathe­
matician, a physicist and a biologist together make up a research 
team of considerable effectiveness. The biologist is often useful 
chiefly for his ability to draw mechanistic inferences from a' little 
data concerning very complex systems. 

Operations research is still of considerable importance, and there 
are at present more positions open in the field than there are com-
pentent workers to fill them. Because of the success of several opera­
tions research groups during the war the armed services of this 
country all wish to maintain groups of this sort now; and in the 
present state of international relations, it is probably important that 
such groups be maintained. In addition, a number of large industries 
have shown interest in applying the same techniques to improving 
their own operations. 

The writer wishes to call the attention of mathematicians to these 
opportunities, and to indicate, by a group of examples, that problems 
of mathematical interest are encountered in operations research. The 
group of problems chosen for discussion here are from the military 
field, because up to the present, the military applications have been 
most intensively studied. The examples were chosen for their mathe­
matical interest, not necessarily for their practical importance. Some 
of the results could have peace-time application, of course; this will 
be seen as the discussion progresses. Further work in peacetime 
operations research will certainly bring to light other problems of 
equal or perhaps greater mathematical interest. 

To sum up this preliminary discussion in concise form : 
1. Operations research (in its military application) is the quantita­

tive study of a strategic or a tactical operation, or a part of one. 
2. I t gets its data from combat or trial action reports and from 

physical or psychological tests of the mean and machines involved. 
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3. I t uses idealized and simplified pictures of the operation (as all 
branches of applied mathematics do) to serve as the basis of an­
alytic calculation and prediction. 

4. I t has an amply demonstrated practical value, and it is capable 
of wide application (cf. mathematical economics, traffic analysis, 
epidemiology, systems engineering, and so on). 

5. I t can lead to new and challenging problems in mathematics, 
as some of the following discussion may indicate. 

The search problem. A very large class of problems encountered 
in naval and air operations is related to the process of search) an 
observer, equipped with some means of making contact with a target, 
moves or is moved over an area or volume in some more or less 
regular pattern of search; the problem is to find the pattern which 
most efficiently results in contact under specified circumstances. 
The problem is applicable to many cases : the means of contact may 
be visual, by radar or sonar; the means of transport of the observer 
may be by aircraft or beneath the water; the "observer" may be a 
proximity-fused guided missile, and the "contact" desired may be 
the destruction of the target; peacetime applications to geological 
prospecting are obvious, and so on. Mathematically, the problem re­
duces often to one of calculus of variations, but, in many cases, with 
"something new added." 

The problem1 usually can be divided into a number of parts: the 
contact problem, dealing with the relationship between the physical 
properties of the detection equipment and the probability of contact 
with the target, when observer and target are in given relative posi­
tions; the track or pattern problem, dealing with the determination of 
the optimum pattern of search for given conditions ; and the tactical 
problem, dealing with the reciprocal effects occurring when the target 
is also provided with detection equipment. Analyses of the tactical 
problem often require the techniques2 developed by von Neumann 
for his theory of games. All aspects of the search problem involve 
fundamental concepts and techniques of the theory of probability, 
expressed from a point of view enough different from that of classical 

1 Much of the discussion here follows the work of B. O. Koopman, who made 
major contributions to this field while working as a member of the Operations Re­
search Group (now Operations Evaluation Group) U. S. Navy Office of the Chief of 
Naval Operations. 

2 Theory of games and economic behaviour by J. von Neumann and O. Morgen­
stern, Princeton University Press, 1944. 
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probability theory as to cast new light on some of its concepts and 
techniques. 

Probability of contact. The mathematical aspects of the contact 
problem start with the definition of the instantaneous probability of 
contact, g. Nearly all detection equipment searches by means of 
"glimpses" : a radar set sends out a sequence of pulses, which may or 
may not return a measurable echo from the target; a sonar set be­
haves similarly, though with longer intervals between pulses; even 
the human eye searches the horizon in a series of momentary "fixa­
tions." The probability contours for single-glimpse detection of an 
object on the surface of the ocean by eye or by radar are plotted in 

VISUAL GLIMPSE RADAR PULSE 

FIG. 1. Polar contours of instantaneous probability of detecting target on ocean 
surface for single eye fixation and for single radar pulse. Observer is at 0. 

polar diagrams in Fig. 1, as functions of range and horizontal angle. 
By way of contrast, the contours for probability of "contact" (that is, 
of destruction) for a single bomb would be concentric circles, the 
probability g here being simply a function of r, the distance between 
the target and the point of impact of the bomb. 

These instantaneous probabilities are next combined to obtain the 
probability of detection (or destruction) by any of a number of 
glimpses (or bombs). I t turns out that the individual probabilities 
are independent of each other in most of the cases studied, so the 
usual rules for combination of probabilities can be applied. The 
probability that a contact is made in at least one of n glimpses is 
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P - 1 - (1 - g l ) ( l - ft) • • • (1 - gn) 

(1) 
= 1 — exp 

L m-1 J 
$ w = — In (1 — gm). 

As long as the glimpse probabilities are independent the quantities 
$ m are additive; for this reason they are called contact potentials. 

This equation suffices for the basis of a large number of problems 
connected with gunnery and area bombardment. Combination of 
probabilities of destruction with probabilities representing gunnery 
or bombing errors will enable over-all probabilities to be computed 
and optimum patterns for different targets to be determined. In 
some cases of practical importance (as in rapid-fire gunnery) succes­
sive probabilities are not independent, and the above equation is not 
valid. 

SOLID ANGLE « 

OBSERVER 

TARGET 

FIG. 2. Visual detection of wake on ocean surface by observer in aircraft. 

In the case of actual search for a target (on the surface of the ocean, 
for instance) we must take into account the fact that the search goes 
on continuously as the observer moves about. During a time dt 
which is short compared to the total time of search but which is 
long compared to the average time between glimpses, the eye or 
radar set scans the horizon about equally well in all directions. 
Therefore the probability of making contact within the time interval 
dt can be written as y(r)dt, where the quantity y is usually inde­
pendent of the angle between the line of sight and the direction of 
motion of observer or target. The quantity 7 depends on r, the hori­
zontal distance between observer and target, and on the visibility 
conditions (atmospheric haziness, state of repair of radar set, and so 
on) at the time of search. 

For instance, within rather narrow limits, the probability rate 7 for 
visual detection of a distant object is proportional to the solid angle 
subtended by the object at the eye. If the object searched for is a 
wake of constant area on the surface of the ocean and if the observer 
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is in an aircraft a t height h and horizontal range r from the target, 
study of Fig. 2 will show that if r^>hf 

(2) 7 = KO) = (B/s2) sin a = (Bh/s*) ~ (Bh/rz), 

where the quantity B depends on the area and contrast of the wake, 
the amount of haze in the air, and so on. This is known as the inverse 
cube law for contact rate. This equation is only valid for search for 
small objects in conditions of good visibility, but it serves as a good 
example, which can be handled analytically. 

Lateral range and search width. Next we must consider the effect 
of the motion of the observer with respect to the target. As shown in 

TARGET % 

OBSERVER 

* 
DIRECTION OF RELATIVE 
MOTION 

FIG. 3. Relative motion of target past observer, relative velocity is v 
and lateral range is x. Probability of contact during transit. 

Fig. 3, we picture this most easily by considering the observer to be 
a t rest and we assume that the relative velocity is constant both in 
magnitude, v, and in direction, as long as the two are within detection 
range. For a certain initial configuration the distance of closest ap­
proach will be x (which is called the lateral range). The position of 
the target along its path of relative motion is given by y. 

I t should be obvious that the probability of contact during the 
time while the observer is passing by the target is given by the 
formula 

(3) p(x) = 1 — exp 
L v J - * 

y((x2 + y2y2)dy • ] • 
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For instance, for the inverse cube law given in Equation 2, the 
contact probability as function of lateral range turns out to be 

(4) p(x) = 1 - er2*3/*2; fi = (Bh/v). 

Possible curves for contact probability y(r) and corresponding lateral 
range probability are shown in Fig. 4. In the first case, the probability 
of contact increases so rapidly at range R that there is almost cer­
tainty of detection whenever the lateral range is less than R. This is 
called the definite range case. The other case shown is that for the in­
verse cube law. 

(a) (b) 

FIG. 4. Curves for instantaneous contact rate y(r) together with the correspond­
ing lateral range probability, p(x). 

Case (a) is the definite range case. 
Case (b) is for the inverse cube law. 

Now suppose that the target is at rest somewhere along a line of 
length D (long compared to the range of detection) at right angles to 
the motion of the observer. If the observer's track crosses this line at 
some randomly chosen point, independent of the position of the 
target, then the probability that contact will be achieved turns out 
to be 

(5) P = 
W 

w = I p(x)dx 
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where W is called the effective search width for the particular observer-
target pair under study. For the definite range case, W=2Ry where 
R is the definite range. For the inverse cube law, 

W = 2(2TT/3)1/2 = 2{2Tr(Bh/v)yi\ 

As might be expected, the search width is a useful measure of the 
effectiveness of a piece of detection equipment. The quantity vW, 
called the search rate, gives the effective number of square miles which 
can be searched over in an hour (if W is in miles and v in miles per 
hr.). For the inverse cube law the search rate is proportional to the 
square root of the velocity and of the altitude of the plane (assum­
ing a cloudless day). In actual practice the dependence of search 
rate on velocity is not as simple as this example would indicate. 

Search pattern. A problem of some interest, and one which is basic 
to the question of search pattern mentioned earlier, is : a single target 
is placed at random somewhere inside an area A, whose dimensions 
are large compared to the search width W; what is the probability 
that , after T hours of search by the observer, the target is found? The 
answer will, of course, depend on how the search is carried out, that 
is, on the pattern of search. We shall obtain the answer for two dif­
ferent sorts of search pattern. 

As one extreme, we assume that the search is completely random ; 
the track of the observer (or observers, for several identical observers 
may take part) consists of pieces of straight line, of various lengths, 
placed at random within the area A, and covering it in a more or less 
uniform manner. For this search pattern the probability that the 
target be passed at a lateral range x is independent of x, and the 
chance of finding the target in time dT is just the search rate, vW, 
times dT, divided by A. Therefore the probability of making contact 
at some time during the search is 

(6) P = 1 - e~WLiA 

where L = vT is the total length of track passed over by the observer 
(or observers) during the search. 

Another search pattern, somewhat more efficient, is to cover area A 
with straight, parallel tracks in as uniform a manner as possible. If 
the total track length is to be Z,, the spacing between parallel tracks 
is S—(A/L). If the target is a lateral distance x from one of the 
tracks it can be shown that the probability of contact is 
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P(x, 5) = 1 - r*<--«, 

(7) *(*, 5) = - £ In [1 - p(x - nS)] 

n — o o ^ ** —oo 

where £(#) is the lateral range probability defined in Equation 3. 

S-(A/L) 
A/W 

TOTAL LENGTH OF TRACK L — • 

FIG. 5. Probability of contact during search of track length L, for 
single target at random in area A, 

Since the target is placed at random in the area the probability of 
contact is the average value of P : 

1 r* 
P(S) - — P(x, S)dx. 

o J o 

For the definite range case, where p(x) is zero for x>R (where 
2R = W) and unity for x<R, P(S) is equal to (2R/S) = (WL/A) 
whenever S is larger than 2R (in this case the searched-over paths 
do not completely cover the area) ; and is equal to unity when S is 
smaller than 2R (in this case the area searched covers A completely). 
For the inverse cube law, discussed earlier, the result is 

(8) PCS) = erf(ir{2pytyS) = erf{ir^W/2S). 

Inspection of Fig. 5, which shows the contact probability as func­
tion of total track length L for the three cases discussed, displays the 
amount of advantage to be gained by care in arranging the pattern 
of search. Purely random search introduces inevitably a certain 
amount of overlapping of search effort, which is eliminated by the use 
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of parallel, equidistant tracks. For the definite range case, no over­
lap occurs until the track spacing 5 becomes smaller than 2R. The 
inverse cube law case represents an intermediate case, in that a 
certain amount of overlap of search effort occurs even with parallel 
tracks. In actual practice it is quite difficult to follow exactly parallel, 
exactly equidistant search tracks, and careful navigation is required 
to obtain search efficiencies appreciably larger than the efficiency 
corresponding to the curve for random search. 

Of course it is easy to design a search pattern which would be 
considerably less effective than the curve for purely random search. 
Concentration of search effort in one part of the area, for instance, will 
reduce the probability (as long as the target is equally likely to be 
anywhere). On the whole, however, any search effort which attempts 
to cover the area in a reasonably uniform manner will produce re­
sults approximately equal to the random search case, and con­
siderable care in navigation will enable markedly better results to be 
attained. In the succeeding parts of this paper the formula for prob­
ability of contact for random search, given in Equation 6, will be 
used as a minimum attainable measure of effectiveness ; any reason­
ably well designed and executed search pattern should do better 
than this, none should do worse unless they are badly designed. 

We next consider a somewhat more complicated case, where the 
target may be in one or the other of two areas, A\ and -42. The prob­
ability that it is in A\ is pu with its whereabouts within the area un­
known; the probability that it is in A2 is £2 = 1 —pu The problem is 
as follows : suppose we have a certain amount of searching effort, rep­
resented by the track length L ; how do we distribute this effort be­
tween A1 and A2 to have the best chance of finding the target? 

If we try assigning a length of track x to area Ai and distribute it 
uniformly over the area (so we can use Equation 6 for the chance of 
contact), then a track-length (L — x) will be left to be used in area A% 
and the contact probability will be 

(9) P(x) = 1 - pxf-wo* - p2e-<w/A2)(L-x)é 

We have therefore to make P{x) a maximum, or pxe-(WIAÙ* 
+/>2e"~(TrM2)(Ir~*) a minimum, in the range O^x^L. 

To make the discussion more concrete, let us assume that the prob­
ability density (pi/Ai) for the target in the first area is greater than 
that in the second area. We start with a small allowed track length L 
and investigate how the best distribution of search effort changes as 
we have more and more track length available. For a small enough 
value of L, we have (P2/A2) g(^i /4i)r ( } r L / i l l ) . When this is true the 
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quantity pie~(WIAl)x+p2e~(:w,A2)(1~x) has no minimum for x in the range 
0 < x < L , its least value is for x~L corresponding to all search in A\. 
In other words, if the available search effort is small enough we 
should concentrate this effort in the most promising area and dis­
regard the other area entirely. This is a result which is not often en­
countered in classical calculus of variations problems, but which 
often turns up in operations research problems. 

ALL SEARCH 
IN At 

BEST 
ALLOCATION 

ALL SEARCH 
IN A, 

FIG. 6. Calculation of optimum distribution of search effort between two areas A\ 
and Ai with p\ the probability the target is in A\ and p% the probability it is in A2. 
Total track length L, track length in A\ is x. Probability of contact for random 
search. 

If now the available path length L is sufficiently increased there will 
be a maximum for P(x) in the range 0 <x<L as shown in Fig. 6, and 
the usual process of maximization will obtain the proper answer for 
x. I t is of interest to note that, if L is large enough, the solution indi­
cates that more time should be spent in A% than in A\, although A2 

is to be ignored when L is small. If there is plenty of effort available 
it is worthwhile to spend a lot of it on the less rewarding area. 

These very simple examples will perhaps show how the search-
pattern problem can be attacked, and may perhaps indicate the diffi­
culties which are encountered as soon as less simple cases are tackled. 
The difficulties, it should be brought out, are mathematical ones and 
not ones of boring detail. The solution of a search-pattern problem 
which includes, for instance, a certain distribution in velocity on the 
part of the target requires mathematical skill of no mean order. 
For that matter, the comparatively simple problem of determining 
the optimum pattern of search track when the probability density of 
the target varies from point to point is beyond the present capacities 
of the calculus of variations. The integral giving the probability of 
detection can be written down for each chosen pattern of track; but 
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if one attempts to compute the optimum pattern, an integral equation 
is obtained which so far defies even formal solution. 

And yet these more complex problems should be solved. We have 
spoken here only of two-dimensional search problems, typical of a 
surface fleet. But if "push-button warfare" should become a reality, 
three-dimensional search will be a matter of life or death, and the 
time allowed to find and destroy a guided missile headed for our 
shores is likely to he limited indeed. 

A point of interest in theory of probability can be mentioned here. 
In practice one needs the value of the effective search width W be­
fore one can lay out search patterns. This value is obtained from 
data collected from past operations. I t is, of course, an average 
value, averaged over the fluctuations of W which occur in normal 
operation. These fluctuations are of two types: the short-term 
fluctuations which occur during an individual search, due to rolling 
and pitching of the target, momentary fluctuations in attention of the 
observer, and so on; and long-term fluctuations, which occur from 
trip to trip, due to changes in atmospheric properties or instrument 
maintenance, etc. The value of IF obtained from past operational data 
is usually an average over both long and short-term fluctuations. But 
is this the best value of W to use in laying out the next individual search? 
If the atmosphere or equipment is in top form one day is there some 
way of finding this out and/or taking advantage of it? Here is a 
point which strikes close to the fundamentals of probability theory. 

Measure and countermeasure. In operations research one often 
encounters the following sort of problem:3 if A uses one tactic, B 
should use a certain defense, but if A uses another tactic, B should do 
something else ; what are the best tactics for both A and B ? Problems 
of this sort are discussed by von Neumann and Morgenstern2 in 
their Theory of games. In some of the problems they discuss the 
answer is definite; there is one particular action which A must take, 
and likewise f o r 5 , in order that neither^, nor B shall lose too much. 
In other words, if A took any other action than the recommended 
one, B could take advantage of him, and vice versa. 

In other problems the answer is indefinite; any one action on the 
part of A will eventually lead to trouble if the "game" is played 
several times; what is needed is a variation of tactics, in a random 

3 The following examples are taken from some of the work done by the author and 
G. E . Kimball while they were with the Operations Research Group, U.S.N. 
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manner, so that B is never sure which action A will take next time. 
This sort of situation often turns up in operations research. The 
enemy may have a countermeasure to some weapon of ours which 
renders the weapon a liability in certain cases. Should we use the 
weapon or not? 

An example of this type of analysis can again be taken from the 
theory of search. A submarine wishes to pass through a channel 
without being detected by a patrol aircraft, which flies back and forth 

**0& POSITION OF BARRIER, x — » 

FIG. 7. Barrier patrol versus diving submarine. P(x) «Probability of contact 
if barrier is at x and submarine is surfaced. 

across the channel each day. The submarine can escape detection by 
submerging, but we assume that it can only travel a total distance a 
submerged and that a is shorter than the channel length. It can 
surface and dive again several times, but the total length of path 
submerged is no larger than a. 

The channel is supposed to be wide enough so that only a few 
trips are possible by the plane each day. Consequently each day the 
plane must choose which point along the channel it is to patrol across. 
If it chooses a wide part the number of traverses will be fewer and the 
chance of detection, even if the submarine is surfaced at that point, 
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is less than if the plane were patrolling across a narrower part. In 
fact, one can plot a curve giving the probability P(x) that the plane 
will discover the submarine if it patrols across the portion a distance 
x from one end of the channel and if the submarine is not submerged 
when passing this part. Such a curve is given in Fig. 7. 

It might seem, at first sight, that the aircraft should always patrol 
where P is largest. But if this action were taken the submarine would 
soon learn to dive when it goes past that point and the plane would 
never see the submarine. Obviously the plane must spread out its 
effort, one day patrol at one value of x, next day at another and so on, 
with the frequency of patrol at x governed by some predetermined 
function <f>(x), which is called the density of the barrier at x. This 
patrol effort should not be distributed from point to point in a regular 
manner, or the opponent could take advantage of this; the assign­
ment of patrols should be in a random manner, subject to the density 
function <t>(x). 

Similarly, if the submarine is always submerged in one region the 
plane could patrol outside that region and the submarine would lose 
the advantage of its submergence. It must vary its regions of sub­
mergence in a random manner, with a relative frequency according to 
a density function \fs(x). To recapitulate, equation-wise: 

Density of patrol = <£(#); I 4>{x)dx = 1, 

(10) Prob. of submergence ~ ^(x); I \p(x)dx = a> 

Prob. of detection G = I P(x)4>{x)[\ - t(x)]dx. 

First let us consider the way in which the submarine commander 
must analyze the situation to decide on the submergence density 
^(x). He must choose \f/ so that if the opposing side learned what ^ 
he was using they could not gain an advantage, but if he learned the 
patrol plans of the plane (the values of </>) he might be able to gain 
an advantage. 

If the airplane patrol-squadron commander found out that the sub­
mergence density function for the submarine was to be yp(x), he 
could make the probability of contact G a maximum by flying his 
patrol plane at the point x where P(x) [l — \f/(x) ] has its maximum 
value. The submarine commander would, of course, like to make the 
quantity P(x)[l-~\f/(x)] equal to zero, everywhere, but this is not 
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possible, since the channel is longer than the maximum range of 
submergence, a. The next best thing for the submarine commander 
to do is to arrange so that P(x)[l—\f/(x)] has no single maximum, 
that is, is flat along the top» This is done as follows: 

Safe tactics for submarine. Over as great a range of x as possible, 
choose $(x) so that 

P(x)[l — t(x)] =5 Ht a constant, that is 

l H 

/« <x i / x J 1 ~" ~^7T ' w h e n pW > H ( o v e r r a n & e Boi x)> (11) f(x) = < P(x) 

v 0, when P(x) < H (outside range B of x). 

The value of H is determined by the submergence limitations of the 
submarine, 

H \ where the integration is only over 
1 \dx = a, 

P(x)/ range B of x. 
If the submarine follows these submergence tactics then no matter 

what tactics the patrol plane follows, the probability of contact will 
never be greater than H, and it may well be less than H if the patrol 
plan is badly placed. The integral determining H ensures that H is as 
small as possible, consistent with the submergence capabilities of the 
submarine. 

These are the safe tactics for the submarine. If the submarine com­
mander learns the plans of the aircraft patrol, he can alter \p so that G, 
the contact probability, is less than H\ but if he is not sure about the 
air patrol plans then a choice of the tactics of Equation 11 will en­
sure that the probability of contact is never larger than H even if the 
opposing side has a perfect spy system. 

The details of the solution are shown in the left-hand side of Fig. 8. 
We plot the reciprocal of P(x) and draw a horizontal line of height 
(l/H) so adjusted that the area between this line and the curve 
(1/P) is equal to (a/H). The difference between this line and the 
(1/P) curve, multiplied by-fif, will then be ^ which is plotted in the 
lower left-hand figure. If the air patrol is placed anywhere between 
Xo and xi the probability of contact G is equal to II: if it is placed 
outside this range G will be less than £T. 

We note that if a is small enough, or if the value of P(x) fluctuates 
more widely, the line at height (l/H) may cut the line (1/P) at more 
than two points. When this is the case the region for submergence is 
divided into two or more parts; those regions for which (1/P) is larger 

ƒ*•-ƒ.( 
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than (1/H) are excluded from the diving schedule (^ = 0 there) and 
for those regions where (1/P) is smaller than (1/H), \f/ will equal 
1 — (H/P) as before. This illustrates again a property of many solu­
tions of operational problems: if the resources available are limited 
they should be used only in the more promising regions, the less 
promising regions should be disregarded entirely. The same result 
turned up in the example, quoted earlier, of the search of two areas. 
I t turns up in many problems discussed by von Neumann and 
Morgenstern.2 

SUBMARINE TACTICS 
SIDE B 

BARRIER TACTICS 
SIDE A 

/ /-(SHADED AREA)«tf ^-(SHADED AREA)»1 

O-e-

JZS -
un * i 

FIG. 8. Solutions of problem shown in figure 7 for safe tactics for both sides. 

This property of solutions of operational problems should not be 
surprising to us (though it is not a usual result in the classical 
examples of the calculus of variations) for many of these problems 
are minimax problems with definite boundaries imposed on the 
parameters by reason of force limitations. Hence it often happens 
that the minimax is on one of the boundaries (where one of the 
parameters is zero, for instance) instead of inside the boundary. 

Now let us see what the patrol squadron commander must do to 
ensure that the contact probability G be as large as possible. We 
assume that he knows that the submarine can only travel a distance a 
under water. If he knew, in addition, that the submarine was sub­
merging according to the schedule \p he could fly his patrol anywhere 
between xo and xi and get the same value of G. But flying the patrol 
always at one point (or even at several points) is a dangerous thing 
to do, for if the submarine commander were to learn this he could 
alter xf/ so as to reduce G. The aircraft commander must fly his 
patrol at random along x, with a frequency predetermined by a 
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probability density factor <f>(x) (see Equation 10), such that if the 
submarine commander found out the shape of <f> he would not gain 
any advantage (he could not lower G) but if the aircraft commander 
found out the submarine's schedules, a change of patrol might enable 
G to be increased. This requirement, we see, is symmetric to that for 
the submarine. As with the submarine, the barrier density cj> must be 
adjusted so that the quantity P(x)<f>{x) which comes into the integral 
for G has no maxima, but is flat on top. Therefore no barrier will be 
flown for those ranges of x where P is less than some limiting value K; 
and where P is larger than K the barrier density <j> will be inversely 
proportional to P , so that P<j> be a constant in those regions. There­
fore we have : 

Safe tactics for patrol aircraft. Choose 4>{x) so that P(#) equals 
some constant h over a range of x, 

i h 
—7~T ' when P{%) > K (over range C of #), 

(12) <j>(x) = i P{%) 

{ 0, when P(x) < K (outside range C of x), 

where h is chosen so that f<j>dx = 1, that is, (1/h) = / c ( l / P ) d # , with the 
integral taken only over range C of x. The length L of the region 
patrolled is the length of range, fcdx~L. 

Assuming that the submarine submerges within range C of x, the 
probability of contact G would be h(L — a) ; in any case G would never 
be less than h(L — a) for the patrol schedule <j> given in Equation 12. 
We have not yet chosen the value of K, and therefore the length L of 
range C of x. I t certainly would not be advisable to make L smaller 
than a, for then the submarine could dive under the whole barrier. 
On the other hand it would not do to make L too large, for then h 
would become too small. In fact, we must adjust L and h so that 
h(L—a) is a maximum. 

A certain amount of algebraic manipulation is required to show 
that the requirement for h(L — a) to be maximum is equivalent to the 
requirement that K=H, or that range C for the aircraft is identical 
with range JB for the submarine submergence. This is of course reason­
able, for any lack of coincidence on the part of either side would rep­
resent wasted effort. 

The graphical method of determining the patrol schedule <j>(x) is 
shown in the right-hand side of Fig. 8. One plots again the reciprocal 
of P(x), draws the line of height (1/K)*=(1/H) and determines the 
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range C(—B) of x. We choose the normalizing factor ft, such that h 
times the shaded area equals unity. Then the best the submarine 
can do if the aircraft patrol is alert, and the best the aircraft can do if 
the submarine commander is clever, is the set of tactics outlined in 
Equations 11 and 12 and in Fig. 8, resulting in the probability of con­
tact G~H — h(L — a). Any departure from these tactics by one side 
will enable the other side to gain an advantage if the departure is 
ascertained. 

The problem considered here is an extremely simplified example of 
a large class of problems which turn up continuously in tactical 
studies and in many peacetime applications of operations research. 
The difficulties of solving such problems are not ones of tedious 
detail, but are often due to lack of fundamental techniques. Much 
more basic research must be carried out before many problems of 
practical importance can be solved. 

Lanchester's laws. One final example, from the field of strategy 
this time, deals with the relation4 between size of opposing forces and 
the casualty rates in combat of various types. Suppose that at time t 
there are m units of one side engaging n units of the other side. The 
time rate of decrease of m and n as the battle continues will depend 
on the nature of the engaging units and the types of weapons used. 
For some types of engagement the relations are: 

dm dn an 
= -A9 — = - EA, = E, 

(13) dt dt dm 
no — n = E(m0 — m) 

where the constant E, called the exchange rate, is a measure of the 
relative efficiency of the weapons used by the two sides. This relation­
ship is called Lanchester's linear law of combat. 

Another type of engagement corresponds to the equations 

dm dn dn 
== — an — = — aEm, = (mE/n) 

(14) dt dt dm 
2 2 2 2 

no — n = E(mo —- m ). 
This relationship is called Lanchester's square law of combat. It is 

more often applicable to engagements of modern warfare (where gun 
fire rather than hand-to-hand combat predominates) than is the 

4 See Aircraft in warfare by F. W. Lanchester, London, Constable, 1916, for a dis­
cussion of some of the relations referred to here. 
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linear law. Both sets of equations are related mathematically to the 
equations governing biological equilibria, epidemiology and theory of 
evolution.5 

The solutions of these and related differential equations have been 
obtained and the consequences discussed in some detail.4 For in­
stance, from the solution of the square law the strategic advantages 
of the concentration of force are at once apparent, for a doubling of 
the number of units in any engagement is worth as much as the 
quadrupling of the weapon effectiveness. 

Solutions of the differential equations do not tell the whole story, 
however, for they give only the results of a sort of "average engage­
ment," and do not indicate the sort of fluctuations which might be 
expected in this non-regular world. What is needed is a detailed sta­
tistical analysis of the problem. 

For the linear law this is not difficult. We define a "unit combat" 
as that portion of the engagement during which, on the average, 
1/(1+E) red units (w's) are lost and E/(l+E) blue units (n's) are 
lost. After T combats the probability that a red units and /? blue 
units are actually lost is, of course, 

T\ E« 

(15) P ( 0 f , / 3 ) = ^ ! = (1 + Er ; 

T = a + 0; a < m0; P < n0. 

Special consideration is required to obtain expressions for P(a, no), 
the probability that the engagement is ended with all of the blue units 
lost and (ra0 —a) red units left, and for the symmetrically related 
P(m0 , j3) corresponding to annihilation of the red forces. The results 
are 

(a + n0 - 1) ! Ea 

(16) P(«, no) = — n , _. . > P(w0> no) = 0. 
a\(n0 — 1)! (1 + E)a+no 

From these probabilities one can calculate the chances of any devia­
tion from the solution of the differential equation 13. 

A similar analysis of the square law is more difficult, for here we 
cannot eliminate the time from explicitly entering the formulas. The 
probability function here is P(m, n, t), the probability that at time t 
there are m red units and n blue units still unharmed. We change the 
time scale so that during dt, the chance that a red unit is hit is 

8 See, for instance, V. Volterra, The theory of the struggle for life, Gouthiers-Villars, 
Paris, 1931, and A. V. Lotka, Elements of physical biology, Williams and Wilkins, 
Baltimore, 1925. 
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(ndt/El/2) and the chance that a blue unit is hit is (mdtE1/2). Then a 
consideration of the interrelationship of the functions P shows that 

d 
— P(m, n, t) « {mE1'2) [P(m, n + 1, t) - P(m, n, t)] 
dt 

+ (n/E1*2)[P(m + 1, », /) - P(m, »,*)], 

(17) d 
— P(fn,Ott) « <f»EU*)P(f», 1, /), 

— P(0, », 0 - (n/E"*)P(l, n,t). 
at 

This set of equations should be solved subject to the initial condition 
that P(m0, n0, t) is unity and all other P's are zero at / = 0. 

Investigation of these and similar equations for other types of com­
bat have not received the detailed study they merit. Various approxi­
mate and asymptotic solutions of Equations IS and 17 are needed in 
order to show general trends more clearly than can the very com­
plicated exact solutions. Other equations, corresponding more closely 
to specific strategic problems, should be investigated. 

Conclusion. Perhaps the foregoing examples will serve to indicate 
that the mathematical problems encountered in operations research 
are not trivial, and that while many important problems can be 
formulated in precise mathematical form, a precise solution of all but 
the very simplest of these is beyond the capabilities of mathematics at 
present. I t is to be hoped that more of the work completed during 
the war can be made available to the mathematical public, and that 
students can be trained in this and related subjects, so that they may 
contribute to the peace-time applications of this new field of applied 
mathematics and so that they may be available to contribute in im­
portant ways to our defense in case of war. 
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